Field Tests of Nylon-Screen Diffusion Samplers and Pushpoint Samplers for Detection of Metals in Sediment Pore Water, Ashland and Clinton, Massachusetts, 2003

By Marc J. Zimmerman, Don A. Vroblesky, Kimberly W. Campo, Andrew J. Massey, and Walter Scheible

In cooperation with the U.S. Environmental Protection Agency Measurement and Monitoring for the 21st Century Initiative

Scientific Investigations Report 2005-5155

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

Gale A. Norton, Secretary

U.S. Geological Survey

P. Patrick Leahy, Acting Director

U.S. Geological Survey, Reston, Virginia: 2005

For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225

For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Suggested citation:

Zimmerman, M.J., Vroblesky, D.A., Campo, K.W., Massey, A.J., and Scheible, Walter, 2005, Field Tests of Nylon-Screen Diffusion Samplers and Pushpoint Samplers for Detection of Metals in Sediment Pore Water, Ashland and Clinton, Massachusetts, 2003: U.S. Geological Survey Scientific Investigations Report 2005-5155, 51 p.

Contents

Abstract	1
Abstract Introduction	2
Study Areas	3
Study Design	6
Preliminary Laboratory Testing and Analysis	6
Sampler Equilibration	6
Equipment Blanks	7
Sediment Pore Water Field-Sampling Techniques	11
Nylon-Screen Diffusion Samplers	11
Pushpoint Samplers	12
Site Selections	13
Quality-Control Sampling and Results	13
Comparison of Metal Concentrations in Pore Water Collected with Nylon-Screen	
Diffusion and Pushpoint Samplers	15
Time Series of Nylon-Screen Diffusion Sampler Data	16
Comparison of all Nylon-Screen Diffusion Samples and Pushpoint Samples by Site	17
Summary and Conclusions	18
Acknowledgments	19
References Cited	19

Figures

1–3.	Photographs showing:	
	1. The 125-milliliter nylon-screen diffusion sampler	2
	2. PVC shovel for inserting nylon-screen diffusion sampler into sediments	3
	3. <i>A</i> , The 91-centimeter PushPoint Extreme Sampler; and <i>B</i> , Detail of tip	3
4.	Map showing locations of study areas: A, Mill Pond, Sudbury River, Ashland,	
	Massachusetts; and <i>B</i> , Rigby Brook, Clinton, Massachusetts	4
5, 6.	Graphs showing:	
	 Comparisons of A, concentrations; and B, relative percent differences between water samples obtained from the test container and from nylon-screen diffusion samplers after 4 days of equilibration 	7
	 Laboratory quality-control data for A, barium; and B, zinc for components of sampling equipment 	10
7.	Photograph showing collection of a field sample from nylon-screen diffusion sampler by using syringe, filter, and hypodermic	12
8.	Schematic showing distribution of sampling sites at the <i>A</i> , Nyanza study area, Ashland; and <i>B</i> , Rigby Brook study area, Clinton	14

u 10	Royplote	chowing
9, 10.	DUXUIUIS	SHOWHIU.
•, . •.	Boxplots	•

	9.	Selected metals concentrations in 25 samples collected with nylon- screen diffusion samplers and 35 samples collected with pushpoint samplers at the Nyanza study area, Ashland, May 2003
	10.	Selected metals concentrations in 24 samples collected with nylon- screen diffusion samplers and 34 samples collected with pushpoint samplers at the Rigby Brook study area, Clinton, May to June 2003
11–14.	Gra	phs showing:
	11.	Time series data for <i>A</i> , aluminum; <i>B</i> , arsenic; <i>C</i> , barium; <i>D</i> , cobalt; <i>E</i> , iron; <i>F</i> , manganese; and <i>G</i> , zinc at the Nyanza study area, Ashland, May 2003 21
	12.	Time series data for <i>A</i> , aluminum; <i>B</i> , arsenic; <i>C</i> , barium; <i>D</i> , cobalt; <i>E</i> , iron; <i>F</i> , manganese; and <i>G</i> , zinc at the Rigby Brook study area, Clinton, May to June 2003
	13.	Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for <i>A</i> , aluminum; <i>B</i> , barium; <i>C</i> , cobalt; <i>D</i> , iron; <i>E</i> , manganese; and <i>F</i> , zinc at all Nyanza study-area sampling sites, Ashland, May 2003
	14.	Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for <i>A</i> , aluminum; <i>B</i> , barium; <i>C</i> , cobalt; <i>D</i> , iron; <i>E</i> , manganese; and <i>F</i> , zinc at all Rigby Brook study-area sampling sites, Clinton, June 2003

Tables

1	. Concentrations of solutes in water collected from bucket by using peristaltic pump and from 125-micron-mesh nylon-screen diffusion samplers immersed in the bucket, November 2000	6
2	 Concentrations of metals detected during quality-control testing of the sampling process 	8
3	 Target analytes, their project action limits, and minimum reporting levels used for this study 	9
4	. Medians of paired relative percent-difference values for individual metals in nylon-screen diffusion samples and pushpoint samples collected at the Nyanza study area, Ashland, Massachusetts, and at the Rigby Brook study area, Clinton, Massachusetts	15
5	 Concentrations of metals detected in ground water 20 cm below sediment surface at selected well locations for the Nyanza Superfund Site, Ashland, June 2001 	18
6		
7	 Concentrations of metals detected in samples from the Nyanza study area, Ashland 	46
8	Concentrations of metals detected in samples from Rigby Brook study area, Clinton	49

Conversion Factors, Datum, and Abbreviations

Multiply	Ву	To obtain	
centimeter (cm)	0.3937	inch (in.)	
liter (L)	0.2642	gallon (gal)	
meter (m)	1.094	yard (yd)	
micron (µ)	0.00003937	inch (in.)	
milliliter (mL)	61,020	cubic inch (in ³)	
millimeter (mm)	0.03937	inch (in.)	

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius ($\mu S/cm$ at 25°C).

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or micrograms per liter (μ g/L).

Ag	silver
Al	aluminum
As	arsenic
Ba	barium
Be	beryllium
Cd	cadmium
Co	cobalt
Cr	chromium
Cu	copper
Fe	iron
Hg	mercury
Mn	manganese
Mo	molybdenum
Ni	nickel
Pb	lead
Sb	antimony
V	vanadium
Zn	zinc
DO	dissolved oxygen
ICP-MS	inductively coupled plasma-mass spectrometry
NSDS	nylon-screen diffusion sampler
PAL	project action limit
PPS	pushpoint sampler
RPD	relative percent difference
USEPA	U.S. Environmental Protection Agency
USGS	U.S. Geological Survey
VOC	volatile organic compound

Field Tests of Nylon-Screen Diffusion Samplers and Pushpoint Samplers for Detection of Metals in Sediment Pore Water, Ashland and Clinton, Massachusetts, 2003

By Marc J. Zimmerman¹, Don A. Vroblesky², Kimberly W. Campo¹, Andrew J. Massey¹, and Walter Scheible³

Abstract

Efficient and economical screening methods are needed to detect and to determine the approximate concentrations of potentially toxic trace-element metals in shallow groundwater-discharge areas (pore water) where the metals may pose threats to aquatic organisms; such areas are likely to be near hazardous-waste sites. Pushpoint and nylon-screen diffusion samplers are two complementary options for use in such environments.

The pushpoint sampler, a simple well point, is easy to insert manually and to use. Only 1 day is required to collect samples. The nylon-screen diffusion sampler is well suited for use in sediments that do not allow a pump to draw water into a pushpoint sampler. In this study, both types of devices were used in sediments suitable for the use of the pushpoint sampler. Sampling with the nylon-screen diffusion sampler requires at least two site visits: one to deploy the samplers in the sediment, and a second to retrieve the samplers and collect the samples after a predetermined equilibration period.

Extensive laboratory quality-control studies, field testing, and laboratory analysis of samples collected at the Nyanza Chemical Waste Dump Superfund site along the Sudbury River in Ashland, Massachusetts, and at a Superfund site-assessment location on Rigby Brook in Clinton, Massachusetts, indicate that these two devices yield comparable results for most metals and should be effective tools for pore-water studies. The nylon-screen diffusion samplers equilibrated within 1–2 days in homogeneous, controlled conditions in the laboratory. Nylon-screen diffusion samplers that were not purged of dissolved oxygen prior to deployment yielded results similar to those that were purged. Further testing of the nylon-screen diffusion samplers in homogeneous media would help to resolve any ambiguities about the data variability from the field studies.

Comparison of data from replicate samples taken in both study areas shows that even samples taken from sites within a half-meter radius of one another have distinct differences in pore-water trace-element concentrations. Sequential replicate samples collected with the pushpoint sampler yield consistent results; moving the pushpoint sampler even 5 to 10 centimeters, however, generally produces a second set of data that differs enough from the first set of data to indicate a heterogeneous environment. High concentration biases for barium and zinc in laboratory and field samples collected with nylon-screen diffusion samplers, however, may make their use inappropriate for studies of these metals.

Analyzing samples with high iron concentrations required sample dilution by factors of 2 or 10. Because these dilutions caused increases in the reporting levels by the same proportion, a substantial fraction of the data was censored. The results from undiluted samples, however, indicate that both devices should be useful for sampling ground water with metal concentrations close to reporting limits.

²U.S. Geological Survey, Columbia, South Carolina.

¹U.S. Geological Survey, Northborough, Massachusetts.

³Columbia Analytical Services, Rochester, New York.

Introduction

Metal-enriched ground water may pose threats to aquatic organisms in ground-water discharge areas in many environmental settings, particularly near hazardous-waste sites. The development of efficient and economical screening devices to detect metal-enriched ground water in streambed sediments near the ground-water/surface-water interface would enable investigators to assess potential threats to aquatic organisms and to identify areas of contaminated ground-water discharge. The data obtained from such reconnaissance-level sampling would then provide a basis for intensive site investigations. Because of this need for reconnaissance-level sampling devices, the U.S. Geological Survey (USGS), in cooperation of the U.S. Environmental Protection Agency (USEPA), through the Measurement and Monitoring for the 21st Century Initiative (21M2), conducted an investigation of the effectiveness during 2003 of the stainless-steel push-point sampler (PPS) and the nylon-screen diffusion sampler (NSDS). This Office of Solid Waste and Emergency Response (OSWER) initiative is designed to identify and encourage the use of promising measurement and monitoring technologies in response to waste-management and site-cleanup program needs by matching existing and emerging technologies with OSWER program and client needs. The investigation was carried out at two study areas with previously reported contamination: the Nyanza Chemical Waste Dump Superfund site (Campbell and others, 2002) along the Sudbury River in Ashland, MA, and at a Superfund site-assessment location along Rigby Brook in Clinton, MA. In particular, screening with these devices was intended to determine whether trace-metal concentrations exceeded guidelines (Project Action Limits, or PALs, also known as Surface Water Benchmarks, including Ambient Water Quality Criteria; Bart Hoskins, Ecological Risk Assessor, U.S. Environmental Protection Agency, written commun., 2002) intended to protect aquatic life, not to determine whether drinking-water criteria were exceeded or to detect these metals at trace-level concentrations.

The report includes results of laboratory-based qualitycontrol studies. The chemical analyses for this investigation include results for 21 metals; however, the report focuses on the few metals that were most frequently detected.

The NSDS consists of a 63-mm diameter, 125-mL polypropylene jar (Thomas Scientific) with the center of the cap removed, and with only a screw-on rim for securing a piece of 120- μ nylon-screen mesh (Small Parts, Inc.). The mesh, approximately 10 cm by 10 cm, is placed over the jar's mouth and secured by screwing the rim back onto the jar (fig. 1). The 125-mL volume of the NSDS is sufficient to meet the USEPA laboratory's 100-mL sample-volume requirement. In practice, the NSDS is filled with deionized water, buried in the sediment and allowed to equilibrate with its environment. To minimize the possibility of contaminating the site with a metal shovel when inserting the NSDS into the sediment, a

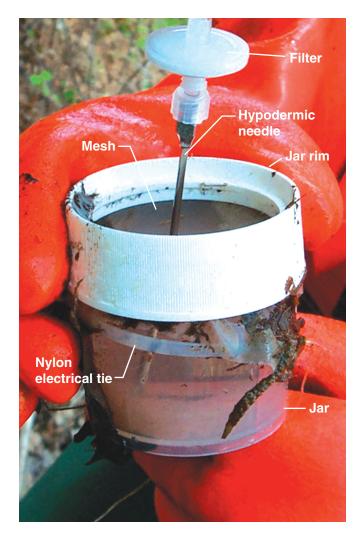


Figure 1. The 125-milliliter nylon-screen diffusion sampler.

shovel-like device constructed from 10-cm polyvinyl chloride (PVC) pipe (with 6.4-mm wall thickness) is used for sampler deployment (fig. 2). Beveled edges enable this shovel to penetrate even the coarsest sediments to a depth of at least 20 cm. Preliminary tests showed that concentrations of inorganic constituents in well water and arsenic (As) in streambed sediments in samples collected by NSDSs compared favorably with concentrations measured in samples collected by other methods (Vroblesky and others, 2002).

A PPS is designed to sample sediment pore water with minimal disturbance to the site. The PushPoint Extreme Sampler (fig. 3), the commercially produced model used in this study, consists of a 6.4-mm diameter, stainless-steel tube with a machined point and 4-cm-long slotted screen (0.635-mm slots) near the tip (Henry, 2001); this study used a 91-cm-long version of the sampler. An internal guard rod positioned within the bore adds rigidity to the sampler during insertion.

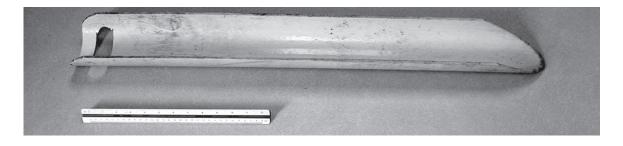
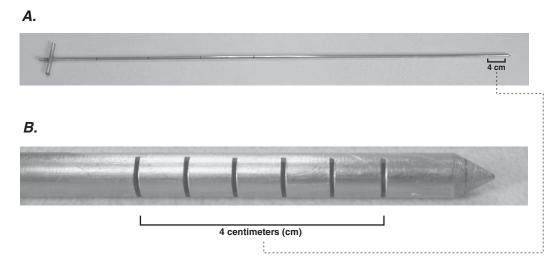
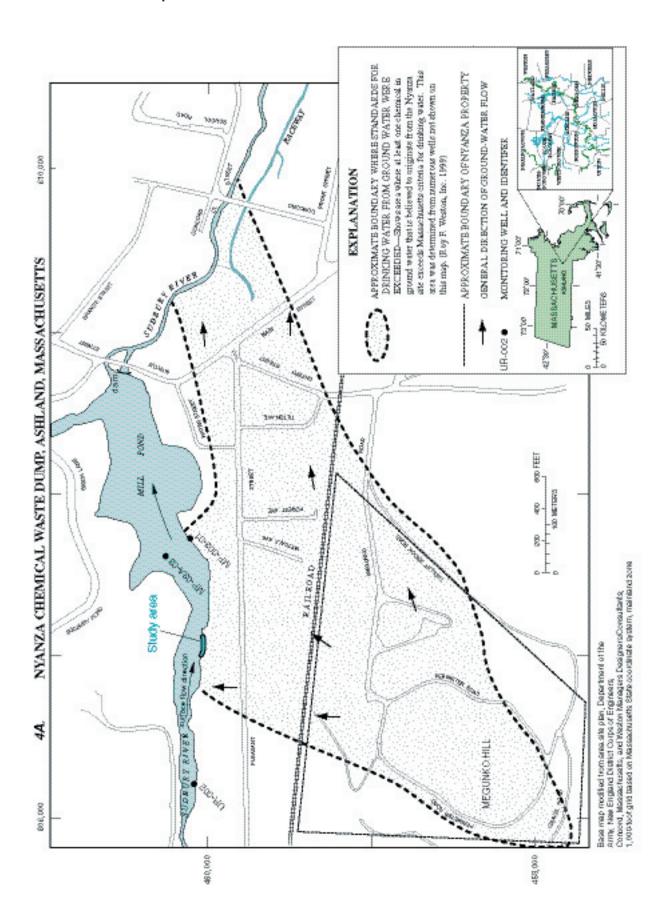
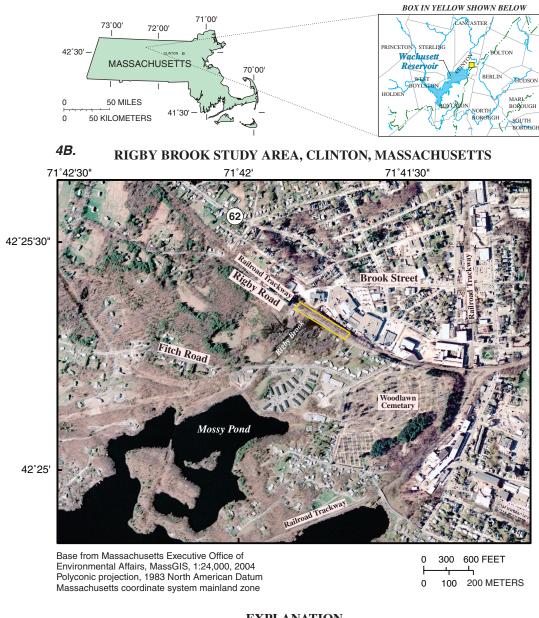



Figure 2. PVC shovel for inserting nylon-screen diffusion sampler into sediments.


Figure 3. *A*, The 91-centimeter PushPoint Extreme Sampler; and *B*, Detail of tip. Screen is 4 centimeters long and tube diameter is 6.4 millimeters.

The PPS has been used to collect water for analysis of volatile organic compounds (VOCs) (Henry, 2001; Church and others, 2002; Zimmerman and others, 2005), but has not been tested for characterization of metals in pore water. Although USGS manuals recommend against using metal sampling devices to collect samples for metal analysis (Wilde and others 1999), that guidance is intended for sampling to determine low-level concentrations near detection levels, not the higher concentrations usually associated with contamination.


Not all sediments have physical characteristics that allow water to be drawn in readily through the PPS; fine organic material, silt, and clay may block the openings (Zimmerman and others, 2005). In these situations, the NSDS, which can be left buried in the sediments for any length of time, may prove more appropriate. Therefore, the efficacy of both tools was examined in this study.

Study Areas

The study areas (fig. 4) were selected because the composition and texture of their sediments differ from one another and may affect the efficacy of the two sampling devices. According to a previous study (Roy F. Weston, Inc., 2001), the Nyanza study area is within a zone affected by a ground-water plume that includes organic contaminants and metals such as As, beryllium (Be), chromium (Cr), cobalt (Co), manganese (Mn), and mercury (Hg). The local hydrogeologic setting includes glacial lake deposits, till, and fractured granite. The surficial streambed sediments at the Nyanza site contain decayed and living plant material.

EXPLANATION

Figure 4—Continued. Locations of study areas: *A*, Mill Pond, Sudbury River, Ashland, Massachusetts; and *B*, Rigby Brook, Clinton, Massachusetts.

The Rigby Brook study area, which was the subject of a Superfund site-assessment investigation (Forest Lyford, U.S. Geological Survey, oral commun., 2002), is impounded by a beaver dam. An abandoned manufacturing plant and a former waste dump adjacent to the impounded area on Rigby Road were thought to be sources of contamination, prompting the site assessment. The sediments of flooded areas of the Rigby Brook study area contained the remnants of plant matter, but many sampling sites there were primarily silty or sandy in nature. The coarse, sandy sediments of the Rigby Brook study area contrasted with the fine-grained sediments of the Nyanza study area.

Study Design

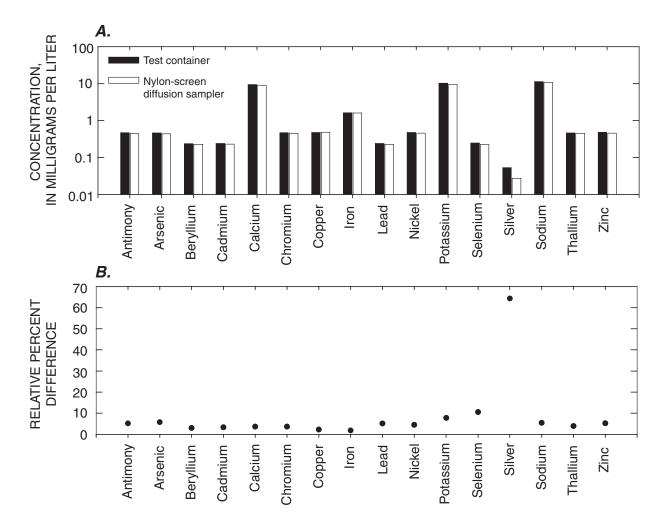
The study was divided into two distinct phases. First, the equilibration time for the NSDS units was determined. Equilibration was tested at the USGS's South Carolina Water Science Center in Columbia, SC, and at Columbia Analytical Services in Rochester, NY. Quality-control testing was done at the MA-RI Water Science Center in Northborough, MA, to determine whether the NSDSs, PPSs, or other equipment used introduced unacceptable contamination to samples. A commercial laboratory in South Carolina and Columbia Analytical Services analyzed the equilibration samples; the USEPA Region I Laboratory in Chelmsford, MA, used inductively coupled plasma-mass spectrometry (ICP-MS) to analyze the quality-control and field samples for dissolved metals.

The field investigation with the two types of sampling devices constituted the second phase of the study. The NSDS units were deployed for up to 2 weeks at 15 sites in each study area. One to five NSDSs were left at each site. Samples were collected at intermediate times at five sites in each study area. At the end of the 2-week period, the remaining NSDS and PPS samples were collected.

The field-study design, which included the insertion of multiple NSDS units at the same sites, was based on the implicit assumption of a homogeneous sedimentary environment. Coarse, and occasionally impenetrable, substrate, however, made it difficult to place samplers within 20 cm of each other. In practice, multiple samplers were deployed within about a 0.5-m radius. In addition, the PPSs were expected to capture the same pore water as the NSDSs during the same time intervals. Nonetheless, variability among the NSDS samples, in particular, and between the NSDS and PPS samples was expected. Replicate PPS samples collected without removing and reinserting the PPSs were expected to produce the most consistent results; replicate PPS samples collected from the same site after removing and reinserting the PPS 5 to 20 cm away from the original position were expected to demonstrate more variability than the other replicate PPS samples.

Preliminary Laboratory Testing and Analysis

Before deployment and sampling, the samplers were subjected to a series of laboratory quality-control tests. These tests determined the rate at which water inside the NSDS units equilibrated with the external environment and whether either the equipment or the sampling process could provide a source of sample contamination.


Sampler Equilibration

To determine the minimum time required for equilibration with the external medium, various NSDS units were filled with deionized water and placed in a bucket of water containing arsenic and chloride at concentrations of about 230 µg/L and 265 mg/L, respectively. On the first and fourth days of equilibration, one NSDS unit was removed from the bucket to provide a water sample for analysis. On the seventh day, two NSDS units were removed to provide duplicate water samples. On each of these days, water also was pumped from the test bucket for analysis. Arsenic and chloride concentrations in the NSDS units had equilibrated with concentrations in the test-bucket water by the first day (table 1). In a separate test, NSDSs were filled with deionized water and allowed to equilibrate in test containers holding solutions of 16 dissolved metals. Once a day, during a 4-day period, one NSDS was removed and samples from the NSDS and the test container were analyzed. After 4 days, concentrations of all but one metal in water from the samplers corresponded closely to concentrations in the test solution (fig. 5). Only the results for Ag had a high relative percent difference (RPD); this difference probably was a result of decreased analytical accuracy because the Ag concentration was lower than that of the other analytes.

Table 1. Concentrations of solutes in water collected frombucket by using peristaltic pump and from 125-micron-meshnylon-screen diffusion samplers immersed in the bucket, November 2000.

[NS, not sampled; NSDS, nylon-screen diffusion samplers]

	Arse in microgra	- •	Chlo in milligrar	
Day	Sample pumped from bucket	Sample from NSDS	Sample pumped from bucket	Sample from NSDS
0	NS	0	NS	0
1	240	240	260	270
4	240	250	270	260
7	240	250	270	260
7	230	240	270	270

Figure 5. Comparisons of *A*, concentrations; and *B*, relative percent differences between water samples obtained from the test container and from nylon-screen diffusion samplers after 4 days of equilibration.

Equipment Blanks

NSDS parts, PPSs, and other pieces of sampling equipment were subjected to a series of equipment-blank tests in triplicate under controlled laboratory conditions. These tests were designed to determine if the equipment would release metals in concentrations high enough to interfere with the interpretation of analytical results from field-sampling applications.

Various NSDS units were separated into their constituent parts and soaked in 5 percent HCl in 19-L acid-cleaned plastic buckets for 3 days. The units were then rinsed with tap water and deionized water before soaking for 7 days in 4 L of deionized water obtained from the USEPA Region I Laboratory. Samples were collected from all of the containers and acidified to pH 2 with Ultrex-grade nitric acid, as were all samples in this study. All samples were analyzed by the USEPA. The data (table 2) indicate that, over the 7-day period, the plastic components did not release metals in concentrations that would compromise an investigation of a contaminated site. Three metals were detected: Barium (Ba), Copper (Cu), and Zinc (Zn). Ba was detected at the reporting level of 0.2 µg/L in a single sample; Cu was detected in two samples at concentrations slightly higher than the reporting level of 1.0 µg/L (according to the official USEPA laboratory-data reports, the low-level Cu concentrations detected were caused by laboratory or trip-blank contamination); and only one set of samples (the water from the bucket containing the plastic NSDS jar bottoms and nylon mesh) yielded consistent indications of a metal leaching from the sampler components; these samples had a mean (n=3, where n is the number of samples) Zn concentration of 15 µg/L, approximately 12.5 percent of the PAL (table 3).

8 Field Tests of Samplers for Detection of Metals in Sediment Pore Water, Ashland and Clinton, MA, 2003

Table 2. Concentrations of metals detected during quality-control testing of the sampling process.

[All laboratory (lab) blank water was obtained from the U.S. Environmental Protection Agency. Concentrations in micrograms per liter (parts per billion); NSDS, nylon-screen diffusion sampler; nd, not detected; PPS, pushpoint sampler; SS, stainless steel]

Quality-control sample	Barium	Calcium	Copper	Chromium	Lead	Manganese	Nickel	Zinc
	Soaki	ng NSDS C	omponent	S				
Lab blank water	nd	nd	nd	nd	nd	nd	nd	nd
Lab blank water	nd	nd	nd	nd	nd	nd	nd	nd
Lab blank water	nd	nd	nd	nd	nd	nd	nd	nd
Lab blank water collected from bucket	0.20	nd	1.2	nd	nd	nd	nd	8.3
Lab blank water collected from bucket	nd	nd	1.1	nd	nd	nd	nd	7.2
Lab blank water collected from bucket	nd	nd	nd	nd	nd	nd	nd	7.1
Lab blank water from bucket with plastic jars and nylon mesh	nd	nd	nd	nd	nd	nd	nd	16
Lab blank water from bucket with plastic jars and nylon mesh	nd	nd	nd	nd	nd	nd	nd	14
Lab blank water from bucket with plastic jars and nylon mesh	nd	nd	nd	nd	nd	nd	nd	14
Lab blank water from bucket with plastic jar caps	nd	nd	nd	nd	nd	nd	nd	nd
Lab blank water from bucket with plastic jar caps	nd	nd	nd	nd	nd	nd	nd	nd
ab blank water from bucket with plastic jar caps	nd	nd	nd	nd	nd	nd	nd	nd
	NSDS	S Sampling	Procedure	9				
Lab blank poured from NSDS that was assembled then disassembled	nd	100	nd	nd	nd	nd	nd	29
Lab blank poured from NSDS that was assembled then disassembled	nd	nd	nd	nd	nd	nd	nd	nd
Lab blank poured from NSDS that was assembled then disassembled	nd	nd	nd	nd	nd	nd	nd	5.8
Lab blank from NSDS using syringe only	nd	nd	nd	nd	nd	0.21	nd	13
Lab blank from NSDS using syringe only	nd	nd	nd	nd	nd	nd	nd	11
ab blank from NSDS using syringe only	nd	nd	nd	nd	nd	nd	nd	10
Lab blank from NSDS using syringe and SS hypodermic	0.23	nd	1.0	nd	nd	nd	nd	16
Lab blank from NSDS using syringe and SS hypodermic	.26	nd	2.0	nd	1.2	nd	0.5	23
Lab blank from NSDS using syringe and SS hypodermic	nd	nd	2.0	nd	1.1	nd	nd	15
Lab blank from NSDS using syringe, SS hypodermic, and filter	23	nd	2.0	nd	nd	nd	nd	5.5
Lab blank from NSDS using syringe, SS hypodermic, and filter	30	nd	nd	nd	nd	nd	nd	nd
Lab blank from NSDS using syringe, SS hypodermic, and filter	51	nd	1.0	nd	nd	nd	nd	17

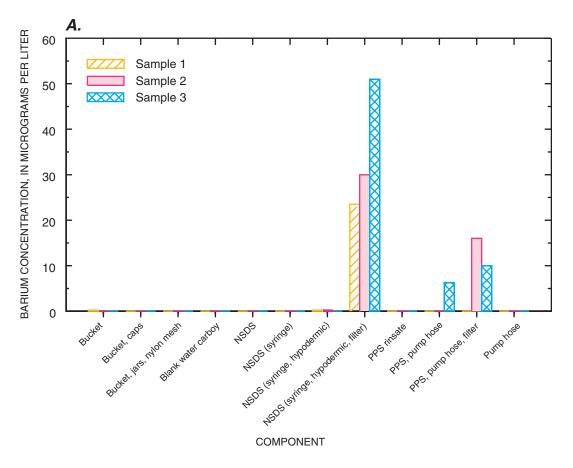
Table 2. Concentrations of metals detected during quality-control testing of the sampling process.—Continued

[All laboratory (lab) blank water was obtained from the U.S. Environmental Protection Agency. Concentrations in micrograms per liter (parts per billion); NSDS, nylon-screen diffusion sampler; nd, not detected; PPS, pushpoint sampler; SS, stainless steel]

Quality-control sample	Barium	Calcium	Copper	Chromium	Lead	Manganese	Nickel	Zinc			
	PPS Sampling Procedure										
PPS external rinse water	nd	nd	2.0	2.8	nd	1.9	2.7	41			
PPS external rinse water	nd	nd	nd	.73	nd	1.1	.76	16			
PPS external rinse water	nd	nd	1.0	1.9	nd	1.0	2.4	29			
Peristaltic pump and tubing	nd	nd	nd	nd	nd	nd	nd	7.8			
Peristaltic pump and tubing	nd	nd	nd	nd	nd	nd	nd	7.3			
Peristaltic pump and tubing	nd	nd	nd	nd	nd	nd	nd	8.1			
Peristaltic pump, tubing, and PPS	nd	nd	nd	nd	nd	10	.75	12			
Peristaltic pump, tubing, and PPS	nd	nd	nd	nd	nd	9.5	.45	11			
Peristaltic pump, tubing, and PPS	6.3	nd	nd	nd	nd	12	.54	11			
Peristaltic pump, tubing, PPS, and filter	nd	nd	nd	nd	nd	11	.7	nd			
Peristaltic pump, tubing, PPS, and filter	16	nd	nd	nd	nd	.61	nd	nd			
Peristaltic pump, tubing, PPS, and filter	10	nd	nd	nd	nd	.34	nd	nd			

Table 3. Target analytes, their project action limits, and minimum reporting levels used for this study.

[na, not available]		
Analyte	Project action limit (micrograms per liter)	Reporting level (micrograms per liter)
Aluminum (Al)	87	5
Antimony (Sb)	30	.5
Arsenic (As)	150	.5
Barium (Ba)	4	.2
Beryllium (Be)	.66	.2
Cadmium (Cd)	2.2	.2
Calcium (Ca)	116,000	100
Chromium (Cr)	74	.5
Cobalt (Co)	23	.2
Copper (Cu)	9	.2
Iron (Fe)	1,000	50
Lead (Pb)	2.5	.2
Magnesium (Mg)	82,000	100
Manganese (Mn)	120	.2
Molybdenum (Mo)	na	.5
Nickel (Ni)	52	.2
Selenium (Se)	5	1.0
Silver (Ag)	.36	.2
Thallium (Tl)	12	.5
Vanadium (V)	20	.2
Zinc (Zn)	120	5


....

10 Field Tests of Samplers for Detection of Metals in Sediment Pore Water, Ashland and Clinton, MA, 2003

In addition, a second series of quality-control tests assessed the capacity for the sampling process to contaminate samples (table 2). Samples of deionized water were collected as components were sequentially added to the sampling apparatus. For example, an NSDS sample was first collected with only a syringe; next, a sample was collected with a syringe and a hypodermic needle; finally, a sample was collected after a 0.45-µ Millipore HPF Millex-HN filter unit was added to the syringe and hypodermic needle. Zn was detected in most of the samples; the highest average Zn concentration, 18 µg/L (n=3), or 15 percent of the PAL, was associated with the use of the stainless-steel hypodermic needle to collect the sample. Ba, at an average concentration (n=3) of 35 µg/L, was detected in association with the filter apparatus; this concentration exceeds the PAL (4 μ g/L). On the other hand, use of the filter may have decreased the Zn concentrations in the samples. Detections of Cu were ascribed by the laboratory analytical data report to lab-blank or trip-blank contamination, not to the samples themselves. Other analytes were detected sporadically and at concentrations below their respective PALs.

A similar series of tests was performed on the PPS sampling components. Some Ba contamination was again detected in association with the filter. Cu, Cr, Mn, nickel (Ni), and Zn were detected in the external rinse water (fig. 6). The highest concentrations of Zn, the only commonly detected metal in these tests, was found in external rinse-water samples from the PPS at 41 μ g/L, substantially less than the PAL of 120 μ g/L. Cu was once more ascribed to lab or trip-blank contamination. The concentrations of Cr, Mn, and Ni were also substantially less than their PALs of 74 μ g/L, 120 μ g/L, and 52 μ g/L, respectively.

As stated previously, this process generally showed that maximum detected analyte concentrations were lower than the PALs. Ba exceeded its PAL in these quality-control tests only when the filter unit was included. Thus, if appropriate qualitycontrol samples are collected, it is reasonable to assume that contamination from these devices is unlikely to affect data interpretations when investigating suspected sites of possible high contamination.

Figure 6. Laboratory quality-control data for *A*, barium; and *B*, zinc for components of sampling equipment. (NSDS, nylon-screen diffusion sampler; PPS, pushpoint sampler)

Figure 6—Continued. Laboratory quality-control data for *A*, barium; and *B*, zinc for components of sampling equipment. (NSDS, nylon-screen diffusion sampler; PPS, pushpoint sampler)

Sediment Pore Water Field-Sampling Techniques

Field work was done during May and June 2003. Field activities consisted of the deployment and retrieval of NSDSs and the collection of water samples from the NSDSs and the PPSs.

Nylon-Screen Diffusion Samplers

The NSDS units were assembled in the laboratory prior to transport to the study areas. Preliminary testing during a previous investigation indicated that deployment of samplers containing oxygenated water might affect the measured concentrations of contaminants (Forest P. Lyford, Hydrologist, U.S. Geological Survey, oral commun., 2003); there was concern that iron hydroxides could precipitate on the mesh screen and prevent dissolved metals from diffusing into the NSDS. To prevent this precipitation, the NSDS units were assembled in water that had been purged of dissolved oxygen (DO) by sparging with nitrogen for at least 1 hour. Nitrogen was continuously bubbled through the 19-L buckets in which the samplers were being prepared. These samplers were transported to the field sites in the buckets under a nitrogen atmosphere that was maintained by keeping the buckets covered except during the removal of a sampler. Because maintaining low DO concentrations proved difficult, several NSDS units were prepared and deployed with deionized water that had not been purged of DO to determine whether deoxygenating made an appreciable difference in the results.

To deploy, or insert, the NSDSs into the sediment, the PVC shovel was pushed into the sediment and used to create a hole that would allow the sampler to be buried approximately 20 cm below the sediment surface. Each NSDS was covered with sediment after the shovel was removed. Samplers were placed on their sides to decrease the danger of puncturing the mesh during insertion and retrieval. To locate the samplers for retrieval, each NSDS unit was wrapped tightly with a nylon electrical tie attached to nylon monofilament and a brightly colored fishing bobber. During the study period, two bobbers were lost; because the monofilaments remained attached to

12 Field Tests of Samplers for Detection of Metals in Sediment Pore Water, Ashland and Clinton, MA, 2003

the samplers, however, they were all retrieved. Although some force was occasionally required to pull an NSDS loose from the sediment, it was usually possible to remove a sampler by gently gripping its sides. Any sediment covering the mesh usually fell off while the NSDS was being lifted through the overlying water. When it was necessary to use a gloved fingertip to flick off a small amount of retained sediment, negligible loss of water from the sampler resulted.

NSDS samples were collected by using a 60-mL disposable syringe with a 13-gage, 8.9-cm hypodermic needle and a 25-mm, 0.45-µm filter unit (Millipore HPF Millex-HN) mounted between the syringe and hypodermic. After the NSDS was retrieved, the sharp tip of the hypodermic was thrust through the nylon mesh to extract the sample (fig. 7). Two withdrawals were required to retrieve a volume (100 mL) sufficient for analysis. Occasionally, more than one filter unit was required because of the build-up of solids on the filter membrane.

Pushpoint Samplers

During this study, a peristaltic pump was used to draw samples through the PPS. Approximately 2 m of silicone tubing connected the pump directly to the PPS. One of the Millipore filter units was attached to the opposite end of the tubing where the sample flowed into the 125-mL, highdensity-polyethylene sample container before being acidified with Ultrex-grade nitric acid. After setting the PPS in the sediment at the desired depth, the guard rod was removed and samples were drawn with a peristaltic pump. During the flushing of the PPS and tubing prior to the collection of an environmental sample, specific conductance was monitored with a multiprobe meter to ensure that the PPS samples represented pore water and not infiltrating surface water.

Figure 7. Collecting a field sample from nylon-screen diffusion sampler by using syringe, filter, and hypodermic.

Site Selections

On May 12, 2003, 15 sites were selected approximately 0.5 to 1.5 m from shore in the Sudbury River (fig. 8*A*) at the Nyanza study area in Ashland. Samplers were inserted about 20 cm below the sediment surface in water 15 to 30 cm deep and were retrieved on May 13, 15, 19, 27, and 28, 2003.

On May 20, on either side of Rigby Road, Clinton, 15 sites (fig. 8*B*) were selected in sediments at the bottom of ditches or a beaver-dammed impoundment. All sampling sites remained submerged during the sampling period. As at the Nyanza study area, samplers were inserted about 20 cm below the sediment surface. Samples were collected on May 21, 23, 28, June 4, and June 5, 2003.

Quality-Control Sampling and Results

Field quality-control sampling for the NSDS units consisted of retrieving duplicate samplers deployed in close proximity to each other at some of the 15 sites. Quality-control sampling for the PPSs included equipment blanks, sequential replicate samples from the same site without removal of the PPS, and replicate samples from a nearby spot at the same site. NSDS and PPS replicate sample results are discussed with the other field data.

After the PPS had been flushed out and its exterior rinsed with deionized water supplied by the USEPA laboratory, equipment blanks were collected. Approximately 1 L of deionized water was pumped from a Pyrex 1-L beaker through the PPS before a sample was collected. This volume was approximately the same volume of water that was used to flush the sampling system before routine sample collection.

Analysis of the PPS field-equipment blanks (table 6, at back of report) indicated that neither sampling equipment nor procedure introduced contamination to the field samples sufficient to qualify the use of the samplers in detecting contamination near or above PALs. Only two metals, As and Ba, were detected in the samples: As detected once at 0.71 μ g/L and Ba at an average concentration of 3.3 μ g/L (n=5). (Cu was detected in the laboratory analysis, but these detections were ascribed to contamination of laboratory blanks.) Ba likely came from the filter unit, as observed during lab quality-control studies.

High concentrations of iron (Fe) and Mn in the environmental samples required the analysts to dilute samples to minimize interferences affecting the analyses. Diluting the samples increased reporting levels for all metals by the same factor. Field-blank samples were not all segregated from environmental samples during analysis, however, and, thus, some were diluted by the laboratory. The dilution increased their reporting levels and effectively censored some of the data. In particular, the field blanks from Nyanza were all diluted 10:1 and the Rigby Brook field blanks were undiluted.

Variability in the results by method at each study area was calculated by using the medians of Relative Percent Difference (RPD) (table 4); reporting levels were substituted for nondetects. In this case, this substitution may have diminished the RPD values. A comparison of the nitrogensparged NSDS units and those that were not sparged (NSDSX in tables 4; 6-8, at back of report) yields ambiguous results. Reporting levels in the Nyanza samples higher than in the Rigby Brook samples make the Nyanza results appear less variable than those from Rigby Brook. In reality, the concentrations of numerous nondetects among the metals at Nyanza were replaced by reporting-level concentrations for the RPD calculations. The large number of 0.0 median RPD values (As, Co, lead (Pb), Ni, and V) at the Nyanza site reflects this situation. Because the lower number of nondetects at the Rigby Brook site allowed calculations to be based on real measured concentrations, the median RPD values were higher. Overall, the median RPD calculations indicate a high variability between the NSDS and NSDSX units. The differences between the units may be exaggerated because there are fewer NSDSX than NSDS samples. If the NSDS is to become a common field-sampling device, additional testing in more homogeneous media may be useful.

Sequential replicate samples collected at the same location with the PPSs (PP1 in tables 4, 6–8) generally exhibit low median RPD values. Only the results for Zn are higher than for other metals. The higher median RPD values for PP2 samples (replicate samples collected from sites within a 0.5-m radius of one another) at both study areas further demonstrate substantial environmental variability over short distances.

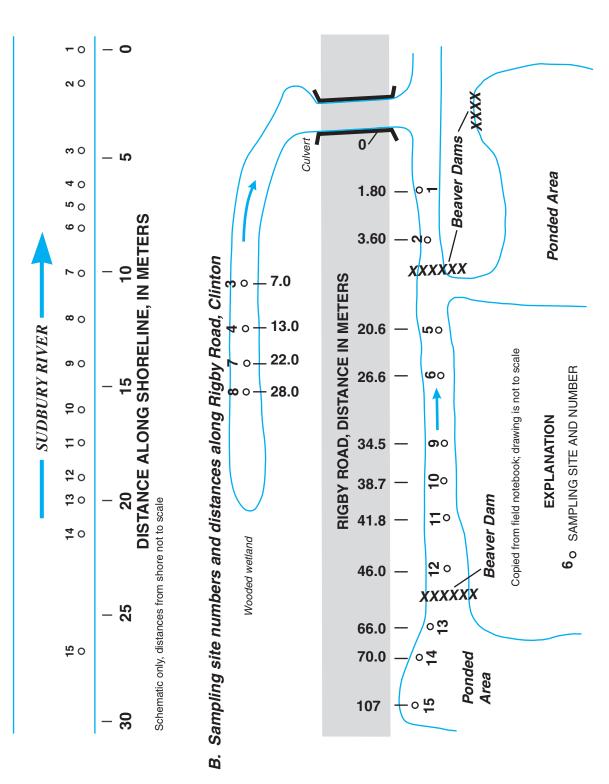
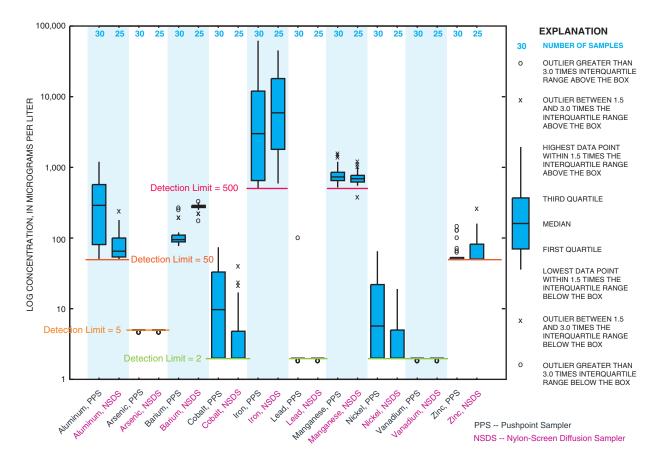


 Table 4.
 Medians of paired relative percent-difference values for individual metals in nylon-screen diffusion samples and pushpoint

 samples collected at the Nyanza study area, Ashland, Massachusetts, and at the Rigby Brook study area, Clinton, Massachusetts.

[For these calculations, values for censored data were set at the reporting level (table 3). NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler inserted without nitrogen sparging; PP1, pushpoint sampler—sequential replicate-sample pairs collected without moving sampler; PP2, pushpoint sampler—discrete sample pairs collected from nearby, but separate, locations]

Sampler type	Aluminum	Arsenic	Barium	Cobalt	Iron	Lead	Manganese	Nickel	Vanadium	Zinc
				Nya	nza					
NSDS only	26.1	0.0	7.1	4.3	40.0	0.0	7.2	0.0	0.0	22.2
NSDS and NSDSX	16.5	.0	6.5	.0	54.9	.0	18.2	.0	.0	48.5
PP1 only	2.3	.0	6.4	.0	.0	.8	2.1	.0	1.4	25.4
PP1 and PP2	12.8	.0	6.7	20.3	17.8	.0	6.1	23.9	.0	18.2
				Rig	by					
NSDS only	44.3	25.4	12.1	29.2	33.1	40.0	7.9	21.3	24.2	5.1
NSDS and NSDSX	58.3	32.5	8.1	26.1	39.8	68.8	46.6	55.8	29.1	4.4
PP1 only	2.3	.0	6.4	.0	.0	.8	2.1	.0	1.4	25.4
PP1 and PP2	16.2	16.2	10.4	40.5	18.2	27.3	12.2	23.0	22.2	40.0

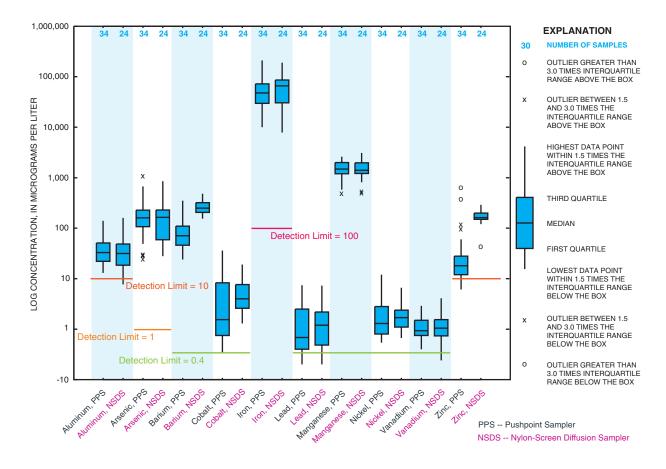

Comparison of Metal Concentrations in Pore Water Collected with Nylon-Screen Diffusion and Pushpoint Samplers

The distribution, frequency of detection, and concentrations of metals differed at sampling sites within each of the Nyanza and Rigby Brook study areas (tables 7 and 8). Some of these differences may reflect matrix interferences that, in all but the first eight samples from the Nyanza study area, made it necessary for the analyst to dilute the sample by a factor of 10; this dilution effectively raised the reporting level by the same factor, and probably caused a decrease in the frequency of low-level detections in these samples. Similarly, 46 of 78 samples from the Rigby Brook site required 2:1 dilution because of interference caused by the high concentrations of Fe in the samples. Thus, differences in the extent of matrix interference between samples from the Nyanza and Rigby Brook study areas may account more for concentration differences in As, Cr, Pb, Mo, V, and Zn than differences between the physical characteristics of the study areas (tables 7 and 8; figs. 9 and 10). These decreases in analytical method sensitivities to low concentrations of metals, however, should not be considered as affecting the capacity of the two types of sampling devices to provide acceptable data from highly contaminated environments.

Although the Nyanza and Rigby Brook sampling areas were expected to yield detections of a large number of metals in concentrations substantially exceeding their PALs and, therefore, classifying the concentrations as toxic, this result did not prove to be the case. At Nyanza, only aluminum (Al), Ba, Fe, and Mn were detected frequently at concentrations higher than their PALs. These elements are not generally classified with the trace elements or contaminants of concern As, cadmium (Cd), Cr, Cu, Hg, Pb, and Ni. These results contrast with findings from a Nyanza Chemical Dump Superfund Site monitoring study (ICF Consulting, 2003) conducted in June 2001 (table 5). Single water samples collected from 20cm sediment depths in three monitoring wells in the vicinity of the present study site (fig. 4) and analyzed by ICP-MS yielded data with relatively high concentrations of metals; the concentrations of Al, As, Cr, Pb, V, and Zn were particularly high in comparison with the concentrations detected during this study. The differences were generally consistent irrespective of whether the Superfund monitoring well was located within the plume zone (wells MP-03A-03 and MP-003-01) or outside the zone (well UR-002).

At Rigby Brook, concentrations of As, Ba, Fe, Mn, and Zn frequently exceeded their PALs. For these reasons, comparisons are limited primarily to these frequently detected trace metals (Al, As, Ba, Co, Fe, Mn, and Zn). The low concentrations and relatively infrequent detections reported for antimony (Sb), Cu, Cr, Pb, molybdenum (Mo), Ni, and V, however, show that even the metallic PPS can collect samples yielding barely detectable concentrations of these metals.

Boxplots noting the actual reporting levels and substituting these reporting levels for nondetects (figs. 9 and 10) are useful in comparing the results for the two devices at the two study areas. This substitution may create an overestimation in the concentration distribution of frequently detected metals, but the inclusion of the reporting levels provides perspective and shows how the different reporting levels affect the data.


Figure 9. Selected metals concentrations in 25 samples collected with nylon-screen diffusion samplers and 35 samples collected with pushpoint samplers at the Nyanza study area, Ashland, Massachusetts, May 2003.

For most of the metals depicted in the boxplots for the Nyanza study area (fig. 9), the reporting level was 2.0 μ /L; the exceptions were Al, 50 μ /L; As, 5 μ /L; Fe, 500 μ /L; and Zn, 50 μ /L. Medians for As, Pb, and V for both devices did not exceed the reporting level; that is, most of the data were censored. At the Rigby Brook study area, the reporting level was generally 0.4 μ /L, with the result that most of the data that appear in the boxplots were uncensored (fig.10).

For the uncensored data, the boxplots show that the ranges of concentrations for the two devices are comparable (figs. 9 and 10). For the most part, the median concentrations for the two devices lie within each other's interquartile ranges. Only Al and Ba at the Nyanza study area and Ba and Zn at the Rigby Brook study area do not conform to this pattern; in these cases, except for the Al comparison, the median concentrations associated with the NSDS samples were higher than the median concentrations for the PPS samples. Therefore, for a general screening study in an area where conditions were unfavorable for the use of the PPS, the NSDS could serve as an adequate alternative method, if these concerns are adequately considered.

Time Series of Nylon-Screen Diffusion Sampler Data

In general, the metal concentrations from the NSDS units increased slightly after 1 day or remained approximately the same (figs. 11 and 12, at back of report). If the unit is used, 1 week would seem to suffice for the water inside NSDS units in sediments comparable to those studied here to reach concentrations comparable with concentrations in the outside water. Notable differences in metal concentrations among specific locations further indicate the environmental heterogeneity of the two study areas. Fe, Mn, and Zn concentrations at Nyanza site 12 were highest early in the study period, and then gradually decreased (fig. 11). Some of the changes in concentrations reflected variations in reporting levels between sampling dates. This situation was most apparent for As and Zn in the Nyanza time series. With the need for dilution, the As reporting level changed from 0.5 µg/L on the first sampling date to 5.0 µg/L for the remainder of the samples; thus, As was detected at first, but not thereafter. Similarly, the reporting

Figure 10. Selected metals concentrations in 24 samples collected with nylon-screen diffusion samplers and 34 samples collected with pushpoint samplers at the Rigby Brook study area, Clinton, Massachusetts, May to June 2003.

level for Zn changed from 5.0 to 50 μ g/L, which likely caused the nondetects or censored values at sites 3, 9, and 15 on and after May 19.

At the Rigby Brook study area, most of the concentration patterns for individual metals during the 2-week period were similar among the stations (fig. 12). In general, the final concentrations of Co, Fe, Mn, and Zn were relatively high (compared to all sites) at sites 12 and 15 on the edge of the beaverdam impoundment. Most of the initial and final concentrations did not differ substantially.

Comparison of all Nylon-Screen Diffusion Samples and Pushpoint Samples by Site

Comparing the results from samples collected from all sites at both study areas (figs. 13 and 14, at back of report) after the 2-week study period provides more insight into the relative usefulness of the two sample-collection devices. Because of the differences in detection frequencies and reporting levels (tables 6 and 7) between study areas, comparing results for the same sets of metals is not practical. For example, the detections of Zn were infrequent at Nyanza, but frequent at Rigby Brook (figs. 11G and 12F).

The differences at the Nyanza sites for the NSDS and PPS results for Al were striking (fig. 13A). At sites 1 through 9 and 15, the PPS samples had higher Al concentrations than the NSDS samples. The mean Al concentration in the PPS samples was 519 µg/L, but 103 µg/L in the NSDS samples; the PPS sample concentrations were generally 300 µg/L or greater, whereas the NSDS sample concentrations were generally less than 200 µg/L. For sites 10 through 14, the concentrations of Al were approximately equal, but low. The similarity of values at these sites suggests that a local environmental difference, pH, for example, may have affected the chemical form in which Al occurred and retarded the diffusion of Al into the NSDS units at sites 1 through 9, but did not affect passage through the openings of the PPS. The similarities in Al concentrations for both methods at Rigby Brook further support this hypothesis (fig. 14A).

Table 5.Concentrations of metals detected in ground water20 cm below sediment surface at selected well locations for theNyanza Superfund Site, Ashland, Massachusetts, June 2001.

[Data from ICF Consulting, 2003. Concentrations in micrograms per liter; --, not detected]

Metal	Monitoring wells		
	UR-002	MP-03A-03	MP-003-01
Aluminum	22,300	98,900	1,610
Antimony	3.7		
Arsenic	20.8	43.6	4.5
Barium	169	396	48.4
Beryllium	2.2	17.4	
Cadmium	2.4	6.4	.5
Calcium	15,500	141,000	13,700
Chromium	46.4	165	
Cobalt	31.3	58.3	5.9
Copper	45.4	103	
Iron	29,500	128,000	4,100
Lead	192	191	28.2
Magnesium	6,380	50,800	3,660
Manganese	1,210	30,500	673
Nickel	20.7	59.1	
Silver		4.1	
Vanadium	57.3	246	
Zinc	995	2,630	

With the exceptions of site 10 at Nyanza and site 11 at Rigby Brook, Ba concentrations in the NSDS samples at both study areas were generally two to three times higher than in the collocated PPS samples (figs. 13B and 14C). The Ba concentrations had a smaller range in the NSDS samples at Nyanza than those at Rigby Brook, but the ratio between the concentrations of Ba measured in the NSDS and PPS samples was approximately the same for the two study areas. Because there is no reason to expect the environmental concentrations of Ba in the NSDS samples to exceed those in the PPS samples, it seems reasonable to assume that Ba came either from the plastic containers or the filter units. The concentrations of As in samples taken by the PPS and NSDS at Rigby Brook (fig. 14B) did not indicate any systematic differences. Moreover, the concentrations of As in duplicate NSDS and PPS samples hardly differed.

Co concentrations in the Nyanza study-area samples (fig. 13*C*) were generally less than 40 μ g/L, but differed systematically between the PPS and NSDS. In a manner similar to that for Al, a local environmental condition may be responsible for the differences in Co concentrations between the PPS and NSDS. The PPS concentrations are generally higher than

the NSDS sample concentrations. The mean Co concentration in PPS samples was 37 μ g/L, but 27 μ g/L in the NSDS samples. The differences were most obvious for sites 3 through 9, where all concentrations ranged from about 10 to 75 μ g/L.

Fe and Mn concentrations from Nyanza showed similar distribution patterns at all sites (figs. 13D and 13E). At sites 1 through 9, the concentrations were lowest and varied little. At sites 10 through 14, the concentrations increased markedly as did their variations. At site 15, the concentrations converged again. There was no pattern of difference in concentrations between the two types of samplers for the Nyanza or Rigby Brook study areas (figs. 14D and 14E). At Rigby Brook sites 1 through 12 and 15, the concentrations of Fe and Mn were highest and most variable. At sites 13 and 14, Fe concentrations were slightly lower at sites 13 and 14, but generally consistent between the samplers.

The concentrations of Zn in the NSDS samples from Rigby Brook were approximately an order of magnitude greater than those in the PPS samples (fig. 14*F*); generally, the concentration ranges were from 150 to 300 μ g/L and from 10 to 25 μ g/L for the NSDS and PPS samples, respectively. Only at site 11 were both PPS sample concentrations higher than those from the NSDS. Because Zn was commonly detected in the laboratory-blank samples from plastics, it is possible that leaching of Zn from the NSDS units was a source of the elevated concentrations.

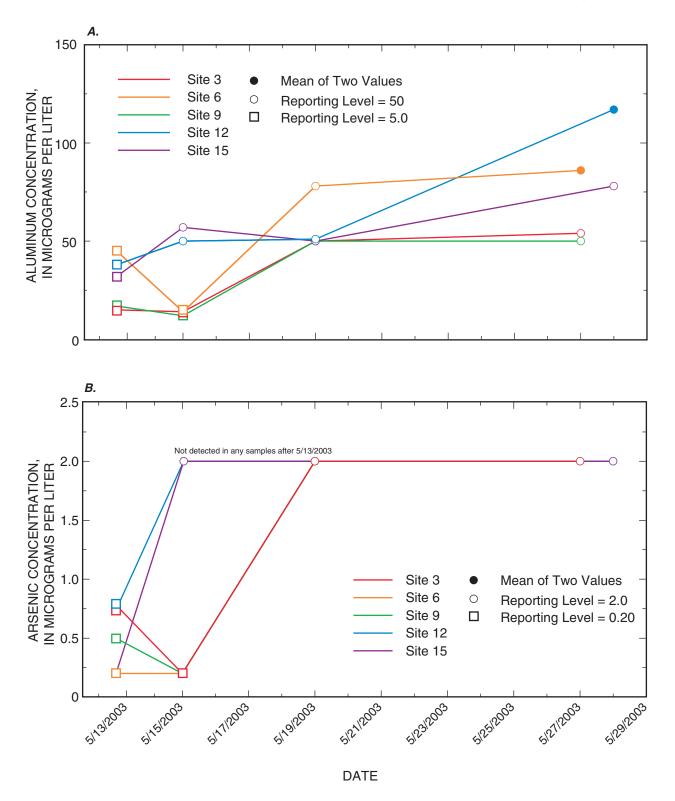
Summary and Conclusions

To assist investigators of environmental hazards in making reconnaissance surveys of the sources and distribution of potentially hazardous metal concentrations, simple and economical devices are needed. The USGS, in cooperation with the USEPA, tested nylon-screen diffusion samplers and stainless-steel pushpoint samplers to determine and compare their efficacies in sampling shallow pore water for metal contaminants. The investigation was carried out at two study sites with previously reported contamination: the Nyanza Chemical Waste Dump Superfund site along the Sudbury River in Ashland, MA, and a Superfund site-assessment location along Rigby Brook in Clinton, MA.

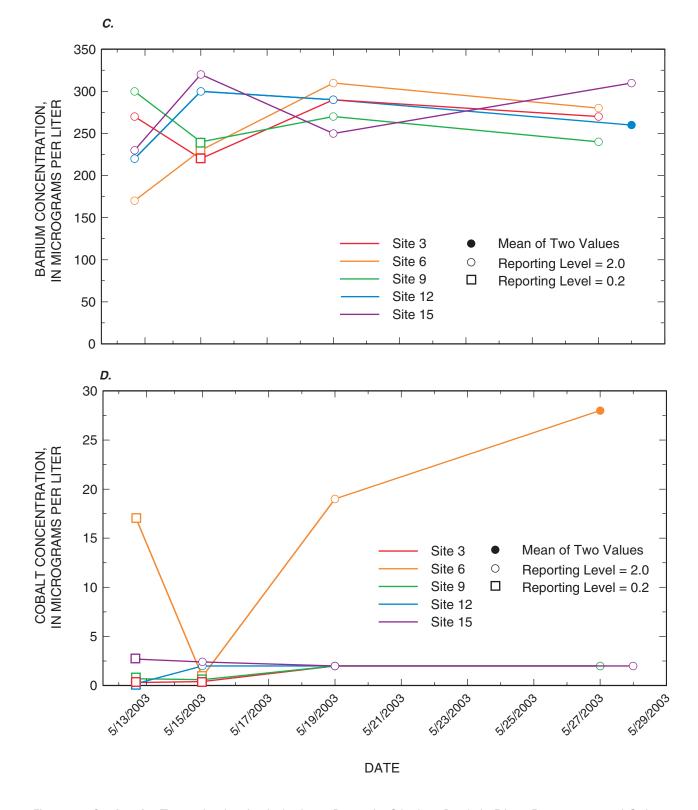
Clearly, nylon-screen diffusion samplers and pushpoint samplers can serve as field screening tools for most metals. Laboratory quality-control samples indicate that some lowconcentration detections result from the use of either type of sampling device or from laboratory or field procedures. The results from the field studies indicate that metal concentrations in the PPS samples seem less affected by the sampler itself than those in the NSDS samples. With the exceptions of data that indicate leaching of Ba and Zn from the plastic NSDS, the differences in concentrations and frequencies of detection of the other metals among sites appear to be real, not artifacts of the devices used. The general comparability among the data from the PPS and NSDS samples show that the NSDS should prove effective at sites where the physical characteristics of the substrate might interfere with PPS use. The PPS is simpler and more convenient to use than the NSDS, however, because the NSDS requires assembly, preparation, insertion, and two site visits. In contrast, only one site visit is required to collect a sample with the PPS. Although NSDS units were left in place for 2 weeks during this study, the time-series data indicate that 1 week would have allowed adequate time to obtain a representative sample given the environmental heterogeneity that contributes to substantial variation in concentrations.

Most of the samples prepared for analysis were diluted by factors of 2 or 10 because of interferences affecting the analytical equipment. These dilutions raised the reporting levels for the metals by the same proportion and caused more analyses of the diluted samples than of undiluted samples to be reported as nondetects. The dilutions made it impossible to compare all sample concentrations with the lowest possible detection limits.

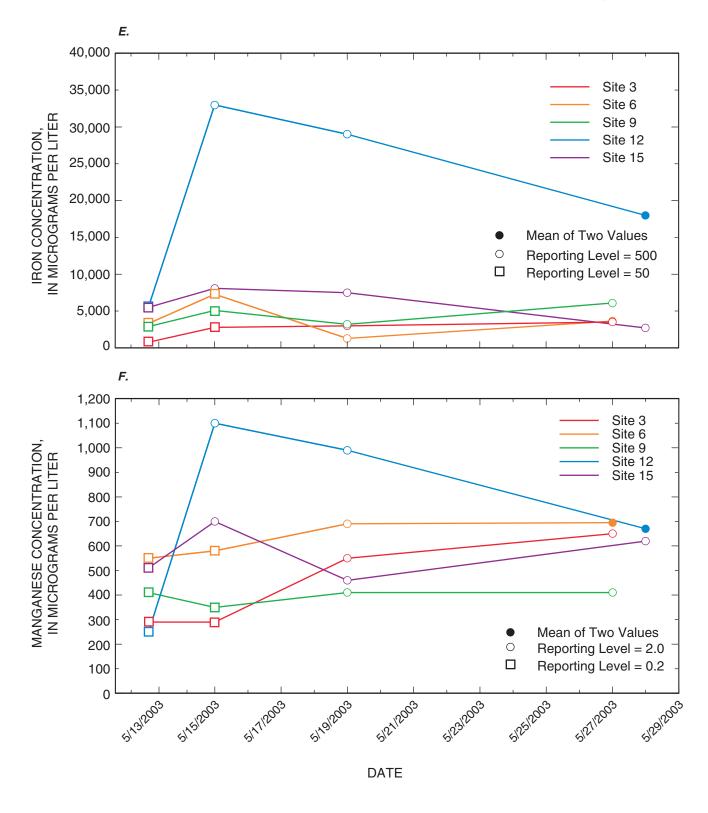
The data from samples from sparged and unsparged NSDS units analyzed for this report do not indicate that the use of the unsparged NSDS units would seriously affect the outcome of a screening survey of a contaminated site. Additional testing of NSDS units at sites with a greater variety of detectable metals could provide further support for this conclusion. Although demonstrating the use of the stainlesssteel PPS for detecting low-level concentrations of trace-element metals was not an objective of this study, the results from undiluted samples indicate that the PPS may be useful in studies where low concentrations of trace metals are expected. With adequate quality-control sampling, scientifically sound results can be obtained for many applications.

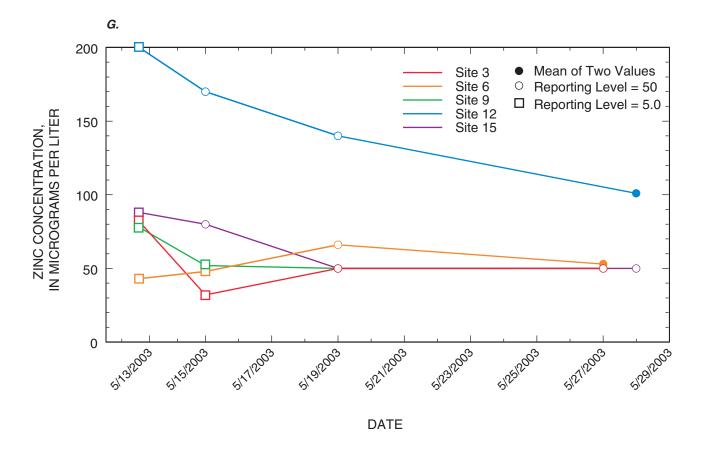

Acknowledgments

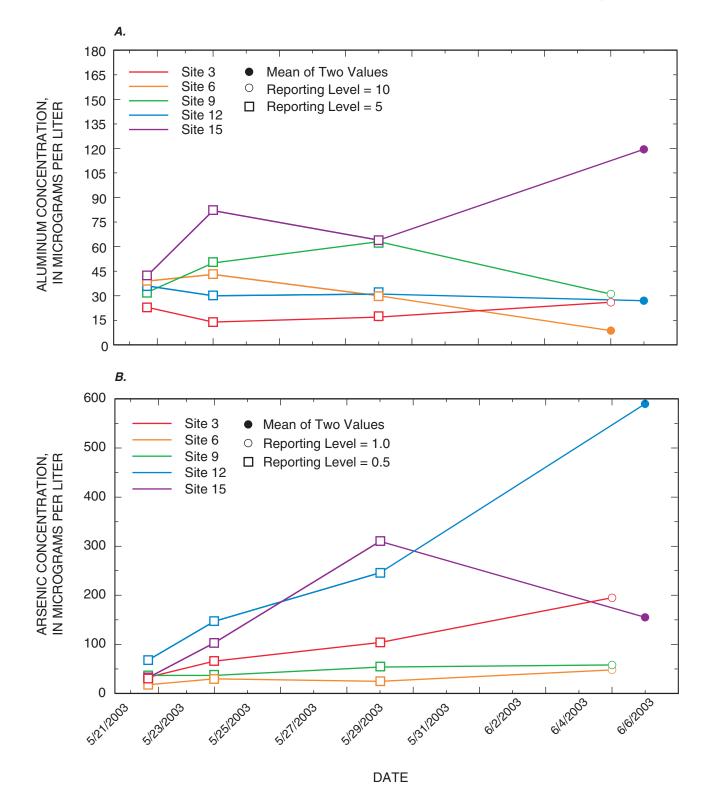
Forest P. Lyford, Hydrologist, U.S. Geological Survey, and Richard Willey, Hydrologist, U.S. Environmental Protection Agency, proposed this study and developed its initial framework. The support and cooperation of Sharon Hayes, Remedial Program Manager, U.S. Environmental Protection Agency, is greatly appreciated. The authors would particularly like to recognize the field and office assistance provided by student aid Vicki-Rose Siegel. The authors gratefully acknowledge the residents and property owners who provided access to the study areas. Suggestions made by USGS colleague reviewers Matthew Petkewich and Kathryn M. Hess substantially improved this report.

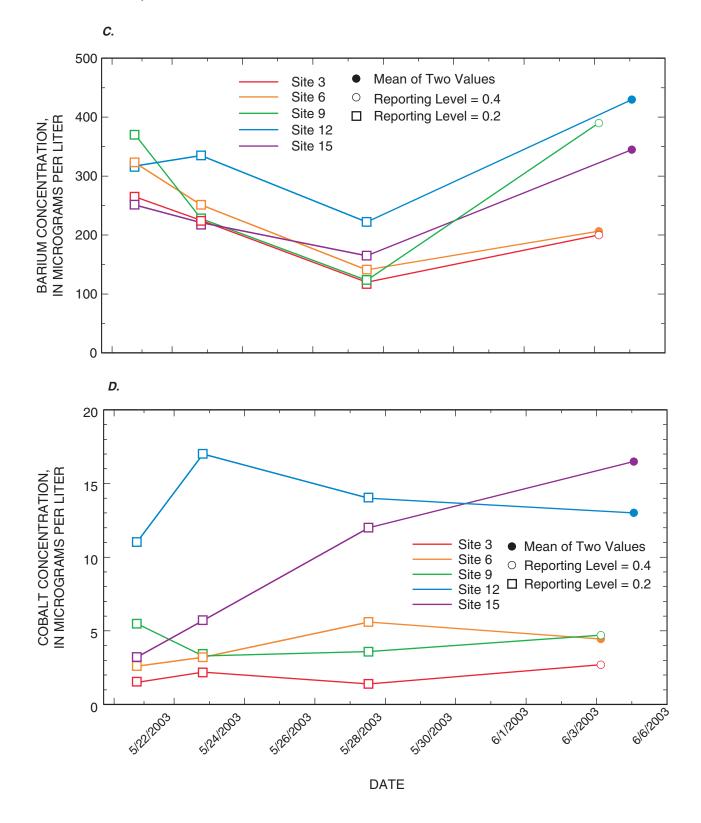

References Cited

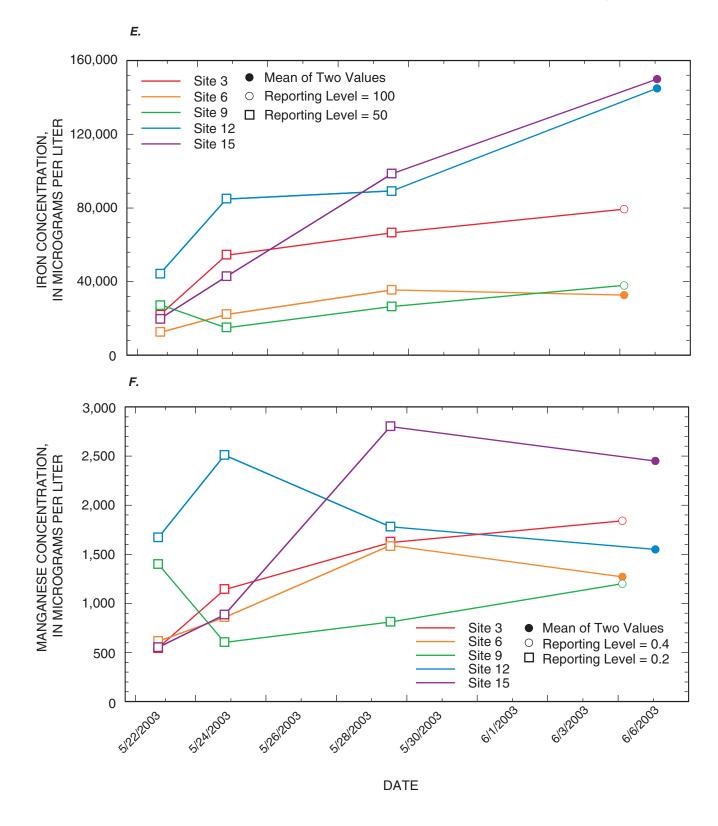
- Campbell, J.P., Lyford, F.P., and Willey, R.E., 2002, Comparison of vapor concentrations of volatile organic compounds with ground-water concentrations of selected contaminants in sediments beneath the Sudbury River, Ashland, Massachusetts, 2000: U.S. Geological Survey Open-File Report 02-143, 33 p.
- Church, P.E., Lyford, F.P., and Clifford, Scott, 2002, Volatile organic compounds, specific conductance, and temperature in the bottom sediments of Mill Pond, Ashland, Massachusetts, April 2001: U.S. Geological Survey Open-File Report 02-35, 10 p.
- Henry, M.H., 2001, PushPoint Sampler Operators Manual and Applications Guide, last accessed on June 15, 2004, at http://www-personal.engin.umich.edu/~markhen/ MHE-instructions-ver-2.00.doc
- ICF Consulting, 2003, Semi-annual ground water monitoring report—Spring 2003: Ashland, MA, Nyanza Chemical Waste Dump Superfund Site Operable Unit II, variously paged.
- Roy F. Weston, Inc., 1999, Evaluation of contamination, Nyanza Chemical Waste Dump Superfund Site, Ashland, Massachusetts: Manchester, NH, variously paged.
- Roy F. Weston, Inc., 2001, Draft groundwater toxicity evaluation report, Nyanza Chemical Waste Dump Superfund Site, Ashland, Massachusetts: Manchester, NH, variously paged.
- Vroblesky, D.A., Petkewich, M.D., and Campbell, T.R., 2002, Field tests of diffusion samplers for inorganic constituents in wells and at a ground-water-discharge zone: U.S. Geological Survey Water-Resources Investigations Report 02-4031, 24 p.
- Wilde, F.D., Radtke, D.B., Gibs, J., Iwatsubo, R.T., 1999, Processing of water samples, *in* Wilde, F.D., Radtke, D.B., Gibs, J., and Iwatsubo, R.T., eds., National Field Manual for the Collection of Water-Quality Data: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, chap A5, variously paged.
- Zimmerman, M.J., Massey, A.J., and Campo, K.W., 2005, Pushpoint sampling for defining spatial and temporal variations of contaminant concentrations in sediment pore water near the ground-water/surface-water interface: U.S. Geological Survey Scientific Investigations Report 2005-5036, 70 p.


Figures 11–14 and Tables 6–8


Figure 11. Time series data for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, cobalt; *E*, iron; *F*, manganese; and *G*, zinc at the Nyanza study area, Ashland, Massachusetts, May 2003. Site locations are shown in figure 8.


Figure 11—Continued. Time series data for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, cobalt; *E*, iron; *F*, manganese; and *G*, zinc at the Nyanza study area, Ashland, Massachusetts, May 2003. Site locations are shown in figure 8.


Figure 11—Continued. Time series data for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, cobalt; *E*, iron; *F*, manganese; and *G*, zinc at the Nyanza study area, Ashland, Massachusetts, May 2003. Site locations are shown in figure 8.


Figure 11—Continued. Time series data for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, cobalt; *E*, iron; *F*, manganese; and *G*, zinc at the Nyanza study area, Ashland, Massachusetts, May 2003. Site locations are shown in figure 8.

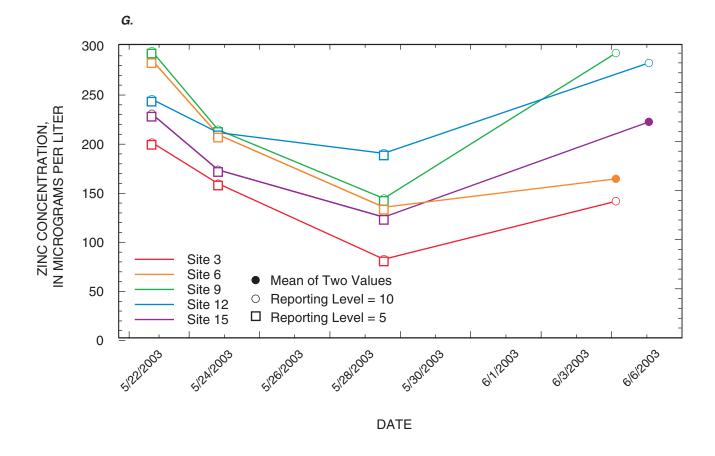

Figure 12. Time series data for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, cobalt; *E*, iron; *F*, manganese; and *G*, zinc at the Rigby Brook study area, Clinton, Massachusetts, May to June 2003. Site locations are shown in figure 8.

Figure 12—Continued. Time series data for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, cobalt; *E*, iron; *F*, manganese; and *G*, zinc at the Rigby Brook study area, Clinton, Massachusetts, May to June 2003. Site locations are shown in figure 8.

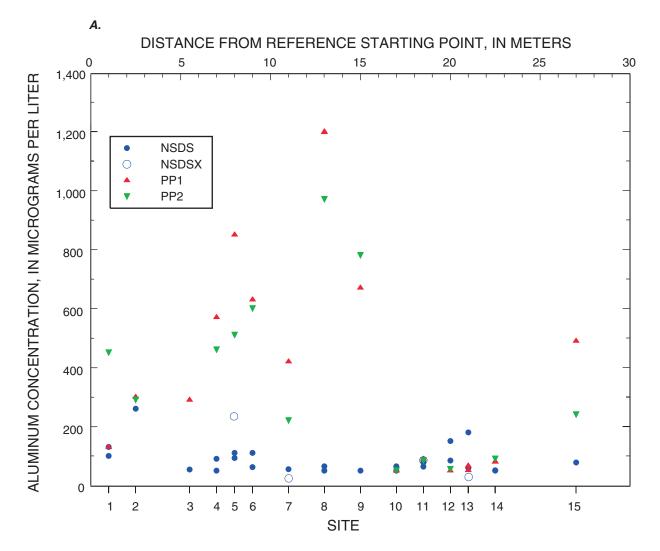


Figure 12—Continued. Time series data for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, cobalt; *E*, iron; *F*, manganese; and *G*, zinc at the Rigby Brook study area, Clinton, Massachusetts, May to June 2003. Site locations are shown in figure 8.

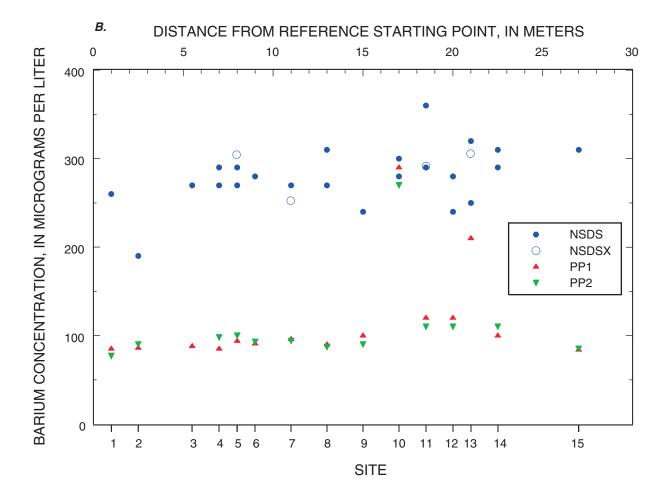
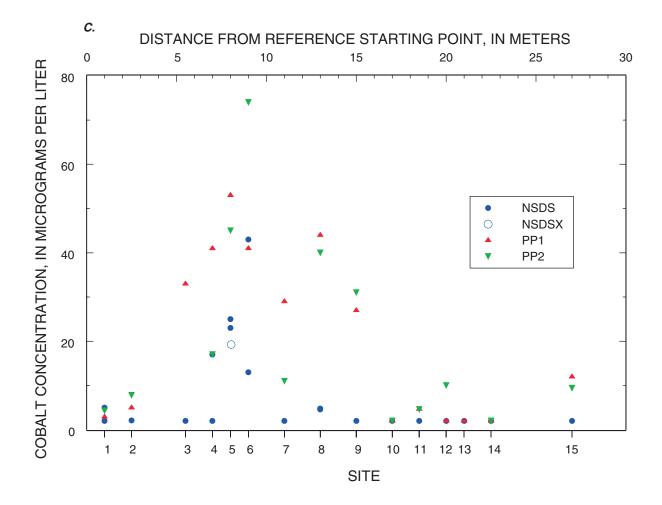
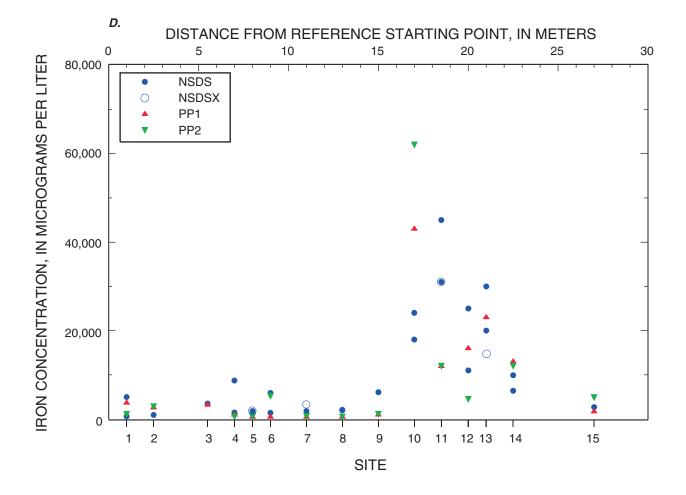
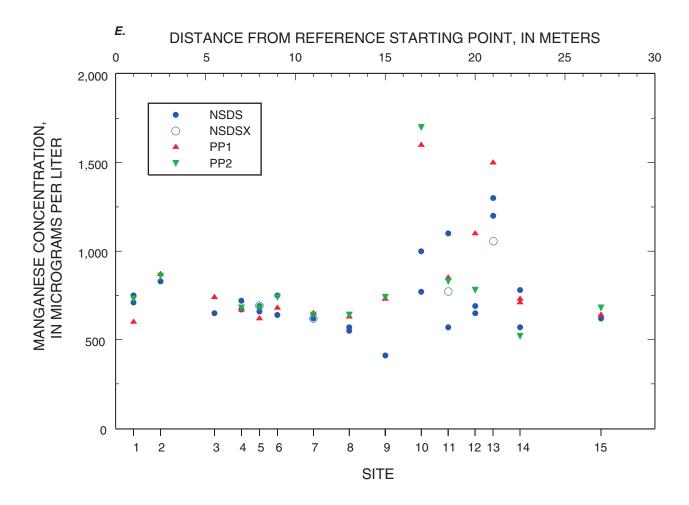
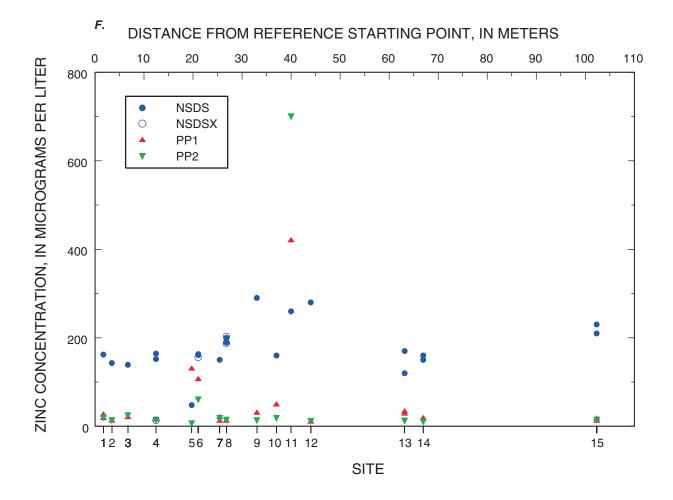


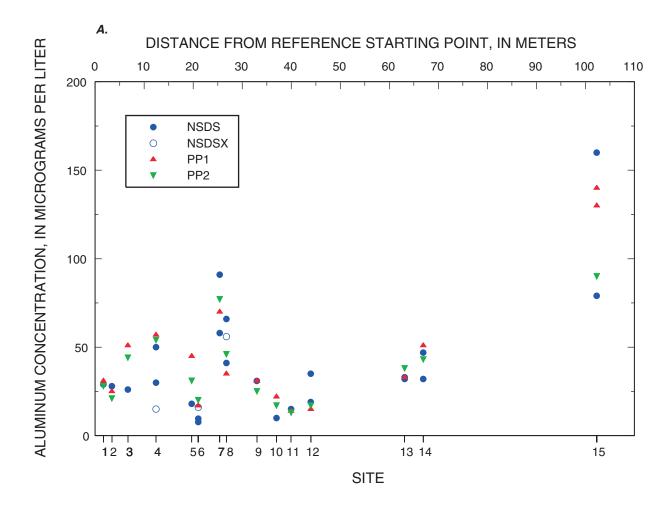
Figure 12—Continued. Time series data for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, cobalt; *E*, iron; *F*, manganese; and *G*, zinc at the Rigby Brook study area, Clinton, Massachusetts, May to June 2003. Site locations are shown in figure 8.

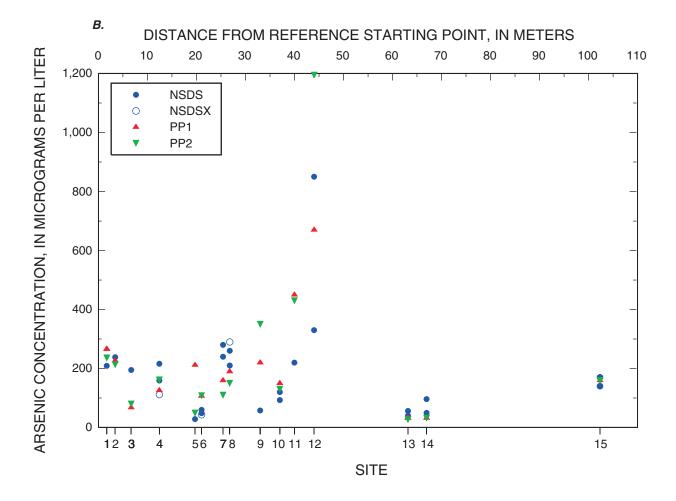

29

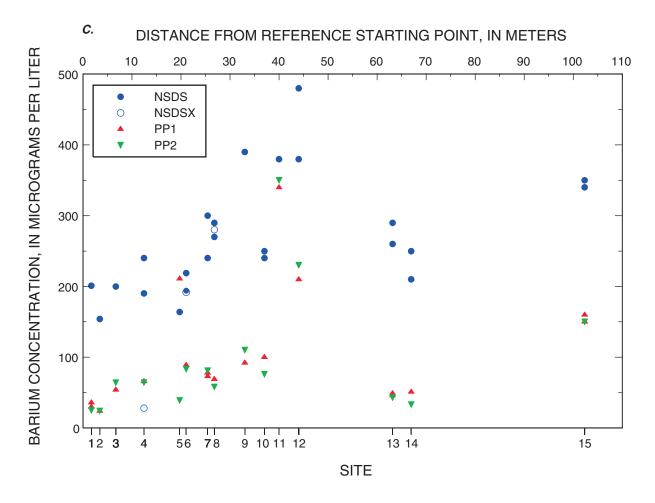

Figure 13. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, barium; *C*, cobalt; *D*, iron; *E*, manganese; and *F*, zinc at all Nyanza study-area sampling sites, Ashland, Massachusetts, May 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.

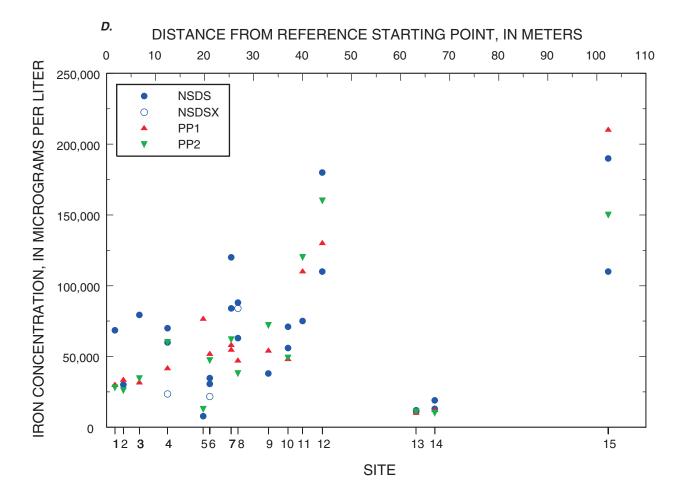

Figure 13—Continued. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, barium; *C*, cobalt; *D*, iron; *E*, manganese; and *F*, zinc at all Nyanza study-area sampling sites, Ashland, Massachusetts, May 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.

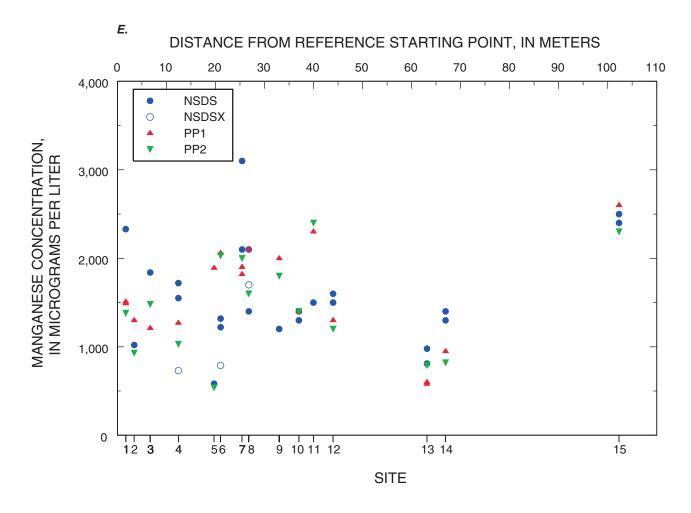

Figure 13—Continued. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, barium; *C*, cobalt; *D*, iron; *E*, manganese; and *F*, zinc at all Nyanza study-area sampling sites, Ashland, Massachusetts, May 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.


Figure 13—Continued. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, barium; *C*, cobalt; *D*, iron; *E*, manganese; and *F*, zinc at all Nyanza study-area sampling sites, Ashland, Massachusetts, May 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.


Figure 13—Continued. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, barium; *C*, cobalt; *D*, iron; *E*, manganese; and *F*, zinc at all Nyanza study-area sampling sites, Ashland, Massachusetts, May 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.


Figure 13—Continued. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, barium; *C*, cobalt; *D*, iron; *E*, manganese; and *F*, zinc at all Nyanza study-area sampling sites, Ashland, Massachusetts, May 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.


Figure 14. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, iron; *E*, manganese; and *F*, zinc at all Rigby Brook study-area sampling sites, Clinton, Massachusetts, June 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.


Figure 14—Continued. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, iron; *E*, manganese; and *F*, zinc at all Rigby Brook study-area sampling sites, Clinton, Massachusetts, June 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.

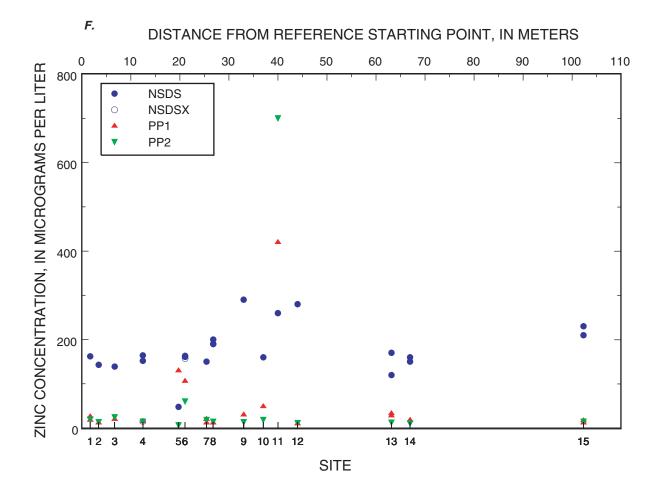

Figure 14—Continued. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, iron; *E*, manganese; and *F*, zinc at all Rigby Brook study-area sampling sites, Clinton, Massachusetts, June 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.

Figure 14—Continued. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, iron; *E*, manganese; and *F*, zinc at all Rigby Brook study-area sampling sites, Clinton, Massachusetts, June 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.

Figure 14—Continued. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, iron; *E*, manganese; and *F*, zinc at all Rigby Brook study-area sampling sites, Clinton, Massachusetts, June 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.

Figure 14—Continued. Results for final round of sampling with nylon-screen diffusion samplers and pushpoint samplers for *A*, aluminum; *B*, arsenic; *C*, barium; *D*, iron; *E*, manganese; and *F*, zinc at all Rigby Brook study-area sampling sites, Clinton, Massachusetts, June 2003. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location. Site locations are shown in figure 8.

Table 6. Concentrations of metals in quality-control samples during field studies at the Nyanza study area, Ashland, Massachusetts, and the Rigby Brook study area, Clinton, Massachusetts. [See table 3 for definitions of atomic symbols (analytes). Reporting level for bold data was 10 times the nominal reporting level (table 3); reporting level for shaded data was twice the nominal reporting level. All concentrations are in micrograms per liter, except for calcium and magnesium, which are in milligrams per liter. Sample identifiers and site numbers preceded by the letter R are associated with the Rigby Brook study area; others are from the Nyanza study area. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location; nd, not detected]

Sample ident- ifier	Site number (fig. 8)	Date	Time	Sampler type	Ы	Sb	As	Ba	Be	Cd	Ca	Ċ	c	Cu	Fe	Pb	Mg	Mn	Mo	N	>	Zn
									NSD	NSDS Duplicates	icates											
18 19	1 1	5-27-2003 5-27-2003	1025 1035	1025 NSDS 1035 NSDS	$100 \\ 130$	pu	pu	260 260	pu	pu	29 31	pu pu	nd 5.0	4.8 3.0	5,000 590	pu	2.4 3.0	750 710	pu	pu	pu	65 67
28 29	44	5-27-2003 5-27-2003		1210 NSDS 1220 NSDS	06 Du	nd 28	pu	290 270	pu	pu	34 32	nd 1 nd	17.0 nd	4.0 7.0	1,500 8,700	pu	2.5 2.4	720 670	pu	5.2 5.0	pu	pu
32 33 34	n n n	5-27-2003 5-27-2003 5-27-2003		0110 NSDS 0125 NSDS 0135 NSDSX	93 110 210	pu pu	pu pu	290 270 300	pu pu	pu pu	31 31 31	nd 2 nd 1	23.0 25.0 17.0	29.0 6.0 8.0	$1,800 \\ 1,300 \\ 740$	pu pu	2.3 2.3	069 069	pu pu	8.5 8.3 3.3	pu pu	nd nd 82
37 38	9	5-27-2003 5-27-2003		1420 NSDS 1430 NSDS	110 62	pu	pu	280 280	pu	pu	32 28	nd 4 nd 1	43.0 13.0	4.0 4.0	1,400 5,900	pu	2.3 2.1	750 640	pu	18.0 6.5	pu	65 nd
42 43	てて	5-27-2003 5-27-2003		0315 NSDS 0325 NSDSX	55 nd	pu	pu	270 260	pu	pu	28 28	pu nd	pu Du	4.8 4.0	1,800 3,500	pu Du	2.1 2.2	620 630	pu	2.9 nd	pu	pu
46 47	∞ ∞	5-27-2003 5-27-2003	0400 0415	0400 NSDS 0415 NSDS	nd 65	pu	pu	310 270	pu	pu	25 25	pu pu	4.8 4.6	11.0 4.0	2,000 2,100	pu	1.9 2.0	550 570	pu	4.0 4.3	pu	pu
53 54	$10 \\ 10$	5-27-2003 5-27-2003		0540 NSDS 0600 NSDS	nd 65	31 nd	pu	300 280	pu	pu	31 29	pu pu	pu	11.0 18.0	18,000 24,000	pu	1.7 1.8	1,000 770	pu	pu	pu	120 150
57 58 59	11 11	5-28-2003 5-28-2003 5-28-2003	_	0940 NSDS 1000 NSDS 1010 NSDSX	78 64 73	pu pu	pu pu	360 290 290	pu pu	pu pu	21 34 27	pu pu	pu pu	5.2 6.6 24.0	31,000 45,000 31,000	pu pu	1.6 2.4 1.9	570 1,100 780	pu pu	pu pu	pu pu	280 160 170
62 63	12	5-28-2003 5-28-2003		1045 NSDS 1100 NSDS	84 150	pu	pu	280 240	pu	pu	22 26	pu pu	pu	4.0 12.0	11,000 25,000	pu	1.1 1.2	650 690	pu	pu	pu	82 120
67 68 69	13 13 13	5-28-2003 5-28-2003 5-28-2003	1130 1137 1142	1130 NSDS 1137 NSDS 1142 NSDSX	59 180 nd	pu pu	pu pu	250 320 300	pu pu	pu pu	29 31 34	pu pu	pu pu	7.0 9.0 24.0	30,000 20,000 15,000	pu pu	1.5 1.7 2.7	1,200 1,300 1,000	pu pu	pu pu	pu pu	140 66 76
R29 R30 R31	R4 R4 R4	6-4-2003 6-4-2003 6-4-2003		1205 NSDS 1209 NSDS 1307 NSDSX	30 50 15	pu pu	159 216 111	190 240 28	pu pu	pu pu	20 26 13	2.30 4.40 .52	2.40 2.80 4.60	3.0 3.3 1.0	60,000 70,000 23,500	nd 0.44 .85	3.20 3.70 2.40	1,550 1,720 730	pu bu	1.6 1.40 .74	1.10 1.70 .79	152 164 15

Table 6.	Concentrations of metals in quality-control samples during field studies at the Nyanza study area, Ashland, Massachusetts, and the Rigby Brook study area, Clinton,
Massach	husetts.—Continued

All concentrations are in micrograms per liter, except for calcium and magnesium, which are in milligrams per liter. Sample identifiers and site numbers preceded by the letter R are associated with the Rigby Brook study area; others are from the Nyanza study area. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first See table 3 for definitions of atomic symbols (analytes). Reporting level for bold data was 10 times the nominal reporting level (table 3); reporting level for shaded data was twice the nominal reporting level.

pushpoin	tt-sampling	g location; PP	pushpoint-sampling location; PP2, sample from second pushpoint-sampling location; nd, not detected]	econd pus	shpoint-sar	npling locati	on; nd, not	detecte	d]												
Sample ident- ifier	Site number (fig. 8)	Date	Time Sampler type	ar Al	Sb	As	Ba	Be	PD	Ca	చ	ප	CE	Ъ.	Pb	Mg	ч	Ň	Ż	>	Zn
							NSD	S Dupl	icates-	NSDS Duplicates—Continued	ned										
R37 R38 R39	R6 R6 R6	6-4-2003 6-4-2003 6-4-2003	1419 NSDS 1430 NSDS 1440 NSDSX	9.6 7.7 X 16	pu 2 nd	48 60 43	194 219 193	pu pu	pu pu	14 20 (nd 0.50 nd	5.10 3.80 3.60	2.0 2.0	30,700 3 34,700 1 21,800 5	3.7 1.7 5.3	1.90 1 2.70 1 1.60	1,220 1,320 789	2.1	2.70 0 1.60 4.50	0.88 1 .69 1 .89 1	163 161 157
R43 R44	R7 R7	6-4-2003 6-4-2003	1527 NSDS 1537 NSDS	91 58	pu pu	240 280	300 240	pu	pu	35 20	1.80	6.40 2.70	8.0 1 5.0	120,000 84,000	pu pu	5.10 3 3.10 2	3,100 2,100	pu	1.80 1 1.10 1	1.60 1 1.30 1	150 150
R47 R48 R49	R8 R8 R8	6-4-2003 6-4-2003 6-4-2003	1625 NSDS 1631 NSDS 1640 NSDSX	66 41 X 56	nd nd	260 210 290	290 270 280	pu pu	pu pu	118 115 117	1.50 nd 1.20	4.20 3.10 3.70	5.0 4.0 4.0	88,000 1 63,000 84,000	1.7 nd .86	3.10 2 2.20 1 2.90 1	2,100 1,400 1,700	pu pu	1.20 1 1.10 1.20 1	1.90 2 .86 1 1.90 1	200 190 190
R55 R56	R10 R10	6-4-2003 6-4-2003	1822 NSDS 1825 NSDS	pu	pu	93 120	240 250	nd nd	nd bn	14 17	pu	4.80 4.60	3.0 6.0	56,000 1 71,000 1	1.2	1.80 1 2.10 1	1,400	2.7 4.0	2.00 1.80	.56 1 .77 1	160 160
R63 R64	R12 R12	6-5-2003 6-5-2003	1045 NSDS 1050 NSDS	35 19	pu	330 850	380 480	nd	pu	18 23	nd 1 nd 1	15.00 11.00	4.0 1 5.0 1	110,000 7 180,000 1	7.3	2.50 1 2.80 1	1,600	3.4 (6.60 1 4.10 1	1.20 2 1.00 2	280 280
R68 R69	R13 R13	6-5-2003 6-5-2003	1145 NSDS 1150 NSDS	33 32	pu	56 40	290 260	pu	pu	6.6 7.8	pu	1.40 1.30	3.0 2.0	12,000 1 11,000	.91	1.40 1.50	810 980	nd nd	.63	nd 1 .48 1	170 120
R72 R73	R14 R14	6-5-2003 6-5-2003	1220 NSDS 1230 NSDS	47 32	pu	49 96	250 210	pu	pu	8.4 9.6	pu	1.70 1.60	5.0 3.0	13,000 2 19,000 1	2.8	1.60 1 2.00 1	1,400 1,300	nd nd	.86 .85 1	.95 1 1.20 1	150 160
R77 R78	R15 R15	6-5-2003 6-5-2003	1325 NSDS 1335 NSDS	79 160	1.3 3.3	140 170	340 350	nd PPS	ld nd 18 ld nd 11 PPS Field Blanks		nd 1 3.70 1	14.00 19.00	5.0 1	110,000	3.8	2.90 23.10 2	2,500	nd 1.2	3.30 1 6.60 4	1.50 2 4.10 2	230 210
21	ç	5 77 7003	1055	рч	μu	рч	3 0	þå	þu	рч	pu	рч	00	рч	pr	hud	pu	ρ.	ри	to the	P.4
21 39	1 L	5-27-2003	1445	pu	pu	pu	5.6	pu	pu	pu	nu		6.0	pu	pu	pu		pu	pu	pu	pu
64	13	5-28-2003	1110	pu	pu	pu	3	nd	nd	nd	nd	nd 1	12.0	pu	nd	nd	pu	nd	pu	pu	pu
R27	4	6-4-2003	1140	nd	nd	pu	1.5	pu	pu	nd	nd	pu	e.	nd	nd	nd		nd	pu	pu	pu
R61	12	6-5-2003	1015	pu	pu	0.71	4	pu	pu	pu	pu	pu	ci	pu	pu	pu	pu	pu	pu	pu	pu

Concentrations of metals in quality-control samples during field studies at the Nyanza study area, Ashland, Massachusetts, and the Rigby Brook study area, Clinton, Massachusetts.—Continued Table 6.

All concentrations are in micrograms per liter, except for calcium and magnesium, which are in milligrams per liter. Sample identifiers and site numbers preceded by the letter R are associated with the Rigby [See table 3 for definitions of atomic symbols (analytes). Reporting level for bold data was 10 times the nominal reporting level (table 3); reporting level for shaded data was twice the nominal reporting level. Brook study area; others are from the Nyanza study area. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location; nd, not detected]

Sample ident- ifier	Site number (fig. 8)	Date	Time	Sampler type	А	Sb	As	Ba	Be	PO	Ca	Ċ	Co	Cu	Бе	Pb	Mg	ШШ	Mo	ïZ	>	Zn
								PPS Sec	PPS Sequential and Duplicate Samples	and Di	uplicate	Sample	Se									
										Nyanza	a											
16	1	5-27-2003	1000 PP1	PP1	130	pu	pu	85	pu	pu	29	pu	2.9	13.0	3,700	pu	2.6	009	pu	3.3	pu	pu
17	1	5-27-2003	1010 PP2	PP2	450	pu	pu	77	pu	pu	32	nd	4.3	250.0	1,100	nd	2.4	730	pu	3.7	pu	pu
20	7	5-27-2003	1045 PP1	PP1	300	pu	pu	86	pu	pu	35	pu	5.0	7.6	2,600	nd	2.8	870	pu	4.3	pu	pu
22	7	5-27-2003	1105 PP2	PP2	290	pu	pu	90	pu	pu	38	nd	7.8	60.0	2,800	nd	3.0	860	pu	4.9	pu	pu
30	Ś	5-27-2003	1230 PP1	PP1	850	pu	pu	94	pu	pu	30	nd 5	53.0	9.0	pu	pu	2.1	620	pu	41.0	pu	160
31	S	5-27-2003	1250 PP2	PP2	510	pu	pu	100	pu	pu	31	nd 4	45.0	5.0	520	pu	2.2	680	pu	23.0	pu	pu
35	9	5-27-2003	1400 PP1	PP1	630	pu	pu	91	pu	pu	31	nd 4	41.0	3.0	pu	pu	2.3	680	pu	25.0	pu	pu
36	6	5-27-2003	1410 PP2	PP2	009	6.2	pu	93	pu	pu	32	nd 7	74.0	19.0	5,200	pu	2.3	740	pu	65.0	pu	140
40	7	5-27-2003	1450 PP1	PP1	420	pu	pu	96	pu	pu	31	nd 2	29.0	6.0	nd	nd	2.3	650	pu	18.0	pu	pu
41	٢	5-27-2003	0305 PP2	PP2	220	pu	pu	94	pu	pu	30	nd 1	11.0	3.0	650	nd	2.1	640	pu	6.8	pu	pu
44	×	5-27-2003	0335 PP1		1,200	pu	pu	06	pu	5.0	30	•	44.0	4.0	pu	110	2.1	630	pu	32.0	pu	110
45	×	5-27-2003	0345 PP2	PP2	970	pu	pu	87	pu	pu	30	nd 4	40.0	130.0	pu	pu	2.0	640	pu	34.0	pu	71
48	6	5-27-2003	0425 PP1	PP1	670	pu	pu	100	pu	pu	29	nd 2	27.0	3.0	1,000	pu	2.0	730	pu	17.0	pu	53
49	6	5-27-2003	0435 I	PP2	780	pu	pu	90	pu	pu	30	nd 3	31.0	11.0	1,100	nd	2.1	740	pu	22.0	pu	pu
51	10	5-27-2003	0500 PP1	PP1	pu	pu	pu	290	pu	pu	35	pu	pu	5.3	43,000	pu	1.9	1,600	pu	pu	pu	pu
52	10	5-27-2003	0520 PP2	PP2	nd	pu	pu	270	pu	pu	33	nd	nd	5.9	62,000	nd		1,700	pu	pu	pu	77
55	11	5-28-2003	0915 PP1	PP1	90	pu	pu	120	pu	$\mathbf{p}\mathbf{u}$	35	pu	4.7	4.0	12,000	pu	2.6	850	pu	3.5	pu	pu
56	11	5-28-2003	0925 PP2	PP2	84	pu	pu	110	pu	pu	35	pu	4.6	4.9	12,000	nd	2.6	830	pu	2.8	pu	pu
09	12	5-28-2003	1025 PP1	PP1	pu	pu	pu	120	pu	pu	33	pu	pu	4.6	16,000	pu		1,100	pu	pu	pu	pu
61	12	5-28-2003	1035 I	PP2	55	pu	pu	110	pu	pu	31	nd 1	10.0	13.0	4,500	nd	1.9	780	pu	4.0	pu	68
65	13	5-28-2003	1120 PP1	PP1	51	pu	pu	210	pu	pu	35	pu	pu	3.0	23,000	pu		1,500	pu	pu	pu	pu
99	13	5-28-2003	1122 PP1	PP1	67	11	pu	210	pu	pu	35	nd	pu	12.0	23,000	pu	2.2	1,500	pu	pu	pu	pu
70	14	5-28-2003	1155 PP1	PP1	81	pu	pu	100	pu	pu	33	pu	pu	4.0	13,000	pu	2.3	730	pu	pu	pu	pu
71	14	5-28-2003	1200 PP1	PP1	80	pu	pu	100	pu	pu	32	pu	nd	5.0	13,000	nd	2.3	710	pu	pu	pu	pu
72	14	5-28-2003	1210 PP2	PP2	90	nd	pu	110	pu	pu	33	pu	pu	38.0	12,000	pu	2.8	520	pu	pu	pu	pu
75	15	5-28-2003	1240 PP1	PP1	490	nd	pu	84	pu	pu	28		12.0	12.0	1,700	pu	2.1	640	pu	9.5	pu	140
76	15	5-28-2003	1255 PP2	PP2	240	pu	pu	85	pu	pu	30	pu	9.4	18.0	4,900	pu	2.0	680	pu	6.6	pu	pu

Table 6. Concentrations of metals in quality-control samples during field studies at the Nyanza study area, Ashland, Massachusetts, and the Rigby Brook study area, Clinton, Massachusetts.—Continued [See table 3 for definitions of atomic symbols (analytes). Reporting level for bold data was 10 times the nominal reporting level (table 3); reporting level for shaded data was twice the nominal reporting level. All concentrations are in micrograms per liter, except for calcium and magnesium, which are in milligrams per liter. Sample identifiers and site numbers preceded by the letter R are associated with the Rigby Brock study area: others are from the Nvanza study area. NSDS, nylon-screen diffusion sampler: NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water. PPI sample from first

Sample ident- ifier	Site number (fig. 8)	Date	Time Sampler type	AI	Sb	As	Ba	Be	Cd	Ca	చ	3	G	Ð	Pb	Mg	Mn	Mo	N	>	Zn
						SAA	PPS Sequential and Duplicate Samples—Continued	and D	uplicate	s Sample	esCor	ntinued									
									Rigby												
R16 R17 R18		6-4-2003 6-4-2003 6-4-2003	0902 PP1 0920 PP1 0644 PP2	30 31 28	nd 0.54 nd	267 266 236	30 36 25	pu pu	bu bu	18 18 17	0 pu pu	0.34 .35 .65	0.11.0	29,800 (29,700 27,900	0.71 .64 .63	2.40 2.50 2.30	1,510 1,490 1,380	pu pu	0.65 .80 .90	0.73 .75 .83	18 26 19
R20 R21	0 0	6-4-2003 6-4-2003	1005 PP1 1017 PP2	25 21	pu	227 213	24 24	pu	pu	18 17 0	nd 08.0	.97 .61	vi L	33,400 26,000	.83	2.30	1,300 930	pu	69. 79	.65 .83	12 13
R23 R24	<i>ი</i> ი	6-4-2003 6-4-2003	1050 PP1 1107 PP2	51 44	pu	68 80	54 64	nd	pu	18 1 21 2	1.60 2.50	.76 .78	1.0	31,500 34,400	pu	2.50	1,210 1,480	pu	1.30	.90	20 24
R26 R28	44	6-4-2003 6-4-2003	1137 PP1 1200 PP2	57 54	pu	126 162	66 64	pu	pu	21 4 22 4	4.50 1 4.90 1	1.30	3.0	41,500 60,100	nd .41	3.40 3.10	1,270 1,030	pu	1.50	1.70 2.90	15 14
R32 R33	is is	6-4-2003 6-4-2003	1322 PP1 1327 PP2	45 31	nd nd	212 49	211 39	nd nd	pu	27 2 12	2.90 3 nd 1	3.80 2	4.1	76,500 12,800 1	nd 1.4	4.20 2.10	1,890 538	pu Du	1.40	1.60] .87	130 6.1
R35 R36	6 6	6-4-2003 6-4-2003	1350 PP1 1405 PP2	17 20	pu	107 108	89 83	nd	pu	20 1 19 1	1.90 10 1.70 11	10.00 11.00 12	1.0	51,700 4 47,200 3	4.5 3.7	2.20	2,060 2,030	5.5 5.1	4.30 5.20 2	1.90] 2.10	106 60
R40 R41 R42		6-4-2003 6-4-2003 6-4-2003	1453 PP1 1457 PP1 1505 PP2	70 77 77	pu pu	160 160 110	73 78 81	pu pu	pu pu	20 2 19 1 22 1	2.50 1 1.00 1 1.40 1	1.50 1.30	3.3	54,600 58,000 62,000	pu pu	3.40 3.40 3.40	1,820 1,900 2,000	pu pu	$1.10 \\ 1.10 \\ 1.30$	1.50 1.20 1.20	12 20 18
R45 R46	∞ ∞	6-4-2003 6-4-2003	1551 PP1 1615 PP2	35 46	pu nd	190 150	69 58	pu Du	pu	16 8 11	8.30 8 nd 1	8.30	2.0	47,000 38,000	.37	3.20 2.40	2,100 1,600	pu	.68 .54	.97 1.20	12.00 14
R50 R51	6 6	6-4-2003 6-4-2003	1700 PP1 1717 PP2	31 25	pu	220 350	92 110	nd	pu	11 10	nd 7 nd 2	7.30 2.60	3.0	54,000 7 72,000	7.4 .99	2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10	2,000 1,800	3.2 3.1	2.30 2.10	2.00 1.30	30 13
R53 R54	10 10	6-4-2003 6-4-2003	1759 PPI 1810 PP2	22 17	pu	150 130	100 76	pu	nd bn	11 9.5	9 pu 9 pu	9.80 6.50	1.0	48,000 2 49,000 1	2.5 1.9	1.80	1,400 1,400	2.9 2.4	5.00 3.10	1.10	49 18
R57 R58	11	6-5-2003 6-5-2003	0940 PP1 0950 PP2	14 13	pu	450 430	340 350	pu	pu	21 23	nd 36 nd 33	36.00 33.00	2.0 1 2.0 1	110,000 1 120,000	.91	2.90 2 3.30 2	2,300 2,400	3.3 1 4.3 1	12.00 12.00	.69 <u>-</u> .73 7	420 700

Concentrations of metals in quality-control samples during field studies at the Nyanza study area, Ashland, Massachusetts, and the Rigby Brook study area, Clinton, Massachusetts.—Continued Table 6.

All concentrations are in micrograms per liter, except for calcium and magnesium, which are in milligrams per liter. Sample identifiers and site numbers preceded by the letter R are associated with the Rigby Brook study area; others are from the Nyanza study area. NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first [See table 3 for definitions of atomic symbols (analytes). Reporting level for bold data was 10 times the nominal reporting level (table 3); reporting level for shaded data was twice the nominal reporting level. pushpoint-sampling location; PP2, sample from second pushpoint-sampling location; nd, not detected]

					1				1			1.0			
Zn			pu	11		33	28	12		18	nd	¢	17	17	14
>			0.75	nd		.60	.62	.75		.82	.66	04.0	00.7	2.50	1.30
Ï			2.50	1.60		1.10	1.10	.61		.75	.71		3.90	3.90	2.80
Mo			1.9	2.5		pu	pu	pu		nd	pu	-	na	pu	pu
Mn			1300	1200		580	600	790		950	820	0000	7000	2600	2300
Mg			2.80	2.80		1.90	1.90	1.60		1.60	1.60		3.80	3.90	4.20
Pb			pu	pu		9	5.9	2.6		6.2	2.9	t		.67	pu
Fe			130,000	160,000		10,000	10,000	11,000		12,000	10,000	010 010	210,000	210,000	150,000
Cu	p		8.0	1.0		2.0	3.0	1.0		4.0	3.0	0	4.0	3.0	3.0
Co	ontinue		6.90	5.00		.60	.58	.65		.44	.75	10.00	19.00	19.00	8.60
ъ	les—C		nd	nd		pu	pu	nd		nd	pu	02.0	00.6	3.70	1.20
Ca	te Samp	ıtinued	20	20		9.7	9.9	7.6		7.6	7.6	¢	15	14	23
Cd	uplica	Rigby—Continued	pu	pu		pu	nd	pu		nd	pu	-	nd	pu	pu
Be	al and D	Rigb	pu	nd		pu	pu	pu		nd	pu	-	na	pu	nd
Ba	PPS Sequential and Duplicate Samples—Continued		210	230		46	49	43		51	33	150	001	160	150
As	PPS		670	1,200		32	33	27		32	32	110	100	160	160
Sb			pu	nd		pu	nd	nd		nd	nd	c	7	2.1	nd
АІ			15	17		33	33	38		51	43	100	130	140	90
Sampler type			PP1	PP2		PP1	PP1	PP2		PP1	PP2	100	rr1	PPI	PP2
Time			1005 PP1	1030 PP2		1108 PP1	1120 PP1	1128 PP2	- 1	1200 PP1	1210 PP2	5501	144 CC21	1257 PP1	1320 PP2
Date			6-5-2003	6-5-2003		6-5-2003	6-5-2003	6-5-2003		6-5-2003	6-5-2003	<pre>/ < 0000</pre>	CUU2-C-0	6-5-2003	6-5-2003
Site number (fig. 8)			12	12		13	13	13		14	14	10	CI	15	15
Sample ident- ifier			R60	R62		R65	R66	R67		R70	R71		K/4	R75	R76

Table 7. Concentrations of metals detected in samples from the Nyanza study area, Ashland, Massachusetts.

[See table 3 for definitions of atomic symbols (analytes). All concentrations are in micrograms per liter, except for calcium and magnesium, which are in milligrams per liter. Concentrations in bold type exceed the project action limit. Shaded data represent samples that were diluted 10:1 due to sampler interferences. Reporting levels for those samples are 10 times the nominal reporting levels (table 3).

Sample Site Sample number Date Time Sam number (fig. 8)	Site number (fig. 8)	Date	Time Sampler type	А	Sb	As	Ba	Be	Cd	Ca	Ċ	Co	Cu	Fe	Pb	Mg	Mn	Mo	ž	>	Zn
1	б	5-13-2003	1205 NSDS	15	pu	0.78	270	pu	pu	15	pu	0.3	2.0	770	0.37	1.3	290	pu	1.4	0.22	82
5	9	5-13-2003	1225 NSDS	45	pu	pu	170	0.27	pu	25	pu	17.0	2.0	3,300	pu	1.9	550	pu	10.0	pu	43
ŝ	6	5-13-2003	1240 NSDS	17	pu	.5	300	pu	pu	19	pu	Ľ.	1.0	2,900	pu	1.5	410	pu	1.7	pu	78
4	12	5-13-2003	1250 NSDS	38	pu	.74	220	pu	pu	8.8	pu	9	3.0	5,500	1.9	Ľ.	250	pu	1.1	pu	200
5	15	5-13-2003	1305 NSDS	32	pu	pu	230	.24	pu	-	0.80	2.7	2.0	5,500	pu	1.6	510	pu	3.2	pu	88
9	3	5-15-2003	1145 NSDS	14	pu	pu	220	pu	pu	14	pu	4.	1.0	2,800	pu	1.3	290	pu	2.0	pu	32
L	9	5-15-2003	1155 NSDS	14	pu	pu	230	pu	pu	25	pu	6:	3.0	7,300	pu	1.7	580	pu	2.4	pu	48
8	6	5-15-2003	1210 NSDS	12	pu	pu	240	pu	pu	16	pu	9.	1.0	5,100	pu	1.4	350	pu	1.9	pu	52
9	12	5-15-2003	1220 NSDS	pu	pu	pu	300	pu	nd	27	pu	nd	` '	33,000	pu	1.5	1,100	pu	pu	pu	170
10	15	5-15-2003	1230 NSDS	57	pu	nd	320	nd	nd	29	nd	2.4	2.0	8,100	nd	2.1	700	nd	3.4	nd	80
11	ŝ	5-19-2003	1140 NSDS	pu	pu	nd	290	nd	pu	24	pu	pu	pu	3,000	pu	1.8	550	pu	pu	pu	nd
12	9	5-19-2003	1150 NSDS	78	pu	pu	310	pu	nd	30	pu	19.0	11.0	1,300	pu	2.1	069	pu	5.9	pu	99
13	6	5-19-2003	1200 NSDS	pu	pu	nd	270	pu	pu	19	pu	pu	6.7	3,200	pu	1.5	410	pu	pu	pu	pu
14	12	5-19-2003	1210 NSDS	51	pu	pu	290	pu	nd	31	pu	pu		29,000	pu	1.4	066	pu	pu	pu	140
15	15	5-19-2003	1220 NSDS	pu	pu	nd	250	pu	nd	20	pu	pu		7,500	pu	1.4	460	pu	pu	pu	nd
16		5 77 7003	1000 PD1	130	pu	þu	85	рц	لم م	00	рч		13.0	3 700	pu	26	UUY	hd	23	pu	pu
17		CUUZ-12-C	1010 DD7	150	nu pu	nu Pu		nu pu	nu pu	27 27	nu hu	1 7 7	0.01	1 100	nu Pu	0.1 C	730	nu nu	C.C.C.	nu pu	nu pu
10		CUUZ-17-C	TT OTOT	001	nin Pir	חות	140	nii Pui	nu Pu		nii 1		0.0	T,100	ni d	t . i c	0C1	nin	1.0 1.0	niu Pur	עצ
10		CUUZ-12-C	1025 NSDS	130	nii	nu nu	260	nu pu	nii h	31	nii hu		0 ⊂	500	nu Pu	7 t.	0012	nu nu	nii	nii n	CD
20	- 7	5-27-2003	1045 PP1	300	pu	pu	86	pu	pu	35	pu	5.0	7.6	2,600	pu	2.8	870	pu	4.3	pu	nd
21	7	5-27-2003	1055 BLANK	nd	pu	pu	2.5	pu	pu	pu	pu	pu	2.0	pu	nd	pu	pu	pu	pu	pu	nd
22	2	5-27-2003	1105 PP2	290	pu		90	pu	nd	38		7.8	60.09	2,800	pu	3.0	860	pu	4.9	pu	nd
23	2	5-27-2003	1115 NSDS	260	pu	pu	190	nd	pu	37		2.1	3.0	930	nd	2.9	830	pu	2.3	pu	nd
24	3	5-27-2003	1135 PP1	290	pu	nd	88	pu	nd	31	pu	33.0	5.0	3,200	pu	2.2	740	pu	19.0	pu	52
25	3	5-27-2003	1145 NSDS	54	pu	nd	270	nd	nd	31	nd	nd	5.0	3,500	nd	2.2	650	nd	pu	nd	nd
26	4	5-27-2003	1150 PP1	570	pu	pu	85	pu	pu	31	, bn	41.0	6.0	1,000	nd	2.3	670	pu	25.0	pu	nd
27	4	5-27-2003	1200 PP2	460	pu	pu	98	pu	pu	31	pu	17.0	21.0	550	nd	2.3	680	pu	10.0	pu	nd
28	4	5-27-2003	1210 NSDS	90	pu	nd	290	pu	nd	34	pu	17.0	4.0	1,500	pu	2.5	720	pu	5.2	pu	nd
29	4	5-27-2003	1220 NSDS	pu	28	pu	270	pu	nd	32	pu	pu	7.0	8,700	pu	2.4	670	pu	5.0	pu	nd
30	5	5-27-2003	1230 PP1	850	pu	nd	94	nd	nd	30	pu	53.0	9.0	nd	nd	2.1	620	pu	41.0	nd	160

Table 7. Concentrations of metals detected in samples from the Nyanza study area, Ashland, Massachusetts.—Continued

[See table 3 for definitions of atomic symbols (analytes). All concentrations are in micrograms per liter, except for calcium and magnesium, which are in milligrams per liter. Concentrations in bold type exceed the project action limit. Shaded data represent samples that were diluted 10:1 due to sampler interferences. Reporting levels for those samples are 10 times the nominal reporting levels (table 3). NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second methoding location; and net detected levels (table 3).

ризпропи-заприля юсаноп; ли, пос истестеи)																					
Sample n number (Site number (fig. 8)	Date	Time Sampler type	А	Sb	As	Ba	Be	Cd	Ca	స	Co	Cu	Fe	Pb	Mg	Mn	Mo	Ż	>	Zn
		5-27-2003	1250 PP2	510	pu	pu	100	pu	pu	31	pu	45.0	5.0	520	pu	2.2	680		23.0	pu	pu
		5-27-2003	110 NSDS	93	pu	pu	290	pu	nd	31	pu	23.0	29.0	1,800	pu	2.3	660	pu	8.4	pu	pu
	5	5-27-2003	125 NSDS	110	pu	pu	270	pu	nd	31	pu	25.0	6.0	1,300	pu	2.3	690		8.5	pu	pu
		5-27-2003	135 NSDSX	210	pu	pu	300	pu	nd	31	pu	17.0	8.0	740	pu	2.3	690		8.3	pu	82
	9	5-27-2003	1400 PP1	630	pu	nd	91	pu	pu	31	nd	41.0	3.0	pu	pu	2.3	680		25.0	nd	nd
	9	5-27-2003	1410 PP2	600	6.2	pu	93	pu	pu	32	pu	74.0	19.0	5,200	pu	2.3	740		65.0	nd	140
	9	5-27-2003	1420 NSDS	110	nd	nd	280	pu	nd	32	nd	43.0	4.0	1,400	nd	2.3	750		18.0	pu	65
	9	5-27-2003	1430 NSDS	62	pu	nd	280	pu	nd	28	pu	13.0	4.0	5,900	nd	2.1	640		6.5	pu	pu
		5-27-2003	1445 BLANK	nd	pu	pu	5.6	pu	pu	pu	pu	pu	6.0	nd	pu	nd	pu		pu	pu	pu
	7	5-27-2003	1450 PP1	420	pu	pu	96	nd	nd	31	nd	29.0	6.0	pu	nd	2.3	650		18.0	nd	nd
	7	5-27-2003	305 PP2	220	pu	pu	94	pu	pu	30	pu	11.0	3.0	650	pu	2.1	640		6.8	pu	pu
	7	5-27-2003	315 NSDS	55	pu	pu	270	pu	nd	28	pu	pu	4.8	1,800	pu	2.1	620	pu	2.9	pu	pu
	7	5-27-2003	325 NSDSX	pu	pu	pu	260	pu	nd	28	pu	pu	4.0	3,500	pu	2.2	630		pu	pu	pu
		5-27-2003	335 PP1	1,200	pu	pu	90	pu	5.0	30	pu	44.0	4.0	pu	110	2.1	630		32.0	pu	110
	~	5-27-2003	345 PP2	970	pu	pu	87	nd	nd	30	pu	40.0	130.0	nd	pu	2.0	640		34.0	pu	71
	~	5-27-2003	400 NSDS	pu	pu	pu	310	pu	pu	25	pu	4.8	11.0	2,000	pu	1.9	550		4.0	pu	pu
	~	5-27-2003	415 NSDS	65	nd	pu	270	pu	pu	25	pu	4.6	4.0	2,100	pu	2.0	570		4.3	pu	pu
		5-27-2003	425 PP1	670	nd	pu	100	pu	pu	29	pu	27.0	3.0	1000	pu	2.0	730		17.0	pu	53
		5-27-2003	435 PP2	780	pu	nd	90	pu	pu	30	pu	31.0	11.0	1,100	nd	2.1	740	pu	22.0	pu	pu
	6	5-27-2003	445 NSDS	nd	pu	pu	240	nd	pu	17	pu	pu	3.0	6,100	pu	1.4	410		pu	pu	pu
	10	5-27-2003	500 PP1	nd	pu	nd	290	pu	pu	35	nd	pu	5.3	43,000	pu	1.9	1,600		pu	nd	pu
	10	5-27-2003	520 PP2	pu	pu	pu	270	pu	nd	33	pu	pu	5.9	62,000	nd	2.0	1,700	pu	pu	pu	LL
	10	5-27-2003	540 NSDS	pu	31	pu	300	pu	nd	31	pu	pu	11.0	18,000	nd	1.7	1,000		pu	pu	120
	10	5-27-2003	800 NSDS	65	pu	pu	280	pu	nd	29	pu	pu	18.0	24,000	nd	1.8	770	pu	pu	pu	150
	11	5-28-2003	915 PP1	90	pu	nd	120	nd	pu	35	nd	4.7	4.0	12,000	nd	2.6	850		3.5	nd	nd
	11	5-28-2003	925 PP2	84	pu	pu	110	pu	pu	35	pu	4.6	4.9	12,000	pu	2.6	830		2.8	nd	pu
	11	5-28-2003	940 NSDS	78	nd	nd	360	pu	nd	21	nd	pu	5.2	31,000	nd	1.6	570	pu	nd	pu	280
		5-28-2003	1000 NSDS	64	pu	pu	290	pu	pu	34	pu	pu	6.6	45,000	pu	2.4	1,100		pu	pu	160
		5-28-2003	1010 NSDSX	73	pu	pu	290	pu	pu	27	pu	pu	24.0	31,000	pu	1.9	780	pu	pu	pu	170
	12	5-28-2003	1025 PP1	nd	pu	nd	120	nd	nd	33	nd	nd	4.6	16,000	nd	1.3	1,100		pu	pu	pu

Table 7. Concentrations of metals detected in samples from the Nyanza study area, Ashland, Massachusetts.—Continued

[See table 3 for definitions of atomic symbols (analytes). All concentrations are in micrograms per liter, except for calcium and magnesium, which are in milligrams per liter. Concentrations in bold type exceed the project action limit. Shaded data represent samples that were diluted 10:1 due to sampler interferences. Reporting levels for those samples are 10 times the nominal reporting levels (table 3). NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second

pushpoin	t-sampling	pushpoint-sampling location; nd, not detected	, not detected]																			
Sample number	Site number (fig. 8)	Date	Time Sampler type	pler Al pe	_	Sb	As	Ba	Be	Cd	Ca	చ	ട	Cu	Fe	Pb	Mg	ШШ	Mo	ïz	>	Zn
61	12	5-28-2003	1035 PP2		55	pu	nd 1	110	pu	pu	31		10.0		4,500	pu	1.9	780	pu	4.0	pu	68
62	12	5-28-2003	1045 NSDS		84	pu	nd 2	280	pu		22	pu			11,000	pu	1.1	650	pu	pu	pu	82
63	12	5-28-2003	1100 NSDS		150	pu	nd 2	240	pu		26	pu	pu	12.0	25,000	pu	1.2	069	pu	pu	pu	120
64	13	5-28-2003	1110 BLANK		pu	pu	pu	б	pu	pu	pu	pu		12.0	nd	pu	pu	pu	pu	pu	pu	nd
65	13	5-28-2003	1120 PP1	.,	51	pu	nd 2	210	pu	nd	35	pu	nd	3.0	23,000	nd	2.2	1,500	nd	nd	pu	nd
66	13	5-28-2003	1122 PP1		67 1	-	nd 2	10	pu	pu	35	pu	pu		23.000	nd		1.500	pu	pu	pu	nd
67	13	5-28-2003	1130 NSDS		59	pu		250	pu		29	pu		7.0	30,000	pu	1.5	1,200	pu	pu	pu	140
68	13	5-28-2003	1137 NSDS		180	pu	nd 3	320	pu		31	nd			20,000	nd		1,300	pu	nd	pu	66
69	13	5-28-2003	1142 NSDSX		pu	nd	nd 3	300	pu	nd	34	pu			15,000	nd		1,000	pu	pu	pu	76
70	14	5-28-2003	1155 PP1		81	pu	nd 1	100	nd	nd	33	nd	nd		13,000	nd		730	nd	nd	pu	nd
71	14	5-28-2003	1200 PP1		80	pu	nd 1	00	pu	pu	32		hd		3.000	pu	23	710	pu	pu	pu	pu
72	14	5-28-2003	1210 PP2					110	nd		33	nd	pu	38.0	12,000	nd	2.8	520	nd	nd	pu	nd
73	14	5-28-2003	1220 NSDS	S	51	pu	nd 3	310	pu		30		pu		9,900	nd	2.1	780	pu	nd	pu	pu
74	14	5-28-2003	1230 NSDS	S	pu	pu	nd 2	063	pu		29		pu		6,400	pu	2.0	570	pu	pu	pu	pu
75	15	5-28-2003	1240 PP1	4	490	pu	pu	84	nd	nd	28		12.0		1,700	nd	2.1	640	nd	9.5	pu	140
N I	1														0000			007				·
76	15	5-28-2003	1255 PP2	5	240	pu		85	pu		30	pu	9.4	18.0	4,900	pu	2.0	680	nd	0.0	pu	nd
77	15	5-28-2003	110 NSDS		78	pu	nd 3	310	pu	pu	28	pu		3.0	2,700	pu	2.1	620	pu	pu	pu	pu

L [See table 3 for definitions of atomic symbols (analytes). All concentrations are in micrograms per liter, except for calcium and magnesium, which are in milligrams per liter. Concentrations in bold type exceed the project action limit. Shaded data represent samples that were diluted 2:1 due to sampler interferences. Reporting levels for those samples are two times the nominal reporting levels (table 3). NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with actated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-

Sample nu number (fi find the second	ite nber J. 8)	Date .	Time Sampler	_																	
			rype	A	Sb	As	Ba	Be	5	Ca	చ	° C	Cu	Fe	Pb	Mg	Ĕ	Mo	ž	>	Zn
		5-21-2003	1040 NSDS	23	pu	33	265	pu	pu		nd [1.50	3.0	21,900	0.84	1.00	548	pu	0.92	0.24	199
		5-21-2003	1055 NSDS	39	pu	18	323	pu	pu		pu C		4.0	12,400	18	1.00	615	1.0	1.60	.73	283
	9 5-21	5-21-2003	1105 NSDS	32	nd	37	371	pu	nd 1		pu 5	5.50	4.0	27,500	7.8	1.40	1,400	1.6	3.00	1.00	292
	12 5-21	5-21-2003	1115 NSDS	36	0.52	68	317	pu	nd 1	15 r	nd 11		4.0	44,300	9.1	2.00	1,670	2.7	4.30	1.10	243
	15 5-21	5-21-2003	1130 NSDS	42	1.00	32	251	pu	pu		pu		5.0		11	.75	552	pu	1.70	.85	228
		5-23-2003	1010 NSDS	14	.51	99	225	pu	nd 1		pu		3.0	54,300	.37	1.90	1,140	9.	.87	.38	157
		5-23-2003	1020 NSDS	43	pu	30	251	pu	pu		e pu		4.0		16	1.20	857	2.2	2.10	.87	207
	9 5-23	5-23-2003	1035 NSDS	50	pu	37	228	pu	pu	5.4 r		3.30	4.0		35	66.	604	1.3	2.00	1.20	212
	12 5-23	5-23-2003	1045 NSDS	30	pu	147	335	pu	nd 2	-	0.80 17		6.0		6.4	2.90	2,510	6.0	6.40	1.60	209
R10	15 5-23	5-23-2003	1055 NSDS	82	96.	103	221	pu	pu				4.0	42,700	12	1.10	884	9.	2.30	1.70	171
R11		5-28-2003	1600 NSDS	17	Ľ.	104	120	pu	nd 1		[pu			66,500	.31	2.70	1,620	9.	.93	.43	80
R12 (6 5-28	5-28-2003	1615 NSDS	30	pu	25	141	pu	nd 1	16 r	pu 5	5.60	2.0	35,500	8.4	2.10	1,590	2.5	3.10	.92	133
R13 9	9 5-28	5-28-2003	1625 NSDS	63	.51	54	123	pu	pu		e pu				18	1.30	810	1.7	2.00	1.30	142
R14	12 5-28	5-28-2003	1635 NSDS	31	pu	246	222	pu	nd 1						7.1	2.90	1,780	3.0	6.30	1.20	188
R15	15 5-28	5-28-2003	1650 NSDS	64	.85	310	165	pu	nd 1		.80 12		2.0		12	2.60	2,800	1.1	3.30	1.80	123
R16	-9	6-4-2003	902 PP1	30	nd	267	30	pu	nd 1	18 r		.34	1.0	29,800	.71	2.40	1,510	pu	.65	.73	18
R17	9	6-4-2003	920 PP1	31	.54	266	36	pu	nd 1	l8 r		.35	1.0	29,700	.64	2.50	1,490	pu	.80	.75	26
R18	9	6-4-2003	644 PP2	28	nd	236	25	pu	nd 1	7 1	nd	.65	1.0	27,900	.63	2.30	1,380	pu	90.	.83	19
R19	9	6-4-2003	947 NSDS	29	.52	209	201	pu	nd 3			9.20	2.0	68,600	.53	3.90	2,330	2.1	3.00	1.60	162
R20	2 6-4	6-4-2003	1005 PP1	25	nd	227	24	pu	nd 1	18 r	nd	76.	i.	33,400	2	2.30	1,300	pu	69.	.65	12
R21		6-4-2003	1017 PP2	21	pu	213	24	pu	nd 1			.61	Ľ.	26,000	.83	2.00	930	pu	.79	.83	13
R22	2 6-7	6-4-2003	1020 NSDS	28	pu	238	154	pu	nd 1	_	.93	3.10	4.6	30,000	1.5	2.10	1,020	pu	2.10	.97	143
R23		6-4-2003	1050 PP1	51	pu	68	54	pu	nd 1	18 1.0		.76	2.0	31,500	pu	2.50	1,210	pu	1.30	<u> </u>	20
R24 3	3 6-4	6-4-2003	1107 PP2	44	pu	80	64	pu	nd 2		2.50	.78	1.0	34,400	pu	2.90	1,480	pu	1.50	1.10	24
R25 3		6-4-2003	1125 NSDS	26	nd	195	200	nd	nd 2	24 3.0		2.70	2.0	79,300	pu	3.40	1,840	nd	1.40	1.50	139
R26 4	4 6-2	6-4-2003	1137 PP1	57	pu	126	99	pu	nd 2	21 4.:	4.50	1.30	2.0	41,500	pu	3.40	1,270	pu	1.50	1.70	15
R27 4	4 6-7	6-4-2003	1140 BLANK	y nd	pu	pu	1.5	pu	nd 1	_	-	pu		pu	pu	pu	pu	pu	pu	pu	pu
R28 4	4 6-2	6-4-2003	1200 PP2	54	pu	162	64	pu	nd 2			1.70	3.0	60,100	.41	3.10	1,030	pu	1.30	2.90	14
		6-4-2003	1205 NSDS	30	pu	159	190	pu		20 2.3	2.30 2	2.40	3.0	60,000	pu	3.20	1,550	pu	1.6	1.10	152
R30 ²	4 6-7	6-4-2003	1209 NSDS	50	nd	216	240	pu	nd 2			2.80	3.3	70,000	44.	3.70	1,720	nd	1.40	1.70	164

Table 8. Concentrations of metals detected in samples from Rigby Brook study area, Clinton, Massachusetts.—Continued

[See table 3 for definitions of atomic symbols (analytes). All concentrations are in micrograms per liter, except for calcium and magnesium, which are in milligrams per liter. Concentrations in bold type exceed the project action limit. Shaded data represent samples that were diluted 2:1 due to sampler interferences. Reporting levels for those samples are two times the nominal reporting levels (table 3). NSDS, and a correst diffusion control of the project action limit. SINCS where a correct diffusion control of the project action limit. SINCS where a correct diffusion control of the project action limit. SINCS where a correct diffusion control diffusion control diffusion control where DD1 control from free muchanism levels. DD2 control control where the project action action limit is level.

Zn	15	130	6.1	48	106	60	163	161	157	12	20	18	150	150	12.00	14	200	190	190	30	13	290	49	18	160	160	420	700	260	
>	0.79	1.60 1	.87	.70	1.90 1	2.10	.88 1		.89 1	1.50	1.20	.20	1.60 1	1.30 1	.97	1.20	1.90 2	.86 1	-	2.00	1.30	.60 2	.10	.80	56 1	.77 1			C 3L	
ï	0.74 0.	1.40 1.	.87	1.80 .	4.30 1.	5.20 2.	bn	1.60 .	4.50 .	1.10 1.	1.10 1.	1.30 1.	1.80 1.	1.10 1.	.68	.54 1.	1.20 1.	1.10 .		2.30 2.	1.10 1.	_	5.00 1.	3.10 .	2.00 .	1.80 .	12.00	2.00	110	
Mo	nd 0	nd 1	pu	nd 1	5.5 4					nd 1	nd 1	nd 1	nd 1	nd 1	pu	pu	nd 1	nd 1		3.2 2			2.9 5			4.0 1	3.3 12	4.3 12		
	_					30 5.1		0 2.1																					1 1	
M	730	1,890	538	583	2,060	2,030	1,220			1,820	1,900	2,000	3,100	2,100		1,600				2,000					1,300	1,400				
Mg	2.40	4.20	2.10	2.40	2.20	2.20	1.90	2.70	1.60	3.40	3.00	3.40	5.10	3.10	3.20	2.40	3.10	2.20	2.90	2.10	1.60	1.60	1.80	1.50	1.80	2.10	2.90	3.30		/ /
Pb	0.85	nd	1.4	.64	4.5	3.7	3.7	1.7	5.3	pu	pu	pu	pu	pu	.37	.47	1.7	pu	.86	7.4	66.	5.7	2.5	1.9	1.2	1.6	1.3	.91	ç	
Fe	23,500	76,500	12,800	7,840	51,700	47,200	30,700	34,700	21,800	54,600	58,000	62,000	120,000	84,000	47,000	38,000	88,000	63,000	84,000	54,000	72,000	38,000	48,000	49,000	56,000	71,000	110,000	120,000	75 000	
Cu	1.0	4.1	1.0	2.0	1.0	12.0	2.0	2.0	2.0	3.3	3.0	4.0	8.0	5.0	2.0	2.0	5.0	4.0	4.0	3.0	1.0	5.0	2.0	1.0	3.0	6.0	2.0	2.0		77
Co	4.60	3.80	1.30	2.50	10.00	11.00	5.10	3.80	3.60	1.50	1.50	1.30	6.40	2.70	8.30	1.60	4.20	3.10	3.70	7.30	2.60	4.70	9.80	6.50	4.80	4.60	36.00	33.00	10,00	
Ç	0.52	2.90	pu	pu	1.90	1.70	pu	.50	pu	2.50	1.00	1.40	1.80	1.60	8.30	pu	1.50	nd	1.20	nd	nd	nd	nd	nd	pu	pu	pu	pu	с. С. с.	U/U
Ca	13	27	12	16	20	19	14	20	12	20	19	22	35	20	16	11	18	15	17	11	10	9.6	11	9.5	14	17	21	23	16	
Cd	pu	nd	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	nd	nd	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	с. г	U/U
Be	pu	nd	pu	nd	nd	pu	pu	pu	pu	pu	pu	nd	pu	nd	pu	pu	nd	nd	pu	nd	pu	nd	pu	nd	pu	pu	pu	pu	5	
Ba	28	211	39	164	89	83	194	219	193	73	78	81	300	240	69	58	290	270	280	92	110	390	100	76	240	250	340	350	100	
As	111	212	49	28	107	108	48	60	43	160	160	110	240	280	190	150	260	210	290	220	350	58	150	130	93	120	450	430		///
Sb	pu	pu	pu	pu	pu	pu	pu	pu	pu	nd	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	5	
А	15	45	31	18	17	20	9.6	7.T	16	70	70	LL	91	58	35	46	99	41	56	31	25	31	22	17	pu	pu	14	13	1 2	
Time Sampler type	1307 NSDSX	1322 PP1	1327 PP2	1330 NSDS	1350 PP1	1405 PP2	1419 NSDS	1430 NSDS	1440 NSDSX	1453 PP1	1457 PP1	1505 PP2	1527 NSDS	1537 NSDS	1551 PP1	1615 PP2	1625 NSDS	1631 NSDS	1640 NSDSX	1700 PP1	1717 PP2	1730 NSDS	1759 PP1	1810 PP2	1822 NSDS	1825 NSDS	940 PP1	950 PP2	JOON NEDS	THE PART OF THE PARTY OF THE PA
Date	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-4-2003	6-5-2003	6-5-2003	6 5 2002	
Site number (fig. 8)	4	5	5	5	9	9	9	9	9	7	7	7	7	7	8	8	8	8	8	6	6	6	10	10	10	10	11	11	11	
Sample number	R31	R32	R33	R34	R35	R36	R37	R38	R39	R40	R41	R42	R43	R44	R45	R46	R47	R48	R49	R50	R51	R52	R53	R54	R55	R56	R57	R58	DSO	

Table 8. Concentrations of metals detected in samples from Rigby Brook study area, Clinton, Massachusetts.—Continued

[See table 3 for definitions of atomic symbols (analytes). All concentrations are in micrograms per liter, except for calcium and magnesium, which are in milligrams per liter. Concentrations in bold type exceed the project action limit. Shaded data represent samples that were diluted 2:1 due to sampler interferences. Reporting levels for those samples are two times the nominal reporting levels (table 3). NSDS, nylon-screen diffusion sampler; NSDSX, nylon-screen diffusion sampler initially filled with aerated deionized water; PP1, sample from first pushpoint-sampling location; PP2, sample from second pushpoint-sampling location; nd, not detected]

Sunding	100m1011, 1		[n.4																		
Sample number	Site number (fig. 8)	Date	Time Sampler type	r AI	Sb	As	Ba	Be	Cq	Ca	చ	Co	Cu	Fe	Pb	Mg	Mn	Mo	z	>	Zn
R61	12	6-5-2003	1015 BLANK	y nd	pu	0.71	4	pu	pu	pu	pu	pu	0.2	pu	pu	nd	pu	pu	pu	pu	nd
R62	12	6-5-2003	1030 PP2	17	pu	1,200	230	pu	pu	20	nd	5.00	1.0	160,000	pu	2.80	1,200	2.5	1.60	nd	11
R63	12	6-5-2003	1045 NSDS	35	pu	330	380	pu	pu	18	nd	15.00	4.0	110,000	7.3	2.50	1,600	3.4	6.60	1.20	280
R64	12	6-5-2003	1050 NSDS	19	pu	850	480	pu	pu	23	pu	11.00	5.0	180,000	1.2	2.80	1,500	3.8	4.10	1.00	280
R65	13	6-5-2003	1108 PP1	33	nd	32	46	pu	pu	9.7	nd	.60	2.0	10,000	9	1.90	580	nd	1.10	.60	33
РАА	13	6-5-2003	1120 DD1	33	pu	33	40	þu	hd	00	рч	58	3.0	10.000	5 0	1 00	UUY	pu	1 10	62	36
R67	1 2	6-5-2003	1128 PP2	30	pu	2C	4	pu	pu	2.0	pu pu	59	0.7	11,000	2.6	1 60	790	pu pu	19	75. 75	57 7
R68	13	6-5-2003	1145 NSDS	33	pu	56	290	pu	pu	6.6	pu	1.40	3.0	12,000	1.2	1.40	810	pu	.83	pu	170
R69	13	6-5-2003	1150 NSDS	32	pu	40	260	pu	pu	7.8	pu	1.30	2.0	11,000	.91	1.50	980	pu	.67	.48	120
R70	14	6-5-2003	1200 PP1	51	pu	32	51	pu	pu	7.6	pu	.44	4.0	12,000	6.2	1.60	950	pu	.75	.82	18
D71	11	20002 2	COO 0101	42	ţ	50	33	ţ	4	76	ros T	75	0 0	10,000	00	1 60	010	-7 s	11	66	4
	ţ,	CUU2-C-U	1210 112	1	n .	4C	<u>.</u>	л ·	110	0.		C1.	0.0	10,000		1.UU	070	, II	1/.	<u>.</u>	nır ,
R72	14	6-5-2003	1220 NSDS	47	pu	49	250	pu	pu	8.4	nd	1.70	5.0	13,000	2.8	1.60	1,400	pu	.86	.95	150
R73	14	6-5-2003	1230 NSDS	32	pu	96	210	pu	pu	9.6	pu	1.60	3.0	19,000	1.7	2.00	1,300	pu	.85	1.20	160
R74	15	6-5-2003	1255 PP1	130	2	160	150	pu	pu	13	3.50	19.00	4.0	210,000	٢.	3.80	2,600	pu	3.90	2.50	12
R75	15	6-5-2003	1257 PP1	140	2.1	160	160	pu	pu	4	3.70	19.00	3.0	210,000	.67	3.90	2,600	pu	3.90	2.50	17
R76	15	6-5-2003	1320 PP2	90	pu	160	150	nd	pu		1.20	8.60	3.0	150,000	pu		2,300	pu	2.80	1.30	14
R77	15	6-5-2003	6-5-2003 1325 NSDS	79	1.3	140	340	pu	pu		pu	14.00	5.0	110,000	3.8	2.90	2,400	pu	3.30	1.50	230
R78	15	6-5-2003	6-5-2003 1335 NSDS	160	3.3	170	350	pu	pu	11	3.70	19.00	5.0	190,000	5.7		2,500	1.2	6.60	4.10	210