# Field water balance of final landfill covers: The USEPA's Alternative Cover Assessment Program (ACAP)

William H. Albright Desert Research Institute, University of Nevada

and

#### Craig H. Benson University of Wisconsin-Madison





Final covers - the issues

- Lack of field-scale performance data
- Excessive uncertainty in modeled predictions
- No specified design process

Presented here...

- Field data from ACAP
- A suggestion for acceptable use of models
- A design process for engineers and regulators

# ACAP: The Field Program

- Nationwide: 11 sites, 7 states
- Large (10 X 20 m) drainage lysimeters
- Conventional covers
  - Composite
  - Soil barrier
- Alternative covers
  - Evapotranspiration (ET)
  - Capillary barrier
- Side-by-side demonstration at most sites

#### **ACAP Site Locations**















#### **Conventional Composite Designs**



Geomembrane over geosynthetic clay layer

Geomembrane over fine-grained soil layer

Water Balance Components Conventional Composite Cover, Cedar Rapids IA

- Percolation rate correlated with
  - Heavy precipitation events
  - Surface flow
  - Lateral flow on geomembrane



# Water Balance Components Conventional Composite Cover, Marina CA

- Percolation coincides with precipitation, surface <sup>800</sup> and lateral flow
- Relatively high rate of percolation
- No cushion between the geomembrane and the soil, punctures likely in geomembrane



Illustrates importance of careful geomembrane installation

# Conventional Composite Covers Discussion

- Perform well at all locations
- Average percolation typically <1.5% of precipitation

<1.5 mm/yr at arid/semi-arid/subhumid sites</li>
 <12 mm/yr at humid locations</li>

- Percolation often linked to heavy precipitation events and lateral flow
- Damage to geomembrane greatly increases
  percolation rate
- Construction practice and quality control are very important

#### **Conventional Composite Cover Data**

| Site                  | Duration<br>(Days) | Slope<br>(%) | Total Precipitation<br>(July 1– June 30)<br>(mm) |       |                    | Surface<br>Runoff | Lateral<br>Flow | ET<br>(mm)      | Percolation (Water Year: July 1– June 30) |                            |                |                 |                |  |
|-----------------------|--------------------|--------------|--------------------------------------------------|-------|--------------------|-------------------|-----------------|-----------------|-------------------------------------------|----------------------------|----------------|-----------------|----------------|--|
|                       |                    |              |                                                  |       |                    |                   |                 |                 | Total                                     | 00-01                      | 01-02          | 02-03           | Average        |  |
|                       |                    |              | 00-01                                            | 01-02 | 02-03              | (mm)              | (mm)            | ()              | (mm)                                      | (mm/yr)                    | (mm/yr)        | (mm/yr)         | (mm/yr)        |  |
| Altamont<br>CA        | 781                | 5            | NF                                               | 291.1 | 394.2              | 59.0<br>(6.5%)    | 4.0<br>(0.4%)   | 825.0<br>(91%)  | 4.0<br>(0.4%)                             | NF                         | 0.0<br>(0.0%)  | 4.0<br>(1.0%)   | 1.5<br>(0.4%)  |  |
| Apple<br>Valley<br>CA | 251                | 5            | NA                                               | NF    | 148.0              | 6.8<br>(4.6%)     | 0.0<br>(0.0%)   | 134.14<br>(91%) | 0.0<br>(0.0%)                             | NA                         | NF             | 0.0<br>(0.0%)   | 0.0<br>(0.0%)  |  |
| Boardman<br>OR        | 747                | 25           | NF                                               | 134.4 | 125.5              | 0.0<br>(0.0%)     | 0.2<br>(0.1%)   | 366.4<br>(109%) | 0.0<br>(0.0%)                             | NF                         | 0.0<br>(0.0%)  | 0.0<br>(0.0%)   | 0.0<br>(0.0%)  |  |
| Marina<br>CA          | 947                | 25           | 288.0                                            | 335.0 | 343.7 <sup>d</sup> | 98.7<br>(10.%)    | 47.4<br>(4.9%)  | 789.6<br>(82%)  | 71.0<br>(7.3%)                            | 9.0<br>(3.1%)              | 25.3<br>(7.6%) | 36.2<br>(10.5%) | 23.1<br>(7.3%) |  |
| Polson<br>MT          | 1137               | 5            | 350.0                                            | 292.1 | 290.6              | 17.7<br>(1.6%)    | 40.5<br>(3.6%)  | 1052.5<br>(94%) | 1.5<br>(0.1%)                             | 1.2<br>(0.3%)              | 0.0<br>(0.0%)  | 0.0<br>(0.0%)   | 0.4<br>(0.1%)  |  |
| Cedar<br>Rapids<br>IA | 621                | 5            | NF                                               | NF    | 791.2              | 54.1<br>(2.8%)    | 96.2<br>(5.0%)  | 1725.5<br>(91%) | 26.9<br>(1.4%)                            | NF                         | NF             | 21.0<br>(2.7%)  | 12.2<br>(1.4%) |  |
| Omaha<br>NE           | 815                | 25           | NF                                               | 561.4 | 474.5              | 86.8<br>(5.8%)    | 43.3<br>(2.9%)  | 1266.0<br>(85%) | 16.5<br>(1.1%)                            | 8.5 <sup>c</sup><br>(1.4%) | 1.0<br>(0.2%)  | 9.2<br>(1.9%)   | 6.0<br>(1.1%)  |  |





#### (% = percent of precipitation)

#### **Conventional Soil Barrier Designs**





# Water Balance Components Conventional Soil Barrier Cover, Albany GA

- Soil dried for first time during 6week drought
- Change in response of percolation to precipitation events
  - Quantity
  - "Stair step" response



 No evidence that defects in clay barrier healed when soil water increased









# Change in saturated hydraulic conductivity in a compacted clay barrier

- Albany GA
- Cover installed
  March 2000
- Final sampling Feb. 2004

| Test     | Hydraulic<br>Conductivity<br>(K)<br>(cm/s) | K <sub>f</sub> /K <sub>o</sub> |
|----------|--------------------------------------------|--------------------------------|
| As-Built | 4.0x10 <sup>-8</sup>                       | 1.0                            |
| SDRI     | 2.0x10 <sup>-4</sup>                       | 5000                           |
| TSB - 1  | 5.2x10⁻⁵                                   | 1300                           |
| TSB - 2  | 3.2x10⁻⁵                                   | 800                            |
| TSB - 3  | 3.1x10 <sup>-3</sup>                       | 77,500                         |

# Conventional Soil Barrier Covers Discussion

- Percolation at humid locations
  - ➢ 52 195 mm/yr
  - $\geq$  6 17 % of precipitation
- Percolation response to precipitation events changed at both humid sites
  - Percolation quantity increased
  - Temporal response increased
- Clay barrier properties changed significantly over a relatively short time

#### **Conventional Soil Barrier Cover Data**

| Site                  | Duration<br>(Days) |              | Total Precipitation<br>(July 1– June 30)<br>(mm) |                            |                              | Surface<br>Runoff<br>(mm) | Lateral<br>Flow<br>(mm) | ET<br>(mm)    | Percolation (Water Year: July 1– June 30) |                  |                  |                |                    |  |
|-----------------------|--------------------|--------------|--------------------------------------------------|----------------------------|------------------------------|---------------------------|-------------------------|---------------|-------------------------------------------|------------------|------------------|----------------|--------------------|--|
|                       |                    | Slope<br>(%) |                                                  |                            |                              |                           |                         |               | Total<br>(mm)                             | 00-01<br>(mm/yr) | 01-02<br>(mm/yr) | 02-03<br>(mm/y | Average<br>(mm/yr) |  |
|                       |                    |              | 00-01                                            | 01-02                      | 02-03                        |                           |                         |               | , ,<br>,                                  |                  |                  | r)             |                    |  |
| Apple<br>Valley<br>CA | 251                | 5            | NA                                               | NF                         | 148.0                        | 3.4<br>(2.3%)             | 0.0<br>(0.0%)           | 120<br>(81%)  | 0.0<br>(0.0%)                             | NA               | NF               | 0.0<br>(0.0%)  | 0.0<br>(0.0%)      |  |
| Albany<br>GA          | 985                | 5            | 909<br>(909 <sup>b</sup> )                       | 798<br>(996 <sup>b</sup> ) | 1448<br>(1560 <sup>b</sup> ) | 359<br>(9.9%)             | NA                      | 2683<br>(74%) | 624<br>(17%)                              | 292<br>(32%)     | 238<br>(24%)     | 52<br>(3.4%)   | 195.2<br>(17%)     |  |
| Cedar<br>Rapids<br>IA | 621                | 5            | NF                                               | NF                         | 791.2                        | 79.6<br>(4.2%)            | 29.5<br>(1.5%)          | 1596<br>(84%) | 114<br>(6.0%)                             | NF               | NF               | 94<br>(12%)    | 52<br>(6.0%)       |  |

(% = percent of precipitation)





# Alternative Designs: Arid/Semi-Arid/Sub-Humid Locations



# Water Balance Components Alternative Cover, Helena MT



- Seasonal precipitation pattern
- Seasonal fluctuations in soil water content
- No percolation

#### Water Balance Components Alternative Cover, Marina CA

- Water storage capacity lower than expected
- Effective storage capacity (300 mm) lower than calculated (385 mm)
- Drainage when storage capacity exceeded



#### Alternative Designs: Humid Locations



#### Water Balance Components Alternative Cover, Omaha NE

- Moderate precipitation
- Percolation occurs late spring
- Improvements in design and factorof-safety considerations may provide acceptable performance



# Water Balance Components Alternative Cover, Cedar Rapids IA

- High precipitation
- Extended periods when precipitation > ET
- Probably exceeds capacity of soil/plant system to achieve low percolation rates



### Alternative Designs Discussion

- Very low (<2mm/yr) percolation rates at 7 of 10 covers at arid/semi-arid/sub-humid locations
  - Annual variation in transpiration capacity at Sacramento CA cause of anomalous behavior
  - Insufficient soil water storage capacity at Marina CA
- Higher (33-160 mm/yr) percolation rates at humid locations.
- Preliminary calculations of water holding capacity can underestimate apparent capacity by 0-25%
- Successful design requires careful attention to:
  - Site characterization
  - Water balance mechanisms

#### Alternative cover data

Table 6. Summary of water balance data: alternative covers. Percentage of precipitation in parenthesis.

| Cover<br>Type    |                         | Duration<br>(Days)                             |       |       | Total Pr               | recipitation           |                    | Surface Duran     | Percolation (Water Year: July 1– June 30) |                  |         |                    |                 |                  |                  |
|------------------|-------------------------|------------------------------------------------|-------|-------|------------------------|------------------------|--------------------|-------------------|-------------------------------------------|------------------|---------|--------------------|-----------------|------------------|------------------|
|                  | Site                    |                                                | Slope | ŀ     | (July 1-               | - June 30)             |                    | Surface<br>Runoff | Evapo-<br>transpiration                   | Total<br>(mm)    | 00.00   | 00-01              | 01-02           | 02.02            | Average          |
|                  |                         |                                                | (%)   |       | (1                     | mm)                    |                    | (mm) -            | (mm)                                      |                  | (mm/yr) | (mm/yr)            | (mm/yr)         | (mm/yr)          | (mm/yr)          |
|                  |                         |                                                |       | 00-00 | 00-01                  | 01-02                  | 02-03              | 04.4              | 770.4                                     | 4.0              |         |                    | 1.5             | 25               | 1.5              |
|                  | Altamont                | 781                                            | 5     | NA    | NF                     | 291.1                  | 394.2              | (9.3%)            | (85.3%)                                   | (0.4%)           | NA      | NF                 | (0.5%)          | 2.5<br>(0.6%)    | (0.4%)           |
|                  | Apple Valley            | 251                                            | 5     | NA    | NA                     | NF                     | 148.0              | 0.0               | 79.5                                      | 0.0              | NA      | NA                 | NF              | 0.0              | 0.0              |
|                  | Peardman                |                                                |       |       |                        |                        |                    | (0.0%)            | (0.0%)                                    | (0.0%)           |         |                    | 0.0             | (0.0%)           | (0.0%)           |
| e                | (1220 mm)               |                                                |       |       |                        | 134.4                  | 125.5              | (0.0%)            | (103.9%)                                  | (0.0%)           | NA      | NF                 | (0.0%)          | (0.0%)           | (0.0%)           |
| Monolithic Barri | Boardman                | /4/                                            | 25    | NA    | NF                     |                        |                    | 0.0               | 398.5                                     | 0.0              | NA      | NE                 | 0.0             | 0.0              | 0.0              |
|                  | (1840 mm)               |                                                |       |       |                        |                        |                    | (0.0%)            | (118.8%)                                  | (0.0%)           | 110     | 150                | (0.0%)          | (0.0%)           | (0.0%)           |
|                  | Sacramento<br>(1080 mm) | acramento<br>1080 mm)<br>acramento<br>2450 mm) | 8 5   | 517.9 |                        | 277.1                  | 7.1 245.1          | 105.5             | 1064.2<br>(77.1%)                         | 101.5            | 0.0     | 1.4                | 96.2<br>(34.7%) | 3.9              | 26.8             |
|                  | Sacramento              |                                                |       |       | 356.6                  |                        |                    | 66.9              | 1089.4                                    | 8.5              | 0.0     | 0.0                | 8.5             | 0.0              | 22               |
|                  | (2450 mm)               |                                                |       |       |                        |                        |                    | (4.8%)            | (78.9%)                                   | (0.6%)           | (0.0%)  | (0.0%)             | (3.1%)          | (0.0%)           | (0.6%)           |
|                  | Albany 985              | 985                                            | 5     | NE    | 909.0                  | 798.3 1447.8           | 18.5               | 3445.6            | 394.0                                     | NE               | 134.1   | 3.1                | 218.3           | 123.3            |                  |
|                  |                         | 805                                            |       | 141   | (1078.5 <sup>®</sup> ) | (1038.6 <sup>₽</sup> ) | (1455.9)           | (0.5%)            | (92.0%)                                   | (10.5%)          |         | (12.4%)            | (0.3%)          | (15.0%)          | (10.5%)          |
|                  | Cedar<br>Rapids         | 621                                            | 5     | NA    | NF                     | NF                     | 791.2              | 59.9<br>(3.1%)    | 1463.7<br>(76.8%)                         | 351.6<br>(18.4%) | NA      | NF                 | NF              | 157.1<br>(20.0%) | 159.6<br>(18.4%) |
|                  | Helena                  | 1169                                           | 5     | NF    | 180.9                  | 265.2                  | 252.0              | 50.1              | 680.2                                     | 0.0              | NF      | 0.0                | 0.0             | 0.0              | 0.0              |
|                  |                         | 1100                                           | Ŭ     |       |                        |                        | 202.0              | (6.6%)            | (89.5%)                                   | (0.0%)           |         | (0.0%)             | (0.0%)          | (0.0%)           | (0.0%)           |
| 'n               | Marina                  | 947                                            | 25    | NF    | 288.0                  | 335.0                  | 343.7 <sup>c</sup> | 0.0 (0.0%)        | 902.5<br>(93.3%)                          | 159.9<br>(22.9%) | NF      | 44.7<br>15.5%)     | 64.2<br>(19.2%) | 51.1<br>(14.9%)  | 52.0<br>(16.5%)  |
| arri             | Montinello              | 072                                            | 070 5 | 5 NA  | 242.7                  | 187.8                  | 202.0              | 10.2              | 938.3                                     | 0.0              | NA      | 0.0                | 0.0             | 0.0              | 0.0              |
| Capillary Ba     | Monticello              | 8/2 5                                          | 5     |       | 343.7                  | 107.0                  | 382.8              | (1.2%)            | (104.7%)                                  | (0.0%)           | NA      | (0.0%)             | (0.0%)          | (0.0%)           | (0.0%)           |
|                  | Omaha                   | 815                                            | 5 25  | 5 NA  | NF                     | 561.4                  |                    | 88.7              | 1258.9                                    | 155.3            | NA      | 137.0 <sup>°</sup> | 3.4             | 50.9             | 56.9             |
|                  | (1060 mm)               |                                                |       |       |                        |                        | 474.5              | (6.0%)            | (84.6%)                                   | (10.4%)          | 10/5    | (22.5%)            | (0.6%)          | (10.7%)          | (10.4%)          |
|                  | Omaha<br>(1360 mm)      |                                                |       |       |                        |                        |                    | 56.5<br>(3.8%)    | 1311.9<br>(88.1%)                         | 90.7<br>(6.1%)   | NA      | 78.6°<br>(12.9%)   | 4.2 (0.7%)      | 28.7<br>(6.0%)   | 33.3<br>(6.1%)   |
|                  | Beleen                  | 4407                                           | -     | NE    | 250.0                  | 000.4                  |                    | 17.8              | 1133.2                                    | 0.2              | NE      | 0.2                | 0.0             | 0.0              | 0.0              |
|                  | Poison                  | 1137                                           | 5     | NE    | 350.0                  | 292.1                  | 290.6              | (1.6%)            | (1.0%)                                    | (0.0%)           | NE      | (0.1%)             | (0.0%)          | (0.0%)           | (0.0%)           |

Notes: NA = Not Applicable, NF = Data not available for full year, average annual precipitation from NOAA historical data, total precipitation for Albany includes irrigation.





#### The problem with models: excessive uncertainty in results



#### Sensitivity analysis as a design tool

- Design sensitivity analysis (DSA) is performed by comparing results from systematic variation of a single parameter
- DSA helps designer and regulator understand relative contribution of various design features or environmental stresses to cover performance
- DSA can provide valuable information for negotiations in a regulatory environment

#### DSA example Evaluate the effect of cover thickness



# A design process from the Interstate Technology Regulatory Council (ITRC)

- 1. Define performance criteria
  - No flux
  - Bioreactor operation
- 2. Select and validate design concept
  - natural analogs
  - lysimeter data (ACAP)
- 3. Characterize site (soil, plants, climate)
- 4. Model with DSA to understand important design parameters and environmental stresses
- 5. Final design considerations (final land use, etc)
- www.itrcweb.org