

SRP Progress in Research Webinar Series

Utilizing Innovative Materials Science Approaches to Enhance Bioremediation: Session II - Chlorinated Compounds

Project

Enhancing bioremediation of groundwater co-contaminated by chlorinated volatile organic compounds (CVOCs) and 1,4-dioxane using novel macrocyclic materials

Presenters

Youneng Tang (PI, Florida State University)

Yuexiao Shen (PI, Texas Tech University)

April 29th, 2022

Team

Research team

Youneng Tang (Contact PI) Ermias Tesfamariam (GA) Dennis Ssekimpi (GA)

Yuexiao Shen (PI) Joshua D. Howe (Co-PI) Elham Abaie (GA) Manish Kumar (GA) Ameevardhan Singh Patyal (GA)

Chao Zhou (Co-PI)

Senior advisors

nt, ec

SiREM

Duane Graves, Geosyntec/ SiREM

UIC

Jim Cummings, EPA

Technical support

Problems and Solution

Problem #1: Low
1,4-dioxane concentration

Problem #2: CVOCs inhibit 1,4dioxane biodegradation

<u>Problem #3:</u> Opposite environmental conditions for biodegradation

Solution: <u>Component #1</u>: Cultures that efficiently degrade 1,4-dioxane at low concentrations

Component #2: Novel macrocyclic sorbents

Technical Approach

- Examined conformer stability and statistical distribution at ambient conditions. The most abundant (C7) conformer was used to model
 Pillar[6]arene (as shown in Table 1 and Figure 1).
- Probed for transport barriers relating to adsorption in different test macrocycles (as shown in Figure 2).
- Analyzed materials based on strength of adsorption CVOCs and 1,4dioxane on Pillararene-based macrocycles (as shown in Table 2).

Conformer of P6A	C1	C2	C3	C4	C5	C6	C7	C8
Relative Energy to ground state C7 (kJ/mol)	61.8	44	27.4	29.8	15.2	46.8	0	18.8
Population per billion at 298 Kelvin	0	113	41,554	35,463	6,340,558	19	990,663,288	2,919,006

Table 1 – Statistical (thermal/energetic) abundance of pristine Pillar[6]arene (P6A) conformers at 298K.

Figure 1 – C7 conformer ofFigure 2 –Pillar[6]arene (P6A).primary and

Figure 2 – Adsorption path energetics for 1,4-dioxane on a primary amine-substituted Pillar[6]arene (P6A) macrocycle.

	Pristine P6A	Dimethoxy P6A	P6A with	P6A with	P6A with
			primary amine	carboxylic acid	methylbromide
1,1-dichloroethylene	-44.77	-61.74	-66.03	-63.52	-66.97
Cis-dichloroethylene	-48.08	-62.44	-66.54	-68.51	-69.66
Trichloroethylene	-43.15	-69.85	-70.84	-73.52	-74.54
1,4-Dioxane	-59.69	-78.95	-82.30	-81.91	-85.20

Table 2 – Binding Energies (in kJ/mol) for 1:1 adsorption of adsorbate onPillar[6]arene (P6A)-based macrocyclic materials. (More negative value represents
stronger exothermic adsorption)5

Monomers:

Activated sludge

Pure culture identification (**5 cultures** identified so far)

1,4-dioxane degradation:
$\frac{dS_d}{dt} = -X \boldsymbol{q_d} \left[\frac{S_d}{K_s + S_d} \right]$
Biomass growth:
$\frac{dX}{dt} = \mathbf{Y} X \mathbf{q}_d \left[\frac{S_d}{K_s + S_d} \right] - \mathbf{b} X$

Pure culture	$\frac{q_d}{d} (mg \ dx/mg \ pr \ \cdot d)$	K_{s} (mg dx/L)	$\mathbf{Y}(mg \ pr/mg \ dx)$	b (d ⁻¹)
WC10G	0.47	8.24	0.36	0.02

Good fit for 1,4-dioxane degradation at low concentrations

Conclusions

- > Specific Aim 1
 - **Material modeling**: Macrocycles tend to exist in one conformer that dominates at relevant conditions. Adsorption shows no transport barrier, indicating energetics can drive selectivity. Pillar[6]arene and its variants are predicted to be weakly selective for 1,4-dioxane over CVOCs.
 - Material synthesis and characterization: β-Cyclodextrin adsorbents showed strong selectivity towards
 CVOCs in a mixture of 1,4-dioxane and CVOCs; they adsorbed CVOCs but not 1,4-dioxane.

- > Specific Aim 2
 - Microbial enrichment: We enriched six mixed cultures through feeding 1,4-dioxane at a low concentration.
 - Microbial isolation and characterization: We identified five pure cultures and characterized one pure culture (WC10G), which seems a good fit for degrading 1,4-dioxane at low concentrations: low K_s , b, q_d , and high Y.

Acknowledgement

Research reported in this presentation was supported by the National Institute Of Environmental Health Sciences of the National Institutes of Health under **Award Number R01ES032692**. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.