Conducting a Demonstration of Method Applicability and Designing Quality Control Programs for X-Ray Fluorescence in Soil

ConSoil 2008 – Milan

Stephen Dyment

U.S. EPA

Technology Innovation Field Services Division dyment.stephen@epa.gov

Technical Session Objectives

- Provide an overview of the demonstration of method applicability (DMA) process used in a Triad Approach
 » Highlight activities often conducted during evaluations of field portable x-ray fluorescence (XRF) instruments
- Translate common DMA findings into a comprehensive quality control (QC) program for field activities involving XRF analysis of soil and sediment matrices
 - » Indicate QC sample types, function, strategies for analysis, and effective use of results in real time
- Showcase project benefits of real time analysis and collaborative data sets

DMA History

 Concept founded in SW-846, performance based measurement (PBMS) initiative

» http://www.epa.gov/sw-846/pbms.htm

- Initial site-specific performance evaluation
 - » Analytical and direct sensing methods
 - » Sample design, sample collection techniques, sample preparation strategies
 - » Used to select information sources for field and off-site
- Goal is to establish that proposed technologies and strategies can provide information appropriate to meet project decision criteria

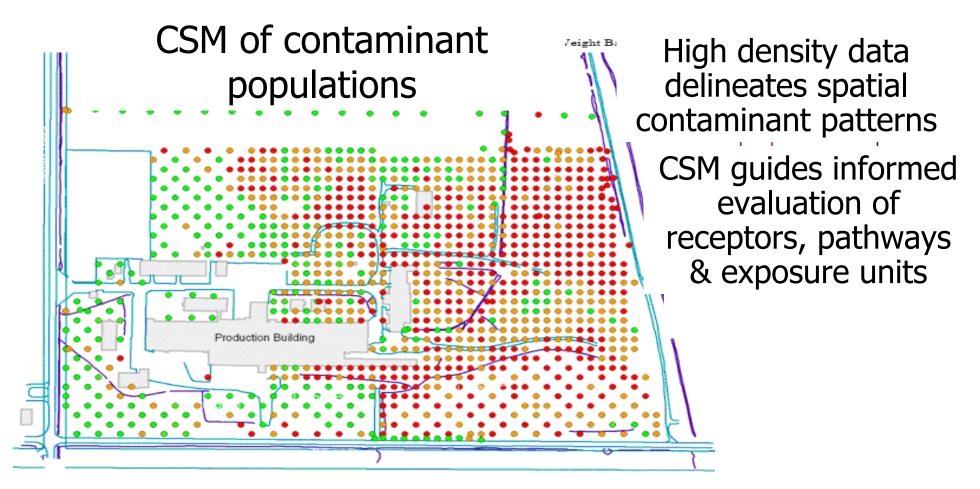
Why Do I Need a DMA?

- Triad usually involves real-time measurements to drive dynamic work strategies
- Greatest sources of uncertainty are usually sample heterogeneity and spatial variability
- Relationships with established laboratory methods often required – educate stakeholders
- Early identification of potential issues
 - »Develop strategies to manage uncertainties
- Provides an initial look at CSM assumptions

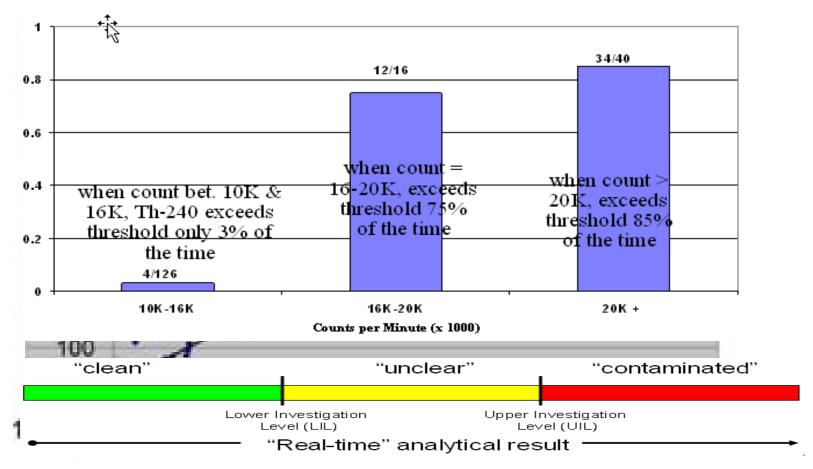
- There is no template for DMAs!
 - » Format, timing, documentation, etc. depend heavily on site specifics, existing information, and intended data use
- Perform early in program
- Go beyond simple technology evaluation to optimize full scale implementation
 - » Method comparison, statistical analysis
 - » Sample design, field based action levels
 - » Sample prep, throughput, other logistics
 - » Data management issues

What to Look For

- Effectiveness Does it work as advertised?
- ♦ QA/QC issues
 - » Are DLs and RLs for site matrices sufficient?
 - » What is the expected variability? Precision?
 - » Bias, false positives/false negatives?
 - » How does sample support effect results?
 - » Develop initial relationships of collaborative data sets that provide framework of preliminary QC program
- Matrix Issues?
- Do collaborative data sets lead to the same decision?
- Assessing alternative strategies as contingencies

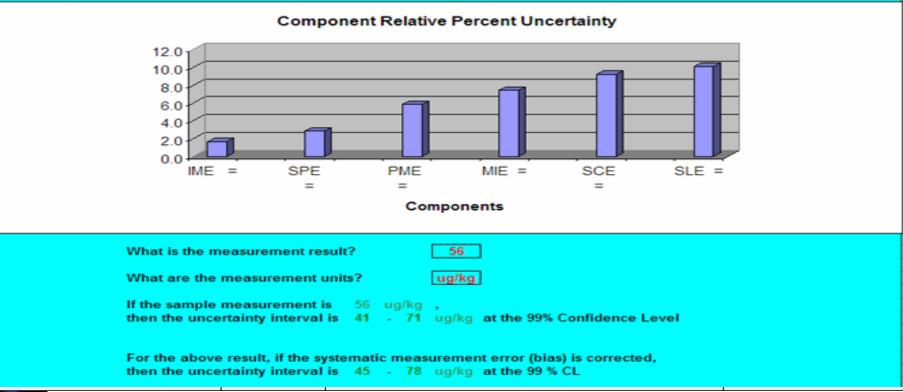

More Benefits

- Augment planned data collection and CSM development activities
- Test drive decision support tools
 - » Sampling and statistical tools
 - » Visualization tools
- Develop relationships between visual observations and direct sensing tools
- Flexibility to change tactics based on DMA rather than full implementation
- Establish decision logic for dynamic work strategies
- Evaluate existing contract mechanisms
- Optimize sequencing, load balance, unitizing costs


Typical DMA Products – Summary Statistics

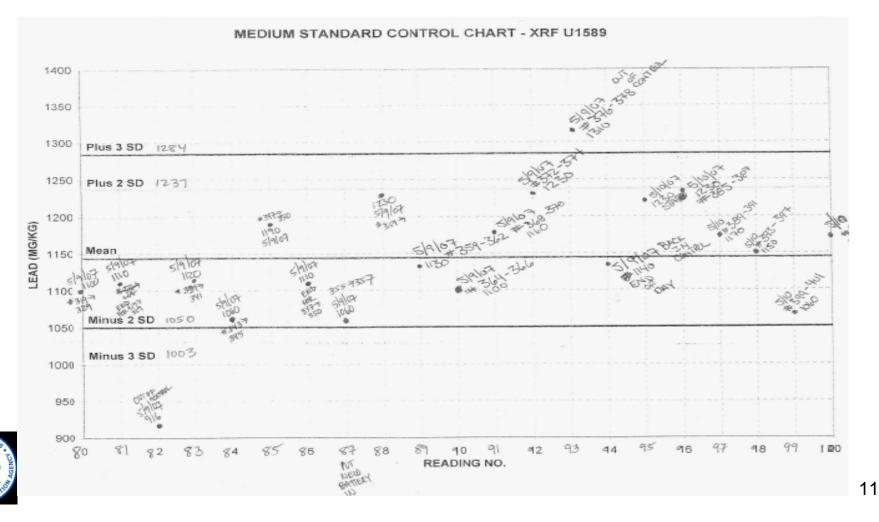
Typical DMA Products – Statistical Evaluations/Method Comparisons

- Parametric linear regressions
- Non-parametric ranges or bins



Typical DMA Products – Uncertainty Evaluations

Example: Ingersoll Uncertainty Calculator

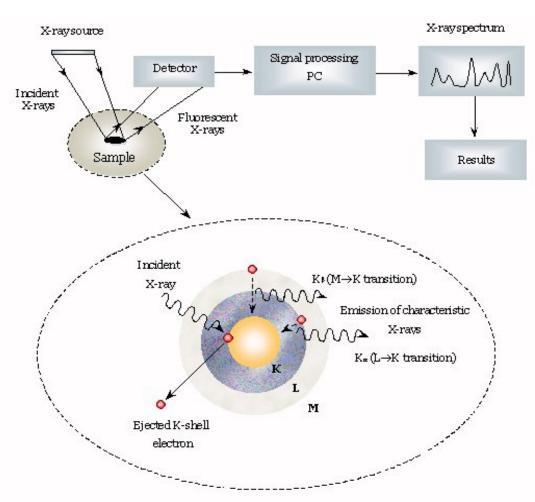

Analytical Uncertainty Calculator (PAGE 3)

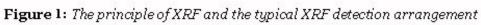
Typical DMA Products

QC program worksheets

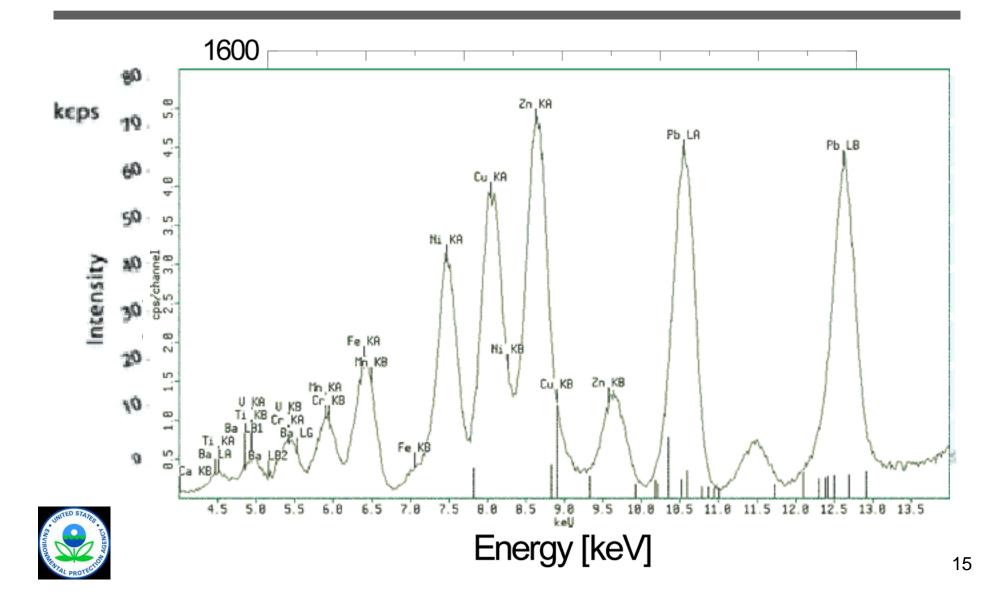
The Specifics of X-ray Fluorescence

- ♦ XRF-basics and principles of operation
- Translating DMA results
- Developing a QC program
 - »QC sample types
 - »QC sample function, corrective action
- Developing a dynamic sampling protocol
 »Choosing collaborative samples


Principle of XRF Operation



What does an XRF Measure?


- X-ray source irradiates sample
- Elements emit characteristic x-rays in response
- Characteristic x-rays detected
- Spectrum produced (frequency and energy level of detect x-rays)
- Concentration present estimated based on sample assumptions

Some Example XRF Spectra...

How is a Field Portable XRF **Typically Used?**

- Measurements on prepared samples
- Measurements through bagged samples (limited preparation)
- In situ measurements of exposed surfaces

What Does an XRF Typically Report?

- Measurement date
- Measurement mode
- "Live time" for measurement acquisition
- Concentration estimates
- Analytical errors associated with estimates

User defined fields

	A	C	D	E	F	G	Н	0	P	Q	R	S	Т
1	Date	Mode	LiveTime	Match1	MN1	Pass/Fail	Pass Fail Standard	Cr	Cr +/-	Mn	Mn +/-	Fe	Fe +/-
2	6-Dec-04	Standardization	53.46	0.0208	240	-0.0256	PASS						
13	6-Dec-04	Soil	76.53					<lod< th=""><th>170.85</th><th>249.86</th><th>41.7</th><th>24698.13</th><th>184.68</th></lod<>	170.85	249.86	41.7	24698.13	184.68
14	6-Dec-04	Soil	80.24					196.44	60.31	263.28	43.37	25348.6	192.79
15	6-Dec-04	Soil	76					<lod< th=""><th>175.72</th><th>373.11</th><th>43.1</th><th>21279.25</th><th>168.1</th></lod<>	175.72	373.11	43.1	21279.25	168.1
16	6-Dec-04	Soil	83.61					226.5	62.71	289.18	45.05	25161	197.15
17	6-Dec-04	Soil	83.07					<lod< th=""><th>186.41</th><th>477.87</th><th>48.01</th><th>26620.96</th><th>205.4</th></lod<>	186.41	477.87	48.01	26620.96	205.4

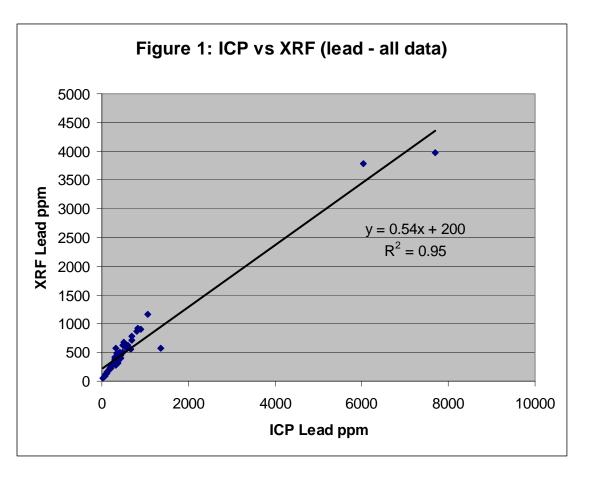
Which Elements Can An XRF Measure?

- Generally limited to elements with atomic number > 16
- ◆ Method 6200 lists 26 elements as potentially measurable
- XRF not effective for lithium, beryllium, sodium, magnesium, aluminum, silicon, or phosphorus
- In practice, interference effects among elements can make some elements "invisible" to the detector, or impossible to accurately quantify

Standard Innov-X Factory Calibration List

Antimony (Sb)	Iron (Fe)	Selenium (Se)
Arsenic (As)	Lead (Pb)	Silver (Ag)
Barium (Ba)	Manganese (Mn)	Strontium (Sr)
Cadmium (Cd)	Mercury (Hg)	Tin (Sn)
Chromium (Cr)	Molybdenum (Mo)	Titanium (Ti)
Cobalt (Co)	Nickel (Ni)	Zinc (Zn)
Copper (Cu)	Rubidium (Ru)	Zirconium (Zr)

How Is An XRF Calibrated?


- Fundamental Parameters Calibration calibration based on known detector response properties, "standardless" calibration
- Empirical Calibration calibration calculated using regression analysis and known standards, either sitespecific media with known concentrations or prepared, spike standards
- Compton Normalization incorporates elements of both empirical and FP calibration. A single, well-characterized standard, such as an SRM or a SSCS, is analyzed, and the data are normalized for the Compton peak

In all cases, the instrument will have a dynamic range over which a linear calibration is assumed to hold.

Dynamic Range a Potential Issue

- No analytical method is good over the entire range of concentrations potentially encountered with a single calibration
- XRF typically underreports concentrations when calibration range has been exceeded
- Primarily an issue with risk assessments

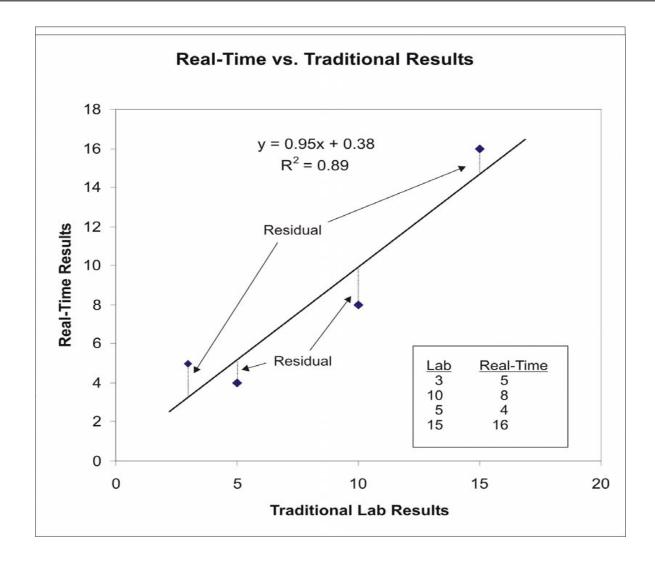
How is XRF Performance Commonly Defined?

- Bias does the instrument systematically under or over-estimate element concentrations?
- Precision how much "scatter" solely attributable to analytics is present in repeated measurements of the same sample?
- Detection Limits at what concentration can the instrument reliably identify the presence of an element?

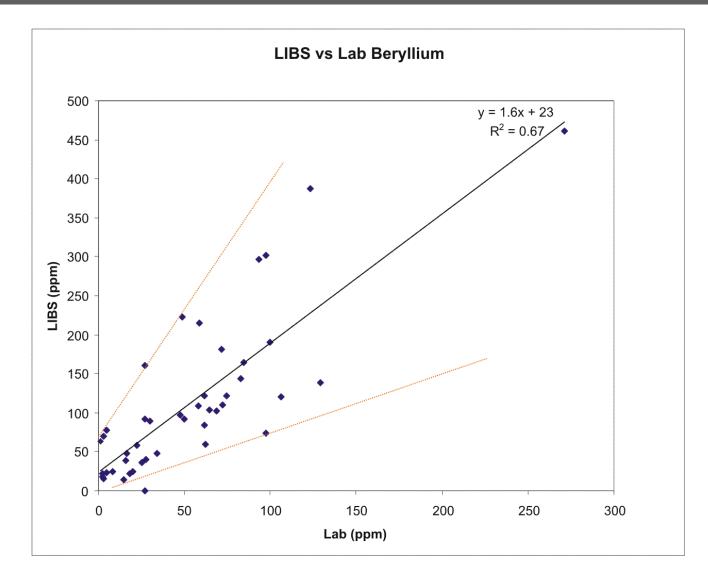
» 3 standard deviation rule

» Rule of thumb: 4X increase in count time = 1/2 reduction in DL

- Quantitation Limits at what concentration can the instrument reliably measure an element?
- Representativeness how representative is the XRF result of information required to make a decision?
- Comparability how do XRF results compare with results obtained using a standard laboratory technique?

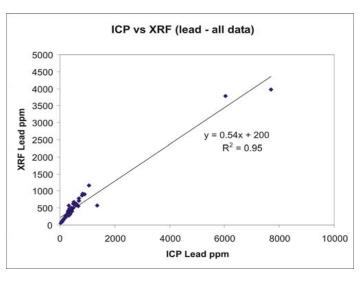


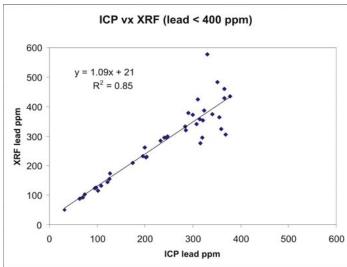
- Comparability usually with ICP or AA methods
 - » Regression analysis is the ruler most commonly used to measure comparability
 - » Standard laboratory data can be "noisy" and are not necessarily an error-free representation of reality
 - » SW-846 Method 6200: "If the r2 is 0.9 or greater...the data could potentially meet definitive level data criteria."
- Focus should be on decision comparability, not laboratory result comparability
 - » Parametric and non-parametric techniques available



What is a Regression Line?

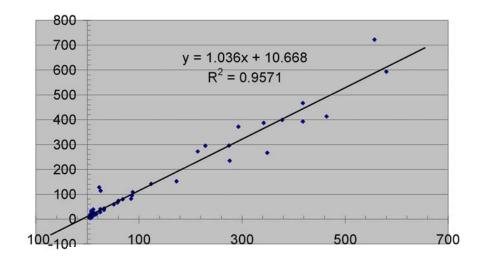
Heteroscedasticity is a Fact of Life for Environmental Data Sets

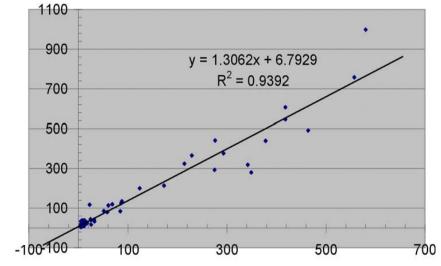

Appropriate Regression Analysis

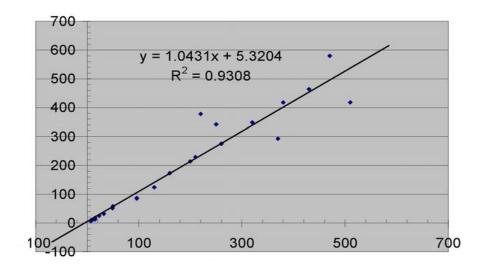

- Based on paired analytical results, ideally from same subsample
- Paired results focus on concentration ranges pertinent to decision-making
- Non-detects are removed from data set
- Best regression results obtained when pairs are balanced at opposite ends of range of interest
- No evidence of inexplicable "outliers"
- No signs of correlated residuals
- High R2 values (close to 1)
- Constant residual variance (homoscedastic) is nice but unrealistic

Example: XRF and Lead

- Full data set:
 - » Wonderful R²
 - » Unbalanced data
 - » Correlated residuals
 - » Apparently poor calibration
- Trimmed data set:
 - » Balanced data
 - » Correlation gone from residuals
 - » Excellent calibration
 - » R² drops significantly







Cautionary Tale

Small scale variability can impact data quality more than the analytical method

A Properly Designed QC Program Will Help You Manage...

- Initial calibration problems
- Instrument drift
- Window contamination
- Interference effects
- Matrix effects
- Unacceptable detection limits
- Matrix heterogeneity effects
- Operator errors

XRF Quality Control Procedures

Initial warm-up (30 minutes)

» Energy calibration/standardization checks

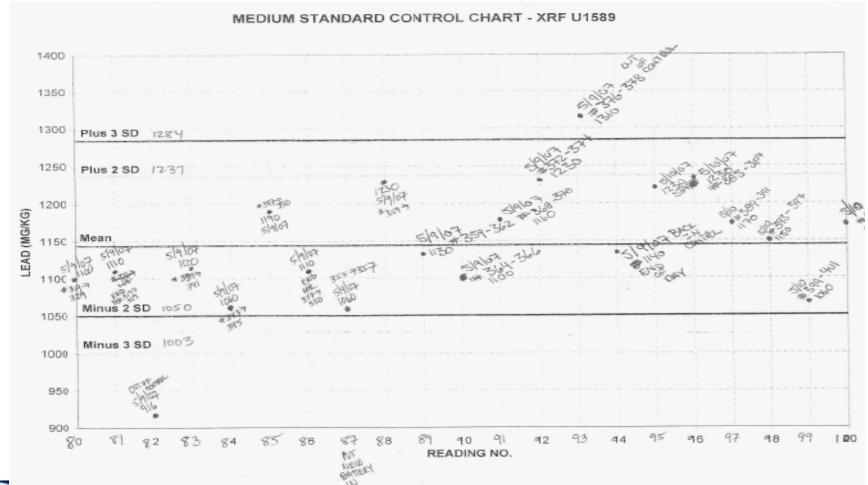
- Blanks silica or sand
- Calibration checks initial and continuing
- Detection limit evaluation and monitoring
- Duplicates instrument, sample replicates
- Monitor for inference effects, trends
- Matrix effects variability, moisture
- Watch sample or decision unit variability
- Watch dynamic range
- Decision error rates

Basic XRF QC Requirements: Initial Calibration Check

- Energy calibration/standardization checks
- Calibration checks using NIST-traceable standard reference material (SRM), preferably in media similar to what is expected at the site
- Calibration checks using blank silica/sand
- Calibration checks using matrix spikes
- Calibration checks using well-characterized site samples

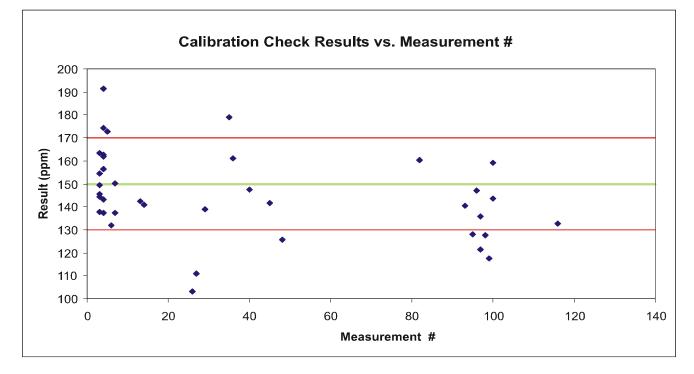
Initial Calibration Check Example

		Known		Reported		
Sample	# of Measurements	U	Moly	U	Moly	
SiO2 Blank	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
50 ppm U	3	50	NA	<lod< td=""><td>14</td></lod<>	14	
150 ppm U	3	150	NA	116	23	
50 ppm Moly	3	NA	50	55	42	
150 ppm Moly	3	NA	150	<lod< td=""><td>134</td></lod<>	134	
100 ppm U/Moly	6	100	100	68	112	
Archived Site Sample	10	100	NA	230	21	



Basic XRF QC Requirements: Continuing Calibration

- Standardization checks: follow manufacturer recommendations (typically several times a day)
- On-going calibration checks: at least twice a day (start and end), a higher frequency is recommended
- Make sure XRF performance in relation to SRMs is well understood initially - watch for trends that indicate problems
- Typically controls set up based on initial calibration check work (i.e., a two standard deviation rule)
- Frequency of checks is a balance between sample throughput and ease of sample collection or repeating analysis


Control Charts – A Simple Continuing Calibration Check

Example of What to Watch for...

- Two checks done each day, start and finish
- 150 ppm standard with approximately +/- 9 ppm for 120 second measurement
- Observed standard deviation in calibration check data: 18 ppm
- ◆ Average of initial check: 153 ppm
- ◆ Average of ending check: 138 ppm

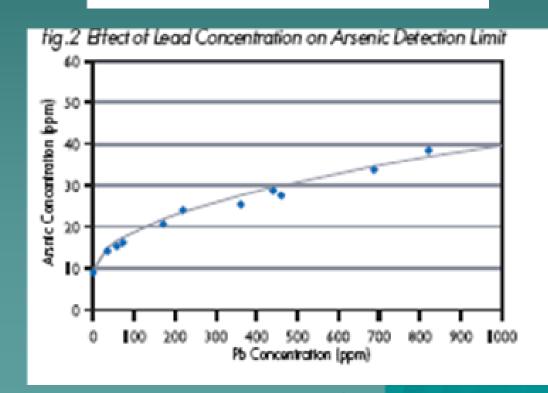
Monitoring Detection Limits One Example

Analyte	Chemical Abstract Series Number	Innov-X ¹ 120 sec acquisition (soil standard – ppm)	Innov-X ¹ 120 sec acquisition (alluvial deposits - ppm)	Innov-X ¹ 120 sec acquisition (elevated soil - ppm)
Antimony (Sb)	7440-36-0	61	55	232
Arsenic (As)	7440-38-0	6	7	29,200
Barium (Ba)	7440-39-3	NA	NA	NA
Cadmium (Cd)	7440-43-9	34	30	598
Calcium (Ca)	7440-70-2	NA	NA	NA
Chromium (Cr)	7440-47-3	89	100	188,000
Cobalt (Co)	7440-48-4	54	121	766
Copper (Cu)	7440-50-8	21	17	661
Iron (Fe)	7439-89-6	2,950	22,300	33,300
Lead (Pb)	7439-92-1	12	8	447,000
Manganese (Mn)	7439-96-5	56	314	1,960
Mercury (Hg)	7439-97-6	10	8	481
Molybdenum (Mo)	7439-93-7	11	9	148
Nickel (Ni)	7440-02-0	42	31	451
Potassium (K)	7440-09-7	NA	NA	NA

Duplicates and Replicates

				Ŭ			-	ate measuren					
Calaula	4	-						ු ද) D (an than				-
								nent), and as RF				-	
								ate agreement (RF		n included fo	r information	purpos	es)
lote that a	acceptable st	atistical agre	ement does na	it always agree i	Nith	an arbitrary RPD	acceptance lim	it (20% in this exampl	e)				
							Acquisition						
Date:	5/23/2006		Element:	As			Time:	120 sec					
Date.	072072000		Elonion.					120 300		RPD Calcula	tions Here are	e for Com	parison ONLY
Sample	1st Result of Duplicate	Reported by the	Error Type (1 - 1 SD; 2 - 2 SD)	Lower Bound of 95% Confidence		Upper Bound of 95% Confidence	Instrument- Reported Duplicate	Is the duplicate result within the statistical Confidence	Numerical	Relative Difference: <u>a - b</u>	Absolute Relative Percent	ls the RPD	Does the RPD check agree w/ the statistical
ID	Pair	XRF	(Notes 2 & 3)	Interval		Interval	Result	Interval?	Difference	[(a+b)/2]	Difference	<20%?	check?
SW1	99.1	4.7	1	90	-		104	yes	-4.7	-0.046	4.6%	yes	yes
SW2	28.9	3.9	1	21	-	37	26.3	yes	2.6	0.094	9.4%	yes	yes
SW3	18.8	2.3 3.3	1	14 13	-		14.3	yes	4.5	0.272	27.2%	no	<u>no</u>
SW15 SW26	19.3 260	- 3.3 6.9	1	246	-		23.7		-4.4 -35.0	-0.205 -0.126	20.5%	no	no
50020 SW37	1406	18.4	1	1370			1396	ves	10.0	0.007	8.7%	yes ves	no yes
SW48	459	11.8	1	436		10.0	473	ves .	-14.0	-0.030	3.0%	yes Ves	yes
SW59	5828	90.9	1	5650			5803	ves	25.0	0.004	0.4%	ves	yes Ves
								,				,	,
Notes:													
	Take back.	to-hack rea	l Idinas on a si	ample withou	t m	oving the inst	rument to elin	ninate variability intr	l oduced by sa	mole matrix			
			-			ble from the ins							
								truments are usually	, set up to rep	ort analvtical "e	⊤ error" as 1 SD	I	
								out of control; howev					bability of bot
						with measurer							
						d measuremen							
7)	The require	ment of %R	RPD < 20 is p	problematic for	ve	ry low concentra	ation samples	because division by	a low value c	auses the quo	tient to be hig	n even wh	ien the numeri
8)	New data c	an be adde	d to this table	e by adding a	row	and copying fo	ormulas						

Interference Effects


Spectra too close for detector to accurately resolve

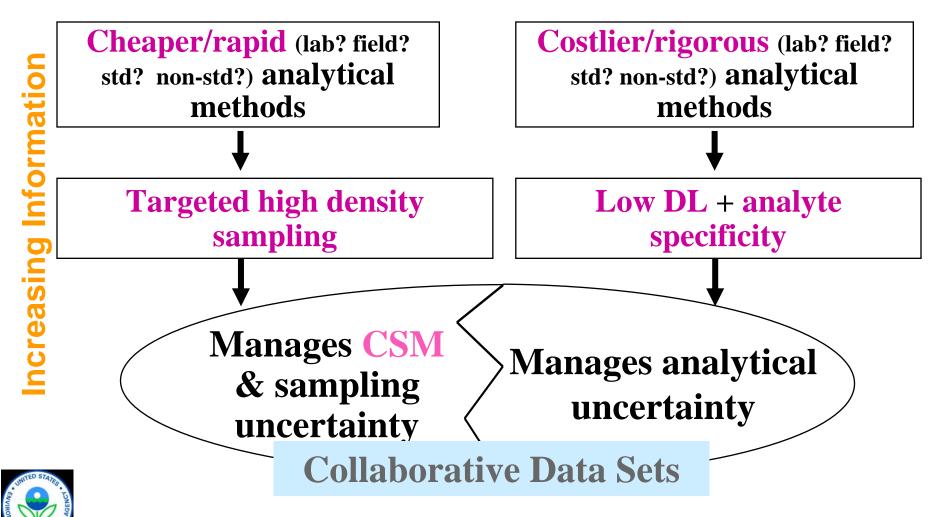
- » As Ka=10.55 KeV
- » Pb La=10.54 KeV
- Result: biased estimates for one or more quantified elements
- DMA, manufacturer recommendations, scatter plots used to identify conditions when interference effects would be a concern

Arsenic in the Presence of Lead One Vendor's Answer

Algorithm predicts lead L α in 10.5 Kev spectral region based on the "clean" lead L β signal. The lead contribution is subtracted leaving the arsenic K α .

Matrix Heterogeneity Small Scale Variability Effects

- In-field use of an XRF often precludes thorough sample preparation
- This can be overcome, to some degree, by multiple XRF measurements systematically covering "sample support" surface
- What level of heterogeneity is present, and how many measurements are required?
- "Reference point" for instrument performance and moisture check with in-situ applications


Micro-scale Contaminant – Matrix Relationships Cause Within – Sample Heterogeneity

Adapted from ITRC (2003)	Small Arms Firing Range Soil Grain Size (Std Sieve Mesh Size)	Pb Conc. in fraction by AA (mg/kg)
	Greater than 3/8" (0.375")	10
	Between 3/8 and 4-mesh"	50
	Between 4- and 10-mesh	108
	Between 10- and 50-mesh	165
	Between 50- and 200-mesh	836
	Less than 200-mesh	1,970
	Totals	927 (wt-averaged)

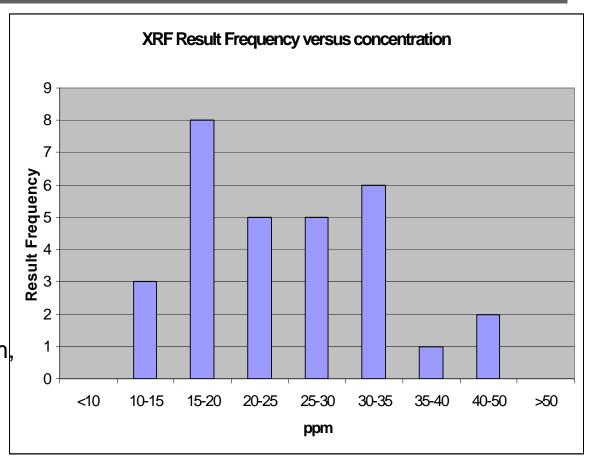
What particle fraction is "representative"?

Collaborative Data Sets Address Analytical and Sampling Uncertainties

41

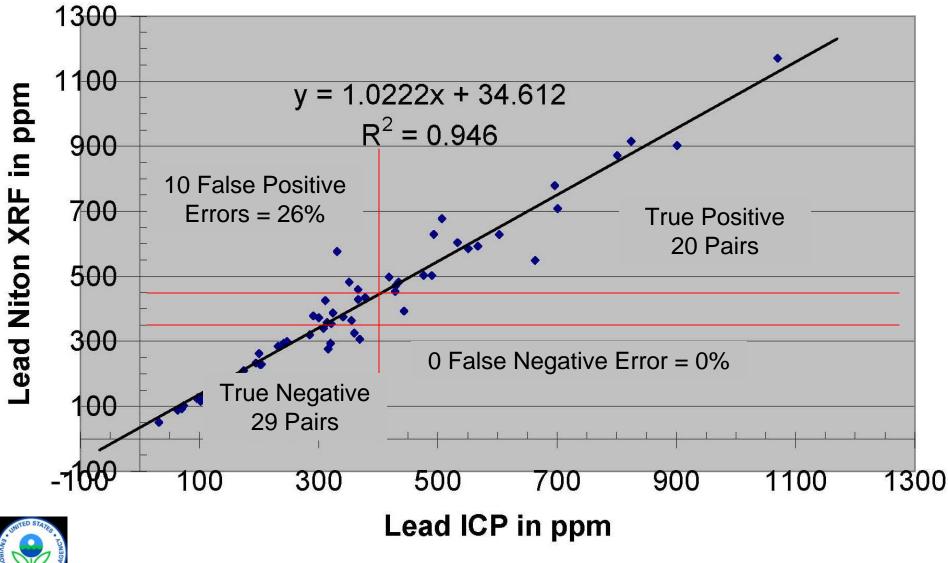
Dynamic Measurement Example

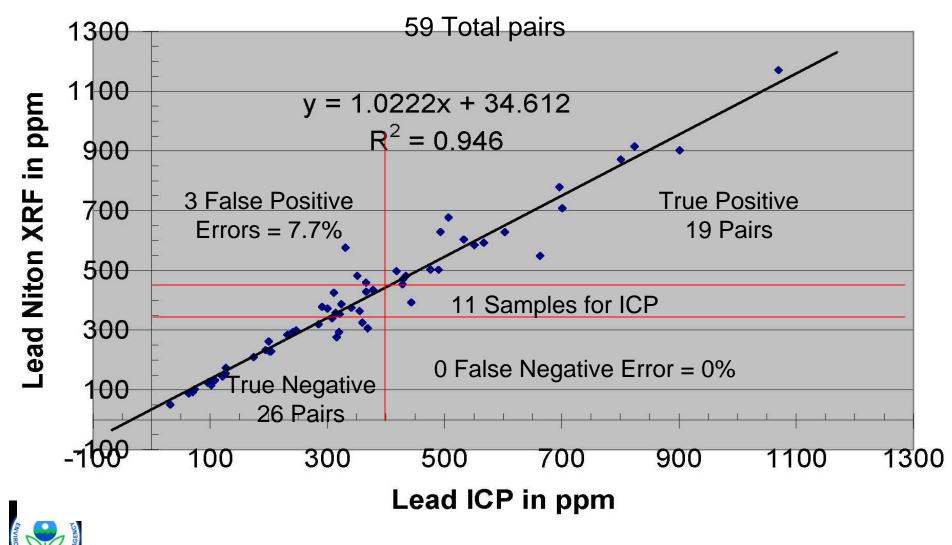
- Bagged samples, measurements through bag
- Need decision rule for measurement numbers for each bag
- ◆ Action level: 25 ppm
- 3 bagged samples measured systematically across bag 10 times each
- Average concentrations: 19, 22, and 32 ppm


»30 measurements total

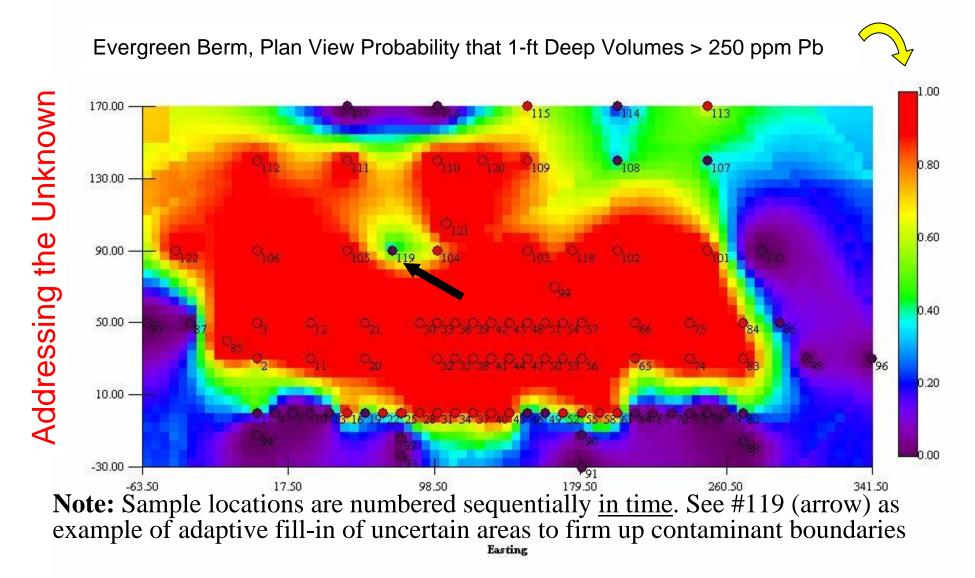
Example (cont.)

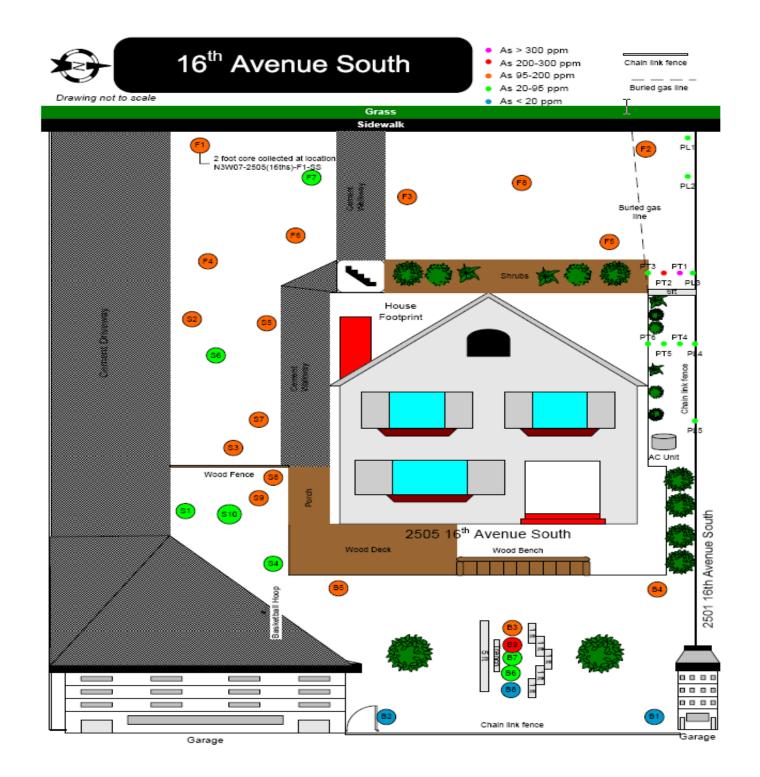
Simple Decision Rule:


- If 1st measurement less than 10 ppm, stop, no action level problems
- If 1st measurement greater than 50 ppm, stop, action level problems
- If 1st measurement between 10 and 50 ppm, take another three measurements from bagged sample

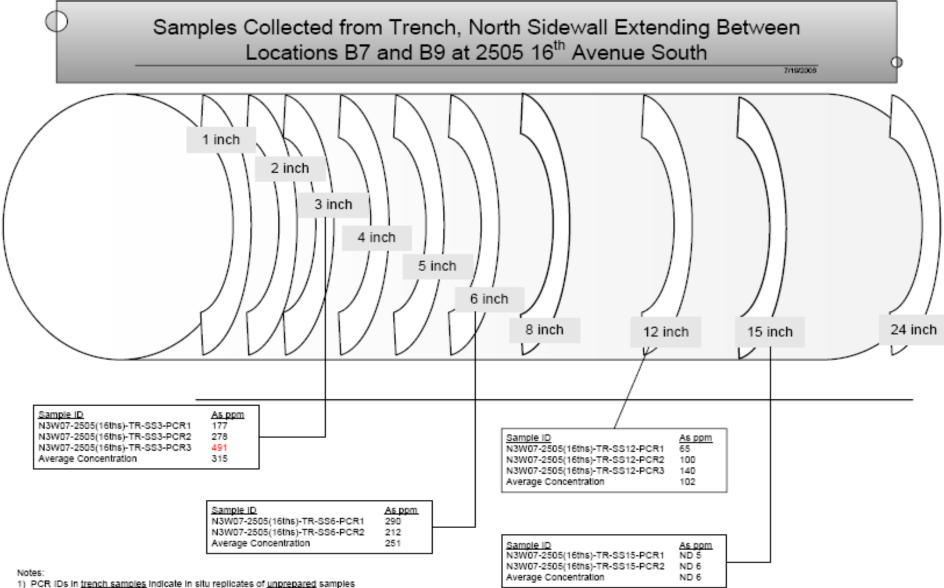

Lead Niton vs. ICP

59 Total pairs




44

3 Way Decision Structure with Region of Uncertainty Lead Niton vs. ICP



Communicating Uncertainty in a XRF CSM

 PCR IDs in <u>trench samples</u> indicate in situ replicates of <u>unprepared</u> samples shot in plastic cups using a different orientation of the XRF window for samples collected from the same depth interval.

Resources

- Case studies on resources CD provided
- Case studies and profiles on <u>http://www.triadcentral.org/</u>
- U.S. EPA Technical Bulletin "Performing Demonstrations of Method Applicability Under a Triad Approach"
 - »Due out this year: <u>http://www.clu-in.org/</u>
- Discussions with European and US Triad practitioners

