20.	1_1	68	70	R
20	1.2.1	00	13	D

RECEIVED OPPT CBIC

2012 DEC 11 AM 7:28

ROBUST SUMMARY OF INFORMATION ON

Substance Group

Heavy Fuel Oil Category

Summary prepared by	American Petroleum Institute Petroleum HPV Testing Group
	Consortium Registration #

Creation date:	May 23, 2003
Printing date:	December 10, 2012
Date of last Update:	December 7, 2012

Number of pages: 370

NB. Reliability of data included in this summary has been assessed using the approach described by Klimisch et al.

Klimisch, H. J., Andreae, M. and Tillman, U, (1997)

A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology <u>25</u>, 1-5.

1. General Information

1.1.1 GENERAL SUBSTANCE INFORMATION

Substance type	: Petroleum product
Disculated at a factor	I familia

Physical status : Liquid

Remark

: Residual fuel oils are blends of the residues and distillates that are derived from various refinery distillation, cracking and reforming processes. These heavy fuels are complex mixtures which may boil approximately in the range from 83 to greater than 737 °C.

They typically consist of aromatic, aliphatic and naphthenic hydrocarbons, generally having carbon numbers in the range of C7 to greater than C50, together with asphaltenes and smaller amounts of heterocyclic compounds containing sulfur, nitrogen and oxygen.

As an example, these four samples of residual fuel oil differ in gravity and sulfur content as shown:

	API sample number			
Parameter	78-6	78-7	78-8	79-2
API gravity Specific gravity Sulfur content	11.7 0.99 2.7%	17.1 0.95 0.8%	23.1 0.92 0.2%	5.2 1.04 1.2%

Because of their complexity and variability, detailed analytical data on heavy fuel oil streams are scarce. Most are characterized only by the parameters used to specify various fuel grades by ASTM or ISO Standards.

Data available for some of the samples for which toxicological information is available are shown below.

Parameter	64741-45-3	64741-62-4	64741-81-7
Sample No.	F-132	API 91-15	API 97-01
Specific gravity	0.9279	1.0725	0.9383
Molecular weight	347	276	
Refractive index	1.5132	Too dark	1.5259
Viscosity (cST @40°C)	379	
Bromine NO.		17	
Flash point (°F)		396	
Ash (wt %)		0.05	
Total sulfur (wt %)	1.23	1.18	
Total nitrogen (wt. %)	1617 ppm		0.52
Total oxygen (wt %)	0.19	0.85	
Pour point (°F)	+88	35	
Distillation (°F)			
IBP	531	395	411
End point	1041	952	831
Asphaltenes (%)			4.2
Carbon residues (wt %	b)		4.6
Saturates (wt %)		8.0	41.7
Aromatics (wt %)	67.82	58.3	50.4
Polar compounds (wt		9.0	7.9
Pentane insolubles (w		24.7	4.07
PNAs %wt in DMSO fr	action		4.67

Information on other materials for which there are toxicology data are given

1. General Inforn	ation	Id Heavy fuel oil Date December 7, 2012
	with the relevant robust summary b	elow.
1.13 REVIEWS		
Memo	: CONCAWE	
Remark	: CONCAWE compiled the available available into a product dossier on h	
Memo	: IARC	
Remark	: IARC reviewed the available inform and the review was published in the	ation on the carcinogenicity of fuel oils a IARC monograph series.
	The conclusions of the evaluation we there is sufficient evidence for the order of residual (heavy) fuel oils.	vere: carcinogenicity in experimental animals
	The overall evaluation was: Residual (heavy) fuel oils are possil	bly carcinogenic to humans (Group 2B). (51)
Memo	: Bingham et al	
Remark		eview of the carcinogenic potential of w included information on two blended (28)

2.1 MELTING POINT

Method GLP Test substance	: ASTM D97 (ASTM, 1999) : No data : Heavy fuel oils		
Remark	: Heavy fuel oils do not have sharply- are highly heterogeneous mixtures of molecular weights. To better descrip petroleum products, the pour point is lowest temperature at which movem under prescribed conditions of the te point measures a "no-flow" point, de specimen at which a wax crystal struc- that movement of the surface of the conditions of the test. Because not their composition, the pour point det physical state (i.e., crystal formation	of petroleu be phase s routinely ent of the est (ASTM efined as the ucture and test special all petroleu cermination	m hydrocarbons of varying or flow characteristics of used. The pour point is the test specimen is observed 1999). The test for pour ne temperature of the test l/or viscosity increase such men is impeded under the um products contain wax in n encompasses change in
	Values given represent a range of n various distillate and residual heavy products. Measured values are high even within a CAS-defined refining p hydrocarbon make-up of crude oils a raw materials. Adding to the variabi of blending heavy petroleum fraction purpose of enhancing the flow proper measurements shown are generally CONCAWE (1998) who stated that oils are <30 °C.	fuel oil rei nly variable process. T and the re lity in pou ns with ligh erties of he consisten	lated refining streams and e and can differ significantly his is due to variability in the fining process applied to the r point values is the practice nter "cutter stock" for the eavy fuel oils. However, the t with the review by
Result	:	Pour	
		Point	Ref./
	Heavy Fuel Oils	(°C)	cert. of analysis
	Heavy Fuel Oils Distillates, heavy thermal cracked (CAS No. 64741-81-7)		cert. of
	Distillates, heavy thermal cracked	(° C) 16 35	cert. of <u>analysis</u> (Niper, 1993) (30330008)
	Distillates, heavy thermal cracked (CAS No. 64741-81-7) Distillates, vacuum (CAS No. 70592-78-8) Residues, atmospheric tower bottom (CAS No. 64741-45-3)	(° C) 16 35 16 27	cert. of analysis (Niper, 1993) (30330008) (30330013)
	Distillates, heavy thermal cracked (CAS No. 64741-81-7) Distillates, vacuum (CAS No. 70592-78-8) Residues, atmospheric tower bottom	(° C) 16 35 16 27	cert. of analysis (Niper, 1993) (30330008) (30330013) (2102010)
	Distillates, heavy thermal cracked (CAS No. 64741-81-7) Distillates, vacuum (CAS No. 70592-78-8) Residues, atmospheric tower bottom (CAS No. 64741-45-3) Gas oils, heavy vacuum (CAS No. 64741-57-7) Gas oils, hydrodesulfurized heavy vacuum (CAS No. 64742-86-5)	(°C) 16 35 16 27 18 31 35	cert. of analysis (Niper, 1993) (30330008) (30330013) (2102010) (21020141) (30330004)
	Distillates, heavy thermal cracked (CAS No. 64741-81-7) Distillates, vacuum (CAS No. 70592-78-8) Residues, atmospheric tower bottom (CAS No. 64741-45-3) Gas oils, heavy vacuum (CAS No. 64741-57-7) Gas oils, hydrodesulfurized heavy vacuum	(°C) 16 35 16 27 18 31 35 acuum	cert. of analysis (Niper, 1993) (30330008) (30330013) (2102010) (21020141) (30330004) (30330016)
Poliability	 Distillates, heavy thermal cracked (CAS No. 64741-81-7) Distillates, vacuum (CAS No. 70592-78-8) Residues, atmospheric tower bottom (CAS No. 64741-45-3) Gas oils, heavy vacuum (CAS No. 64741-57-7) Gas oils, hydrodesulfurized heavy vacuum (CAS No. 64741-57-7) Gas oils, hydrodesulfurized heavy vacuum (CAS No. 64742-86-5) Clarified oils, catalytic cracked (CAS No. 64741-62-4) Bunker C fuel oil Bunker C light fuel oil Bunker C (Alaska) fuel oil Heavy fuel oil no. 6 	(°C) 16 35 16 27 18 31 35 acuum 13	cert. of analysis (Niper, 1993) (30330008) (30330013) (2102010) (21020141) (30330004) (30330004) (30330016) (Niper, 1993)
Reliability	Distillates, heavy thermal cracked (CAS No. 64741-81-7) Distillates, vacuum (CAS No. 70592-78-8) Residues, atmospheric tower bottom (CAS No. 64741-45-3) Gas oils, heavy vacuum (CAS No. 64741-57-7) Gas oils, hydrodesulfurized heavy vacuum (CAS No. 64741-57-7) Gas oils, hydrodesulfurized heavy vacuum (CAS No. 64741-57-7) Gas oils, hydrodesulfurized heavy vacuum (CAS No. 64741-62-4) Bunker C fuel oil Bunker C fuel oil Bunker C light fuel oil Bunker C (Alaska) fuel oil Heavy fuel oil no. 6 : (2) valid with restrictions	(°C) 16 35 16 27 18 31 35 acuum 13 1.7 15 6 -2 -1	cert. of analysis (Niper, 1993) (30330008) (30330013) (2102010) (21020141) (30330004) (30330004) (30330016) (Niper, 1993) (API,1987) (Jokuty, 2002) (Jokuty, 2002) (Jokuty, 2002)

2.2 BOILING POINT

Test substance : Heavy fuel oils

Remark

: The values shown under "results" refer to the boiling range cited in CAS number definitions. The following information is provided as additional data. They represent distillation values (°C) for 54 samples of heavy fuel oil streams and residual fuels analyzed by ASTM D7169 on behalf of the American Petroleum Institute. Distillation ranges may be higher or lower depending on factors such as the source of the crude oil and in the refining process used.

	BP Start	T10	T50	T90	BP END
CAS# 64741-45-3	262	382	521	707	end
CAS# 64741-45-3	257	375	540	713	end
CAS# 64741-45-3	186	359	544	720	end
CAS# 64741-45-3	203	336	495	649	end
CAS# 64741-57-7	296	385	468	543	607
CAS# 64741-57-7	325	399	482	596	end
CAS# 64741-57-7	296	372	443	519	601
CAS# 64741-61-3	182	297	365	422	506
CAS# 64741-61-3	167	297	381	451	617
CAS# 64741-61-3	204	315	377	424	524
CAS# 64741-61-3	160	325	404	495	647
CAS# 64741-62-4	172	327	401	505	737
CAS# 64741-62-4	196	341	417	500	652
CAS# 64741-62-4	145	329	409	513	692
CAS# 64741-67-9	180	204	229	287	404
CAS# 64741-75-9	404	468	518	561	602
CAS# 64741-80-6	217	329	390	448	542
CAS# 64741-81-7	185	274	354	398	446
CAS# 64742-59-2	168	319	432	526	603
CAS# 64742-59-2	208	319	421	500	565
CAS# 64742-78-5	214	299	520	662	716
CAS# 68187-58-6	340	406	563	716	end
CAS# 68333-22-2	292	377	495	672	710
CAS# 68410-00-4	148	283	389	452	536
CAS# 68410-00-4	100	272	381	438	552
CAS# 68410-00-4	172	238	278	330	384
CAS# 68476-33-5	83	229	601	end	717
CAS# 68478-17-1	227	350	429	536	644
CAS# 68478-17-1	257	358	428	514	673
CAS# 68512-62-9	387	531	637	end	720
CAS# 68512-62-9	130	214	590	end	718
CAS# 68553-00-4	182	341	405	482	656
CAS# 68553-00-4	191	290	393	488	650
CAS# 68553-00-4	158	294	433	697	712
CAS# 68607-30-7	347	525	622	end	720
CAS# 68783-08-4	241	315	400	480	591
CAS# 68783-08-4	209	286	387	493	579
CAS# 68783-08-4	256	339	397	492	671
CAS# 68783-08-4	159	230	294	357	571
CAS# 68955-27-1	321	414	481	534	654
CAS# 68955-27-1	401	426	453	484	631
CAS# 70592-76-6	300	366	426	495	603
CAS# 70592-76-6	219	268	316	361	389
CAS# 70592-76-6	212	294	389	483	604
CAS# 70592-76-6	205	316	418	498	594
CAS# 70592-77-7	208	277	348	405	627
CAS# 70592-77-7	247	344	429	528	613
CAS# 70592-77-7	216	300	385	493	623

2. Physico-Chemical Data

CAS# 70592-77-7	209	290	371	456	602
CAS# 70592-78-8	296	393	458	544	635
CAS# 70592-78-8	307	403	474	541	619
CAS# 70592-78-8	327	396	477	565	657
CAS# 70913-85-8	394	504	602	707	end
CAS# 70913-85-8	436	517	640	709	end
Min	83	204	229	287	384
Max	436	531	640	720	737
Mean:	237	342	443	511	611
Std Dev:	81	75	90	129	86

Result

Reliability

:

: For the following petroleum streams in the Heavy Fuels HPV category, boiling ranges were obtained from the CAS definitions (EPA, 2004).

CAS No.	Substance	Boiling Range °C
64741-45-3	Residues, atmospheric tower	
		>350
64741-57-7	Gas oils, heavy vacuum	
• • • • •		350 - 600
64741-61-3	Distillates, heavy catalytic crac	
		260 - 500
64741-62-4	Clarified oils, catalytic cracked	200 000
04141 02 4		>350
64741-67-9	Residues, catalytic reformer fra	
04741-07-3	Residues, calarytic reformer fre	160 - 400
64741-75-9	Residues, hydrocracked	100 - 400
04741-75-5	Residues, Hydrocracked	>350
64741-80-6	Residues, thermal cracked	2000
04741-00-0	Residues, inernal cracked	. 250
64744 04 7	Distillator has a thormal areal	>350
64741-81-7	Distillates, heavy thermal crack	
64742 50 2	Cap allo by dratracted year up	260 - 480
64742-59-2	Gas oils, hydrotreated vacuum	220 600
0.47.40 70 5		230 - 600
64742-78-5	Residues, hydrodesulfurized at	•
tower		>350
64742-86-5	Gas oils, hydrodesulfurized hea	•
		350 - 600
68333-22-2	Residues, atmospheric	>200
68333-26-6	Clarified oils, hydrodesulfurized	•
	cracked	>350
68333-27-7	Distillates, hydrodesulfurized in	Itermediate
	catalytic cracked	205 - 450
68410-00-4	Distillates, crude oil	205 - >495
68478-13-7	Residues, catalytic reformer fra	actionator
residue	9	>399
68478-17-1	Residues, heavy coker gas oil a	and vacuum gas oil
		>230
68512-62-9	Residues, light vacuum	>230
68783-08-4	Gas oils, heavy atmospheric	
		121 - 510
68783-13-1	Residues, coker scrubber cond	lensed-ring
	aromatic-containing	>350
70592-76-6	Distillates, intermediate vacuun	n
		250 - 545
70592-77-7	Distillates, light vacuum	
		250 - 545
70592-78-8	Distillates, vacuum	270 - 600
70592-79-9	Residues, atmospheric tower, I	iaht
	·····, ·····, ·	>200
70955-17-8	Aromatic hydrocarbons, C12-2	
···· ·		282 – 427
(2) valid with re	estrictions	_ · · ·
	en are for standard definitions es	stablished for these refining
	7 / 070	

7 / 370

-	nical Data		Id Heavy fuel oil Date December 7, 2012
	stock used in the refining	al boiling ranges var	y depending on the charge
	originated.	(20) ((43) (44) (53) (100) (103) (104
2.4 VAPOUR PRES	SURE		
Decomposition			
Method GLP	: Calculated: MPBPWIN V1 : No	1.40 IN EPIWIN V3.1	u (U.S. EPA, 2000)
GLP Test substance	: Heavy fuel oils		
Remark	the sum of the partial press of Partial Pressures), and product of their mole fract the pure form (Raoult's La Category consist of highly generally having 20 to 50 category have low-end ca carbon atoms possible, an aromatic and heterocyclic isomeric structures is very constituents would be qui proportion of low molecula the highest vapor pressure	ssures of the individu the pressures of the ions in the mixture ti aw). Refining stream heterogenous mixtu carbon atoms, althour bon numbers of 7 to nd the variety of para hydrocarbons, the p a large. Therefore, p te small. Heavy fuel ar weight constituent es.	ures of hydrocarbons ugh some streams in this o 15. Given the wide range o affinic, naphthenic, olefinic, botential number of unique partial pressures of individual streams having the greatest s would be expected to have
		neric structures (para c hydrocarbon comp s were chosen based	l on known hydrocarbon
	identify potential vapor pro Fuel Oil HPV Category. The streams and products in the pressures of substances in composition. Vapor press and electronic databases	aeger and Jaffe, 200 essures for constitue he modeled values a he heavy fuel oil HP n this category will v sure data reported in provide supporting e	D2). Therefore, the data listed ont hydrocarbons in the Heavy are expected to cover all V category. Actual vapor rary dependent on their a product MSDS information evidence for the estimates. Inces. Examples include the
	identify potential vapor pro Fuel Oil HPV Category. To streams and products in the pressures of substances in composition. Vapor presses and electronic databases They reflect the varied national following:	aeger and Jaffe, 200 essures for constitue he modeled values a he heavy fuel oil HP n this category will v sure data reported in provide supporting e ture of these substar	D2). Therefore, the data listed ant hydrocarbons in the Heavy are expected to cover all V category. Actual vapor ary dependent on their a product MSDS information evidence for the estimates.
	identify potential vapor pro Fuel Oil HPV Category. T streams and products in t pressures of substances i composition. Vapor press and electronic databases They reflect the varied nat	aeger and Jaffe, 200 essures for constitue he modeled values a he heavy fuel oil HP n this category will v sure data reported in provide supporting e ture of these substar sidual fuel oil) 57.8 C <100 Pa talytically cracked cla	D2). Therefore, the data listed ent hydrocarbons in the Heavy are expected to cover all V category. Actual vapor rary dependent on their a product MSDS information evidence for the estimates. Inces. Examples include the <u>Reference</u> Total UK Ltd., 2003
Result	identify potential vapor pro Fuel Oil HPV Category. T streams and products in th pressures of substances i composition. Vapor press and electronic databases They reflect the varied nat following: CAS No. 68476-33-5 (Res Reid Vapor Pressure @ 3 CAS No. 64741-62-4 (Cat	aeger and Jaffe, 200 essures for constitue he modeled values a he heavy fuel oil HP n this category will v sure data reported in provide supporting e ture of these substar sidual fuel oil) 57.8 C <100 Pa talytically cracked cla	02). Therefore, the data listed ent hydrocarbons in the Heavy are expected to cover all V category. Actual vapor ary dependent on their o product MSDS information evidence for the estimates. Inces. Examples include the Reference Total UK Ltd., 2003 arified oil) ECB, 2000 Calculated Vapor
Result	identify potential vapor pro Fuel Oil HPV Category. T streams and products in th pressures of substances i composition. Vapor press and electronic databases They reflect the varied nat following: CAS No. 68476-33-5 (Res Reid Vapor Pressure @ 3 CAS No. 64741-62-4 (Cat Reid Vapor Pressure @ 2 : Chemical n-alkanes	aeger and Jaffe, 200 essures for constitue he modeled values a he heavy fuel oil HP' n this category will v sure data reported in provide supporting e ture of these substar sidual fuel oil) 57.8 C <100 Pa talytically cracked cla 0 C >500 Pa No. Carbon Atoms	02). Therefore, the data listed ent hydrocarbons in the Heavy are expected to cover all V category. Actual vapor ary dependent on their a product MSDS information evidence for the estimates. Inces. Examples include the Reference Total UK Ltd., 2003 arified oil) ECB, 2000 Calculated Vapor Pressure, Pa @ 25 °C
Result	identify potential vapor pro Fuel Oil HPV Category. T streams and products in th pressures of substances i composition. Vapor press and electronic databases They reflect the varied nat following: CAS No. 68476-33-5 (Res Reid Vapor Pressure @ 3 CAS No. 64741-62-4 (Cat Reid Vapor Pressure @ 2 : Chemical n-alkanes n-heptane	aeger and Jaffe, 200 essures for constitue he modeled values a he heavy fuel oil HP' n this category will v sure data reported in provide supporting e ture of these substar sidual fuel oil) 57.8 C <100 Pa talytically cracked cla 20 C >500 Pa No. Carbon Atoms 7	02). Therefore, the data listed ent hydrocarbons in the Heavy are expected to cover all V category. Actual vapor ary dependent on their a product MSDS information evidence for the estimates. Inces. Examples include the Reference Total UK Ltd., 2003 arified oil) ECB, 2000 Calculated Vapor Pressure, Pa @ 25 °C 6130*
Result	identify potential vapor pro Fuel Oil HPV Category. T streams and products in th pressures of substances i composition. Vapor press and electronic databases They reflect the varied nat following: CAS No. 68476-33-5 (Res Reid Vapor Pressure @ 3 CAS No. 64741-62-4 (Cat Reid Vapor Pressure @ 2 : Chemical n-alkanes n-heptane n-undecane	aeger and Jaffe, 200 essures for constitue he modeled values a he heavy fuel oil HP' n this category will v sure data reported in provide supporting e ture of these substar sidual fuel oil) 7.8 C <100 Pa talytically cracked cla 20 C >500 Pa No. Carbon Atoms 7 11	02). Therefore, the data listed ent hydrocarbons in the Heavy are expected to cover all V category. Actual vapor ary dependent on their a product MSDS information evidence for the estimates. Inces. Examples include the Reference Total UK Ltd., 2003 arified oil) ECB, 2000 Calculated Vapor Pressure, Pa @ 25 °C 6130* 55*
Result	identify potential vapor pro Fuel Oil HPV Category. The streams and products in the pressures of substances in composition. Vapor press and electronic databases They reflect the varied nation following: CAS No. 68476-33-5 (Res Reid Vapor Pressure @ 3 CAS No. 64741-62-4 (Cat Reid Vapor Pressure @ 2 : Chemical n-alkanes n-heptane n-undecane n-eicosane	aeger and Jaffe, 200 essures for constitue he modeled values a he heavy fuel oil HP' n this category will v sure data reported in provide supporting e ture of these substar sidual fuel oil) 7.8 C <100 Pa talytically cracked cla 20 C >500 Pa No. Carbon Atoms 7 11 20	02). Therefore, the data listed ent hydrocarbons in the Heavy are expected to cover all V category. Actual vapor rary dependent on their product MSDS information evidence for the estimates. Inces. Examples include the Reference Total UK Ltd., 2003 arified oil) ECB, 2000 Calculated Vapor Pressure, Pa @ 25 °C 6130* 55* 6x10 ⁻⁴ *
Result	identify potential vapor pro Fuel Oil HPV Category. T streams and products in th pressures of substances i composition. Vapor press and electronic databases They reflect the varied nat following: CAS No. 68476-33-5 (Res Reid Vapor Pressure @ 3 CAS No. 64741-62-4 (Cat Reid Vapor Pressure @ 2 : Chemical n-alkanes n-heptane n-undecane n-pentacontane iso-alkanes	aeger and Jaffe, 200 essures for constitue he modeled values a he heavy fuel oil HP' n this category will v sure data reported in provide supporting e ture of these substar sidual fuel oil) 7.8 C <100 Pa talytically cracked cla 20 C >500 Pa No. Carbon Atoms 7 11	02). Therefore, the data listed ant hydrocarbons in the Heavy are expected to cover all V category. Actual vapor rary dependent on their product MSDS information evidence for the estimates. Inces. Examples include the Reference Total UK Ltd., 2003 arified oil) ECB, 2000 Calculated Vapor Pressure, Pa @ 25 °C 6130* 55* 6x10 ⁻⁴ * 2x10 ⁻⁷
Result	identify potential vapor pro Fuel Oil HPV Category. T streams and products in th pressures of substances i composition. Vapor press and electronic databases They reflect the varied nat following: CAS No. 68476-33-5 (Res Reid Vapor Pressure @ 3 CAS No. 64741-62-4 (Cat Reid Vapor Pressure @ 2 : Chemical n-alkanes n-heptane n-undecane n-pentacontane iso-alkanes iso-heptane	aeger and Jaffe, 200 essures for constitue he modeled values a he heavy fuel oil HP' n this category will v sure data reported in provide supporting e ture of these substar sidual fuel oil) 7.8 C <100 Pa talytically cracked cla 0 C >500 Pa No. Carbon Atoms 7 11 20 50 7	02). Therefore, the data listed ant hydrocarbons in the Heavy are expected to cover all V category. Actual vapor ary dependent on their a product MSDS information evidence for the estimates. Inces. Examples include the Reference Total UK Ltd., 2003 arified oil) ECB, 2000 Calculated Vapor Pressure, Pa @ 25 °C 6130* 55* 6x10 ⁻⁴ * 2x10 ⁻⁷ 8800*
Result	identify potential vapor pro Fuel Oil HPV Category. T streams and products in th pressures of substances i composition. Vapor press and electronic databases They reflect the varied nat following: CAS No. 68476-33-5 (Res Reid Vapor Pressure @ 3 CAS No. 64741-62-4 (Cat Reid Vapor Pressure @ 2 : Chemical n-alkanes n-heptane n-undecane n-pentacontane iso-alkanes	aeger and Jaffe, 200 essures for constitue he modeled values a he heavy fuel oil HP' n this category will v sure data reported in provide supporting e ture of these substar sidual fuel oil) 7.8 C <100 Pa talytically cracked cla 0 C >500 Pa No. Carbon Atoms 7 11 20 50	02). Therefore, the data listed ant hydrocarbons in the Heavy are expected to cover all V category. Actual vapor rary dependent on their product MSDS information evidence for the estimates. Inces. Examples include the Reference Total UK Ltd., 2003 arified oil) ECB, 2000 Calculated Vapor Pressure, Pa @ 25 °C 6130* 55* 6x10 ⁻⁴ * 2x10 ⁻⁷

2. Physico-Chemical Data

Id Heavy fuel oil Date December 7. 2012

		Date	December 7, 2012
iso-pentacontane	50	3x10 ⁻¹³	
cyclo-alkanes			
1-ring	7	6130*	
methylcyclohexane pentylcyclohexane	, 11	50*	
tetradecylcyclohexne	20	0.02	
tetratetracontylcyclohexane	50	$2x10^{-13}$	
	50	2/10	
2-ring 2-methyl[4.4.0]bicyclodecane	11	90	
2-decyl[4.4.0]bicyclodecane	20	0.03*	
2-tetracontyl[4.4.0]bicyclo-		0.00	
decane	50	2x10 ⁻¹³	
3-ring			
bicyclodecane, 1-8-dimethyl	12	33*	
3-hexyltricyclotetradecane	20	0.02	
3-hexatriacontyltricyclo-	50	2x10 ⁻¹³	
tetradecane	50	2X10	
olefins	7	7000*	
1-heptene	7	7900* 07*	
1-undecene 1-eicosene	11 20	97* 0.001*	
1-pentacontene	50	$3x10^{-13}$	
r penacomene	00	5/10	
aromatics			
1-ring			
toluene	7	3790*	
n-penylbenzene	11	59*	
n-tetradecylbenzene	20	0.003	
n-pentacontylbenzene	50	2x10 ⁻¹⁴	
2-ring			
1-methylnaphthalene	11	7.3*	
1-tetradecyInaphthalene	20	7x10 ⁻⁴	
1-pentacontyInaphthalene	50	3x10 ⁻¹⁵	
3-ring			
phenanthrene	14	0.016*	
2-hexylphenanthrene	20	1×10^{-4}	
2-hexatriacontylphenanthrene	50	5x10 ⁻¹⁶	
polar/heterocyclic compound	S		
quinolines	9	8.0*	
quinoline 4-pentylquinoline	9 14	8.0 0.02	
3-butyl-4-propyl-5-butyl-	14	0.02	
quinoline	20	1x10 ⁻⁴	
4-hentetracontyl-quinoline	50	9x10 ⁻¹⁶	
pyridines			
2-ethyl-pyridine	7	650*	
2-nonyl-pyridine	, 14	0.21	
2-pentadecyl-pyridine	20	8x10 ⁻⁴	
2-pentatetracontyl-pyridine	50	2x10 ⁻¹⁶	
carboxylic acids			
cyclopentane-3-methyl-1-			
carboxylic acid	7	7.6	
[4.3.0]bicyclononane-5-			
9 / 370			

2. Physico-Cher	nical Data	Id Heavy fuel oil
		Date December 7, 2012
	methyl-1-carboxylic acid 11	0.08
	[4.2.4]tricyclotetradecane-11-	4 4 0-5
	methyl-1-pentanoic acid 20	4x10 ⁻⁵
	[4.2.4]tricyclodecane-7-eicosyl- 1-decacarboxylic acid 50	3x10 ⁻¹⁶
	thiophenes/benzothiophenes 2-propyl thiophene 7	370
	dibenzothiophene 12	0.03*
	dibenzothiophene 4,6-dibutyl 20	1x10 ⁻⁵
	dibenzothiophene 4,6-didecanyl 50	5x10 ⁻¹⁷
	Note: values signified with * were cited in database.	the EPI-Suite [™] experimental
Reliability	: (2) valid with restrictions	
	Vapor pressures for representative molect	
	were estimated using a validated compute	er model. (44) (86) (89) (92) (104) (105
		(100) (00) (00) (00) (10 1) (100
2.5 PARTITION CO	DEFFICIENT	
Method	: Calculated): EPIWINV3.10 (U.S. EPA, 20	000)
GLP	: No	
Test substance	: Heavy fuel oils	
Remark	: Substances in the heavy fuel oil category	have a carbon number distribution
i ternark		
Kemark	primarily between C20 and C50, although	some individual refining streams
NGINAI K	primarily between C20 and C50, although in this category have low end carbon num	some individual refining streams bers of 7 to 15. The predominant
Nemark	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and
Neniai K	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring
Nella K	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic
Nella K	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent
Neniai K	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of
Neniai K	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were
Nella K	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co compounds known to occur in heavy fuel	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional
Nella K	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition or compounds known to occur in heavy fuel chosen based on known hydrocarbon con modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric
Nellar	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co compounds known to occur in heavy fuel chosen based on known hydrocarbon con modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co compounds known to occur in heavy fuel chosen based on known hydrocarbon con modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and partition coefficients for the substances in	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co compounds known to occur in heavy fuel chosen based on known hydrocarbon con modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co compounds known to occur in heavy fuel chosen based on known hydrocarbon con modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and partition coefficients for the substances in	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co compounds known to occur in heavy fuel chosen based on known hydrocarbon con modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition.	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co compounds known to occur in heavy fuel chosen based on known hydrocarbon con modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition.	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co compounds known to occur in heavy fuel chosen based on known hydrocarbon con modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5)
	 primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition compounds known to occur in heavy fuel chosen based on known hydrocarbon com modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given constructures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coefficient (OECD, 1995), and an estimation method 	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co compounds known to occur in heavy fuel chosen based on known hydrocarbon con modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to ods begin to fail for hydrocarbon
Result	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co- compounds known to occur in heavy fuel chosen based on known hydrocarbon con modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co- structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo- (OECD, 1995), and an estimation method 6 (OECD, 1989). Hence, analytical metho compounds that contain roughly 15 to 20 of	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to ods begin to fail for hydrocarbon carbon atoms.
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co- compounds known to occur in heavy fuel chosen based on known hydrocarbon con modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co- structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo- (OECD, 1995), and an estimation method 6 (OECD, 1989). Hence, analytical metho compounds that contain roughly 15 to 20	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to ods begin to fail for hydrocarbon
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co- compounds known to occur in heavy fuel chosen based on known hydrocarbon com modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co- structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo (OECD, 1995), and an estimation method 6 (OECD, 1989). Hence, analytical metho compounds that contain roughly 15 to 20 for Chemical n-alkanes	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to ods begin to fail for hydrocarbon carbon atoms. No. Carbon Log Kow <u>Atoms @ 25 °C</u>
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition ca compounds known to occur in heavy fuel chosen based on known hydrocarbon com modeling (Potter and Simmons, 1998; Qu Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo (OECD, 1995), and an estimation method 6 (OECD, 1989). Hence, analytical metho compounds that contain roughly 15 to 20 for Chemical n-alkanes n-heptane	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to ods begin to fail for hydrocarbon carbon atoms. No. Carbon Log Kow Atoms @ 25 °C 7 4.7*
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition ca compounds known to occur in heavy fuel chosen based on known hydrocarbon com modeling (Potter and Simmons, 1998; Qu Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo (OECD, 1995), and an estimation method 6 (OECD, 1989). Hence, analytical metho compounds that contain roughly 15 to 20 for the targen in the total in the targen in the targen n-heptane n-undecane	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to ods begin to fail for hydrocarbon carbon atoms. No. Carbon Log Kow Atoms @ 25 °C 7 4.7* 11 5.7
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition of compounds known to occur in heavy fuel chosen based on known hydrocarbon com modeling (Potter and Simmons, 1998; Qu Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo (OECD, 1995), and an estimation method 6 (OECD, 1989). Hence, analytical metho compounds that contain roughly 15 to 20 for the compounds that contain roughly 15 to 20 for the compounds and contain roughly 15 to 20 for the compounds that contain the compounds the compounds that contain the compounds that contain the com	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to ods begin to fail for hydrocarbon carbon atoms. No. Carbon Log Kow Atoms @ 25 °C 7 4.7* 11 5.7 20 10.2
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds), and to a lesser extent olefini compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition ca compounds known to occur in heavy fuel chosen based on known hydrocarbon com modeling (Potter and Simmons, 1998; Qu Jaffe, 2002). Therefore, the data given co structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo (OECD, 1995), and an estimation method 6 (OECD, 1989). Hence, analytical metho compounds that contain roughly 15 to 20 for the targen in the total in the targen in the targen n-heptane n-undecane	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to ods begin to fail for hydrocarbon carbon atoms. No. Carbon Log Kow Atoms @ 25 °C 7 4.7* 11 5.7
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co- compounds known to occur in heavy fuel of chosen based on known hydrocarbon com modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co- structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo (OECD, 1995), and an estimation method 6 (OECD, 1989). Hence, analytical metho compounds that contain roughly 15 to 20	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to ods begin to fail for hydrocarbon carbon atoms. No. Carbon Log Kow Atoms @ 25 °C 7 4.7* 11 5.7 20 10.2 50 25
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co- compounds known to occur in heavy fuel chosen based on known hydrocarbon com modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co- structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo (OECD, 1995), and an estimation method 6 (OECD, 1989). Hence, analytical metho compounds that contain roughly 15 to 20 :	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to ods begin to fail for hydrocarbon carbon atoms. No. Carbon Log Kow Atoms @ 25 °C 7 4.7* 11 5.7 20 10.2 50 25 7 3.7
	primarily between C20 and C50, although in this category have low end carbon num hydrocarbon structures include saturated branched chain), cyclic alkanes, aromatics compounds that contain sulfur, oxygen an hydrocarbons used to estimate partition co- compounds known to occur in heavy fuel of chosen based on known hydrocarbon com modeling (Potter and Simmons, 1998; Qua Jaffe, 2002). Therefore, the data given co- structures contained in heavy fuel oil and partition coefficients for the substances in values are expected to cover all streams a HPV category. Actual partition coefficient will vary dependent on their composition. Standardized methods for partition coeffic analytically limited to substances up to Lo (OECD, 1995), and an estimation method 6 (OECD, 1989). Hence, analytical metho compounds that contain roughly 15 to 20	some individual refining streams bers of 7 to 15. The predominant alkanes (e.g., straight and s (e.g., one to multi-ring ic compounds and heterocyclic ad nitrogen atoms. The constituent oefficients are representative of oil mixtures. Structures were nposition and compositional ann and Jaffe, 1992; Saeger and over the principal isomeric represent a potential range of this category. The modeled and products in the heavy fuel oil ts of substances in this category cient determinations are g Kow ~4 (and occasionally 5) is available for log P values up to ods begin to fail for hydrocarbon carbon atoms. No. Carbon Log Kow Atoms @ 25 °C 7 4.7* 11 5.7 20 10.2 50 25

2. Physico-Chemical Data

Id Heavy fuel oilDate December 7, 2012

		Date De	ecember 7, 2012
r	n-pentacontane	50	25
	avelo-alkanos		
	c yclo-alkanes methylcyclohexane	7	3.6*
	pentylcyclohexane	, 11	5.6
	tetradecylcyclohexane	20	10
		50 11	25 4.6
	2-methyl[4.4.0]bicyclodecane 2-decyl[4.4.0]bicyclodecane	20	9
	2-tetracontyl[4.4.0]bicyclodecane	50	9 24
	bicyclodecane,1,8-dimethyl	12	4.9
	3-hexyltricyclotetradecane	20	8.1
	3-hexatriacontyltricyclotetradecane	50	23
· · · ·	-nexamaconty in cycloten adecane	50	25
(olefins		
	1-heptene	7	4.0*
	1-undecene	11	5.6
	1-eicosene	20	10
	1-pentacontene	50	25
	aromatics 1-ring		
	toluene	7	2.7*
		, 11	4.9*
	n-pentylbenzene n-tetradecylbenzene	20	4.9 8.9
	n-pentacontylbenzene	50	24
Į	гренасонкурендене	50	24
	2-ring		
	1-methylnaphthalene	11	3.9*
	1-tetradecylnaphthalene	20	8.1
	1-pentacontylnaphthalene	50	23
	3-ring		4 5+
	ohenanthrene	14	4.5*
	2-hexylphenanthrene	20	7.4
4	2-hexatriacontylphenanthrene	50	22
	polar/heterocyclic compounds		
	quinolines		
	quinoline	9	2.0*
4	4-pentylquinoline	14	4.7
3	3-butyl-4-propyl-5-butyl quinoline	20	7.7
4	4-hentetracontyl quinoline	50	22
	oyridines	7	4 7*
	2-ethyl pyridine	7	1.7*
	2-nonly pyridine	14	5.3
	2-pentadecyl pyridine	20	8.2
4	2-pentatetracontyl pyridine	50	25
(carboxylic acids		
	cyclopentane-3-methyl-1-carboxylic acid		
		7	2.0*
[[4.3.0]bicyclononane-5-methyl-1-carboxylic	acid	
		11	3.4
[[4.2.4]tricyclotetradecane-11-methyl-1-penta		
		20	6.8
[[4.2.4]tricyclodecane-7-eicosyl-1-decacarbo		22
		50	22
+	hiophenes/benzothiophenes		
	2αbutyl thiophene	7	3.3
2	11 / 370	-	
	11/ 3/0		

2. Physico-Cher	nical Data	Id Heavy fuel oil Date December 7, 2012
	dibenzothiophene dibenzothiophene 4,6-dibutyl dibenzothiophene 4,6-didecanyl	12 4.4 20 8.2 50 23
Reliability	Note: values signified with * were database. (2) valid with restrictions	cited in the EPI-Suite [™] experimental
		(84) (85) (86) (89) (92) (105)
2.6.1 SOLUBILITY IN	I DIFFERENT MEDIA	
Solubility in Value GLP Test substance	: Water : 6.26 mg/l at 22 °C : No data : Fuel oil No. 6 (CAS 68553-00-4 - a	assumed by reviewer)
Method	to 50 - 100 ml of double-distilled w funnel was gently shaken with a w magnetic stirrer for at least 24 hou the desired temperature $(20 \pm 2 \circ 0)$ Care was taken to ensure that no	ared by adding approximately 10 ml of oil vater in a 125-ml separatory funnel. The vrist-action shaker or gently stirred with a urs, then placed in a temperature bath at C) for at least 48 hours prior to analysis. oil-in-water emulsion formed by elow that necessary to separate oil
Remark	 analysis was used to measure wat Hewlett-Packard model 5840 GC and a 7675A purge-and-trap samp Approximately 1-2 ml of the saturat the GC carrier gas (N₂) and the dispurged and subsequently sorbed of thermodesorption, the hydrocarboc column for analysis. The analytical capillary column coated with SE-3 initial oven temperature: 40 °C for temperature increase: 5 °C/min final oven temperature: 200 °C for carrier gas flow rate: 5 ml/min detector temperature: 300 °C Peak areas were integrated by an test substance was a Fuel Oil No. 	ated aqueous solutions was bubbled with ssolved volatile hydrocarbons were onto a Tenax-GC trap. By ons were then directly swept onto the GC al column was a 0.5 mm x 50 m glass 00. Operating GC conditions were: 10 minutes r 20 min
	the aqueous solutions, nor is there composition of the tested fuel, eith components (such as sulfur). Also standard composition used to iden the equilibrated aqueous -oil soluti complex petroleum substances ha any particular loading rate, the res chemical constituent is a function (aqueous and the petroleum mixtu phases, the amount of component solubility of each component. Initi amounts below the solubility limit of	xact amounts of fuel oil used for preparing e any information regarding the her as hydrocarbon type or inorganic of no information on the GC calibration ntify and quantify soluble components in ions is provided. Individual components of ave specific and differing solubilities. At sulting aqueous concentration of each of the relative volume of the two phases re), the partition coefficient between the

2. Physico-Che	mical Data	Id Heavy fuel oil Date December 7, 2013
Reliability	 components continue to dissolve, resulting addition of the petroleum mixture results in a non-linear function of the amount added. (2) valid with restrictions The water solubility study meets basic scier details on the preparation of the soluble fraction 	an aqueous concentration that in the source of the source
2.14ADDITIONAL REM	MARKS	
Memo	: Water solubility of Bunker C heavy fuel oil	
Remark	: The following values are provided as support endpoint. The data were cited in a government et al., 2000). The original source of the data database.	ent reference database (Jokuty
		lubility
	OilType(°C)(mgBunker Cdistilled220.4	
Reliability	: (4) not assignable Data was presented in a reference database measurement methods	e without specific details on
		(53) (10
Memo	: Water solubility of Bunker C light residual fu	uel oil
Remark	: The following values are provided as suppo endpoint. Water soluble fractions of hydroc combining in Erlenmeyer flasks reconstitute C light fuel oil using a ratio of 40:1 by volum stopcock near the bottom to remove the wat exclude light, and capped to prohibit loss of were stirred for 3 days using a teflon-coated set at the slowest speed to prevent emulsifie the water soluble fractions with overlying ex tightly capped in the dark for up to 5 days b	carbons were prepared by ed fresh or salt water and Bunke ne. Flasks were fitted with a ter soluble fractions, covered to f volatile components. Flasks d stir bar and a magnetic stirrer cation of the oil. After stirring,
	fractions were extracted with hexane and m hydrocarbons by fluorescence spectroscopy Fluorescence Spectrophotometer. The fluo soluble fractions were compared to a calibra Calibration curves were prepared by analyz each test material made up with hexane. S were scanned to determine the optimum ex- wavelengths.	heasured for total petroleum y using a Perkin Elmer MPF-3 prescence intensity of the water ation curve for the oil. ting varying concentrations of trandard solutions and extracts
	hydrocarbons by fluorescence spectroscopy Fluorescence Spectrophotometer. The fluo soluble fractions were compared to a calibra Calibration curves were prepared by analyz each test material made up with hexane. S were scanned to determine the optimum ex- wavelengths. <u>Heavy Fuel</u> Water Ter <u>Oil</u> Type (°C Bunker C light Fresh 20 Salt	measured for total petroleum y using a Perkin Elmer MPF-3 prescence intensity of the water ation curve for the oil. ting varying concentrations of trandard solutions and extracts acitation and emission
Reliability	hydrocarbons by fluorescence spectroscopy Fluorescence Spectrophotometer. The fluo soluble fractions were compared to a calibra Calibration curves were prepared by analyz each test material made up with hexane. S were scanned to determine the optimum ex wavelengths. Heavy Fuel Water Ter Oil Type (°C Bunker C light Fresh 20	<pre>measured for total petroleum y using a Perkin Elmer MPF-3 prescence intensity of the water ation curve for the oil. ting varying concentrations of itandard solutions and extracts acitation and emission mp Solubility (mg/l)</pre>
Reliability Memo	hydrocarbons by fluorescence spectroscopy Fluorescence Spectrophotometer. The fluo soluble fractions were compared to a calibra Calibration curves were prepared by analyz each test material made up with hexane. S were scanned to determine the optimum ex- wavelengths. <u>Heavy Fuel</u> Water Ter <u>Oil</u> Type (°C Bunker C light Fresh 20 Salt : (2) valid with restrictions	heasured for total petroleum y using a Perkin Elmer MPF-3 prescence intensity of the water ation curve for the oil. ting varying concentrations of trandard solutions and extracts icitation and emission mp Solubility (mg/l) 4.5 2.3 e were not provided. (5
	hydrocarbons by fluorescence spectroscopy Fluorescence Spectrophotometer. The fluo soluble fractions were compared to a calibra Calibration curves were prepared by analyz each test material made up with hexane. S were scanned to determine the optimum ex- wavelengths. <u>Heavy Fuel</u> Water Ter <u>Oil</u> Type (°C Bunker C light Fresh 20 Salt : (2) valid with restrictions Details of the composition of the test sample	measured for total petroleum y using a Perkin Elmer MPF-3 prescence intensity of the water ation curve for the oil. ting varying concentrations of tandard solutions and extracts acitation and emission mp Solubility (mg/l) 4.5 2.3 e were not provided. (5) I prting data for the water solubility carbons were prepared from a

2. Physico-Ch	emical DataIdHeavy fuel oilDateDecember 7, 2012
	(10% oil fractions) in a glass bottle. The bottle was capped to prevent loss of volatile components and the solution was slowly stirred for a period of 20 hours at room temperature (20 ± 2 °C). The stirring speed was adjusted to give a vortex that extended no further than 25% of the distance to the bottom of the container. After mixing, the oil/water mixture was rested for 1 - 6 hours then the water phase was siphoned from below the oil/water surface through a nylon filter prior to analysis. Total petroleum hydrocarbons in the water samples were determined by the American Petroleum Institute method no. 733-58 by infrared analysis of the carbon tetrachloride extractable oil.
Reliability	Heavy Fuel Water Temp Solubility Oil Type (°C) (mg/l) Bunker C residual salt 20 6.3 : (2) valid with restrictions Details of the composition of the test sample and analytical methodology were not reported. (2)
Memo	: Water solubility of catalytically cracked clarified oil (CAS No. 64741 62 4)
Remark	: The following value is provided as supporting data for the water solubility endpoint. The data was cited in the European Chemicals Bureau IUCLID dataset (ECB, 2000). The original source of the data is given as cited in the dataset.
Reliability	 Water solubility: <100 mg/l Ref: Mobil, 1993 (4) not assignable Data was presented in a reference database without specific details on measurement methods. (41) (81)

3.1.1 PHOTODEGRADATION

Method		AOPWIN V1.90 in EPIWIN V3.10 (u.s. EPA				
GLP	2000) : No					
Test substance	: Heavy fuel oils					
Remark	: Chemicals having the potential to photolyze have UV/visible absorption maxima in the range of 290 to 800 nm. Saturated alkanes and single-ring alkylated aromatic hydrocarbon constituents in heavy fuel oils are not recognized as absorbing light energy within this spectrum. Hence they are not expected to undergo direct photodegradation. Direct photolysis of polyaromatic hydrocarbons by reaction with sunlight in the presence of oxygen is known to occur (Fasnacht and Blough, 2002), and may be a significant removal process where such substances are present in, or near the surface of water (CONCAWE 2001).					
	OH radicals in the troposp compound (Atkinson, 199 photodegradation, with sa hydrocarbons taking part photodegradation was est (AOP) model subroutine (calculates a chemical half based on a 12-hour day a oxidation half-lives were o isomeric structures repress The estimates shown indi- enter the troposphere, the	have the capability to react with photosensitized ohere, resulting in degradation of the parent 0). These reactions are termed indirect turated as well as single and multi-ring aromatic to some extent. The potential to undergo indirect timated using the atmospheric oxidation potential AOPWIN V1.90) in EPIWIN© (EPA, 2000), which -life and an overall OH reaction rate constant and a given OH concentration. Atmospheric calculated for the various molecular weight and senting constituent hydrocarbons in heavy fuel oils. cate that if volatile components of heavy fuel oils ase compounds will undergo moderate to rapid and will not persist in the air.				
Result	: Concentration of substance					
	Temperature C:	25 °C				
	Direct Photolysis:					
	Half-life T1/2 Degradation % Quantum Yield	N/A N/A N/A				
	Indirect Photolysis: Sensitizer Type: Concentration of Sensitize Rate Constant: Half-life T1/2, days: Breakdown Products:	Hydroxyl radicals (OH-) er: 1.5 x 10 ⁶ OH/cm ³ Various See table of half-lives below N/A				
	Chemical n-alkanes	No. Carbon Calculated AOP Atoms Half-life,days				
	n-heptane	7 1.6				
	n-undecane	11 0.9				
	n-eicosane	20 0.4				
	n-pentacontane	50 0.2				
	iso-alkanes					
	iso-heptane	7 1.6				
	15 / 370					

3. Environmental Fate and Pathways		Heavy fuel oil December 7, 2012
iso-undecane	11	0.9
iso-eicosane	20	0.4
n-pentacontane	50	0.2
cyclo-alkanes		
1-ring		
methylcyclohexane	7	1.1
pentylcyclohexane	11	0.7
tetradecylcyclohexane	20	0.4
tetratetracontylcyclohexane	50	0.2
2-ring		0.5
2-methyl[4.4.0]bicyclodecane	11	0.5
2-decyl[4.4.0]bicyclodecane 2-tetracontyl[4.4.0]bicyclodecane	20 50	0.3 0.1
	50	0.1
3-ring bicyclodecane,1,8-dimethyl	12	0.6
3-hexyltricyclotetradecane	20	0.3
3-hexatriacontyltricyclotetradecane	50	0.1
olefins		
1-heptene	7	0.3
1-undecene	11	0.3
1-eicosene	20	0.2
1-pentacontene	50	0.1
aromatics		
1-ring	_	
toluene	7	2.0
n-pentylbenzene	11 20	1.1 0.5
n-tetradecylbenzene n-pentacontylbenzene	20 50	0.5
2-ring		
1-methylnaphthalene	11	0.2
1-tetradecylnaphthalene	20	0.2
1-pentacontyInaphthalene	50	0.1
3-ring		
phenanthrene	14	0.3
2-hexylphenanthrene	20	0.3
2-hexatriacontylphenanthrene	50	<0.1
polar/heterocyclics		
quinolines quinoline	9	20.9
4-pentylquinoline	9 14	20.9 0.4
3-butyl-4-propyl-5-butyl quinoline	20	0.4
4-hentetracontyl quinoline	20 50	<0.1
pyridines		
2-ethyl pyridine	7	5.2
2-nonly pyridine	14	0.9
2-pentadecyl pyridine	20	0.5
2-pentatetracontyl pyridine	50	0.2
carboxylic acids		
cyclopentane-3-methyl-1-carboxylic acid	7	1.1
[4.3.0]bicyclononane-5-methyl-1-carboxylic		
	11	0.5
[4.2.4]tricyclotetradecane-11-methyl-1-pent	anoic acid	

3. Environmenta	al Fate and Pathways	Id Heavy fuel oil Date December 7, 2
	[4.2.4]tricyclodecane-7-eicosyl-1-dec	20 0.2 cacarboxylic acid
		50 0.3
	thiophenes/benzothiophenes	
	2-propyl-thiophene	7 0.4
	dibenzothiophene	12 0.4
	dibenzothiophene 4,6-dibutyl	20 0.1
	dibenzothiophene 4,6-didecanyl	50 <0.1
Reliability	: (2) valid with restrictions The predicted endpoint was determin	ned using a validated computer moc (26) (30) (42)
A A A OT A DULITY IN I	NATER	
3.1.2 STABILITY IN	ALEN	
Test substance	: Heavy fuel oils	
	 Heavy fuel oils Hydrolysis of an organic chemical is t water molecule or hydroxide ion reac Chemicals that have a potential to hy carbamates, carboxylic acid esters ar esters, and sulfonic acid esters. The 	cts to form a new carbon-oxygen bo ydrolyze include alkyl halides, amide nd lactones, epoxides, phosphate chemical components that compris
Test substance	 Heavy fuel oils Hydrolysis of an organic chemical is t water molecule or hydroxide ion reac Chemicals that have a potential to hy carbamates, carboxylic acid esters an 	cts to form a new carbon-oxygen bo ydrolyze include alkyl halides, amide ind lactones, epoxides, phosphate chemical components that comprise carbons that are not subject to

(49)

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

Category Chemical :	Heavy fuel oil, various CAS RN
Test Substance :	Heavy fuel, various CAS RN
Test Substance Purity/Composition and Other Test Substance Comments:	
<u>Category Chemical Result</u> <u>Type</u> :	Estimated by calculation
<u>Test Substance Result</u> <u>Type</u> :	Estimated
RESULTS	
<u>Fugacity/Distribution</u> <u>Result Description</u> :	Substances in the heavy fuel oil category have a carbon number distribution primarily between C20 and C50, although some individual refining streams in this category have low end carbon numbers of 7 to 15. The predominant hydrocarbon structures include saturated alkanes (e.g., straight and branched chain), cyclic alkanes, aromatics (e.g., one to multi-ring compounds), and to a lesser extent olefinic compounds and heterocyclic compounds that contain sulfur, oxygen and nitrogen atoms. The constituent hydrocarbons used to estimate environmental distribution are representative of compounds known to occur in heavy fuel oils. They were chosen based on known hydrocarbon compositional analysis and compositional modeling (Potter and Simmons, 1998; Quann and Jaffe, 1992; Saeger and Jaffe, 2002). Therefore, the data represent a potential range of partitioning behaviors for constituent hydrocarbons in all members of the Heavy Fuel Oil category.

Test Results :

	Percent Distribution						
	C-					Susp.	D'at
Compound/Compartment Alkanes	Num	Air	Water	Soil	Sed	Sed.	Biota
n-heptane	7	100	< 0.1	<0.1	<0.1	<0.1	<0.1
n-undecane	11	93	<0.1	7	<0.1	<0.1	<0.1
n- eicosane	20	< 0.1	<0.1	98	2	<0.1	<0.1
n-pentacontane	50	<0.1	<0.1	98	2	<0.1	<0.1
iso-heptane	7	100	<0.1	< 0.1	< 0.1	<0.1	<0.1
iso-undecane	11	95	<0.1	5	<0.1	<0.1	<0.1
iso- eicosane	20	< 0.1	<0.1	98		<0.1	<0.1
iso-pentacontane	20 50	< 0.1	<0.1	98 98	2 2	<0.1	<0.1
-						-	_
Naphthenes	_						
methylcyclohexane	7	100	<0.1	<0.1	<0.1	<0.1	<0.1
pentylcyclohexane	11	99	<0.1	0.9	<0.1	<0.1	<0.1
tetradecylcyclohexane	20	<0.1	<0.1	98	2	<0.1	< 0.1
tetratetracontylcyclohexane	50	<0.1	<0.1	98	2	<0.1	< 0.1
2-methyl[4.4.0]bicylcodecane	11	97	0.1	3	0.1	<0.1	< 0.1
2-decyl[4.4.0]bicyclodecane	20	2	<0.1	96	2	<0.1	< 0.1
2-tetracontryl[4.4.0]bicyclodecane	50	< 0.1	< 0.1	98	2	<0.1	< 0.1
1,8-dimethyl[4.4.2]tricyclodecane	12	94	0.4	5	0.1	<0.1	< 0.1
3-hexyltricyclotetradecane	20	2	<0.1	96	2	<0.1	< 0.1
3-hexatriacontyltricyclotetradecane	50	<0.1	<0.1	98	2 2	<0.1	<0.1
Olefins							
1-heptene	7	100	< 0.1	0.1	<0.1	<0.1	< 0.1
1-undecene	11	96	< 0.1	4	< 0.1	<0.1	< 0.1
1- eicosene	20	< 0.1	<0.1	98	2	<0.1	<0.1
1-pentacontene	50	<0.1	<0.1	98	2	<0.1	<0.1
-	50	1011	1011	50	-		1011
Aromatics toluene	7	99	0.8	0.4	<0.1	<0.1	<0.1
n-pentylbenzene	11	88	0.4	11	0.2	< 0.1	< 0.1
n-tetradecylbenzene	20	< 0.1	< 0.1	98	2	< 0.1	< 0.1
n-pentacontylbenzene	50	< 0.1	< 0.1	98	2	<0.1	< 0.1
1-methylnaphthalene	11	51	6	42	0.9	<0.1	< 0.1
1-tetradecylnaphthalene	20	<0.1	<0.1	98	2	<0.1	<0.1
1-pentacontylnaphthalene	50	<0.1	<0.1	98	2	<0.1	<0.1
phenanthrene	14	1	4	93	2	<0.1	<0.1
2-hexylphenanthrene	20	<0.1	<0.1	98	2	<0.1	< 0.1
2-hexatriacontylphenanthrene	50	<0.1	<0.1	98	2	<0.1	<0.1
Heterocyclics							
quinoline	9	3	89	8	0.2	<0.1	< 0.1
4-pentaquinoline	14	0.5	2	95	2	<0.1	< 0.1
3-butyl-4-propyl-5-butyl quinoline	20	<0.1	<0.1	98	2	<0.1	<0.1
4-hentetracontyl quinoline	50	<0.1	<0.1	98	2	<0.1	<0.1
2-ethyl pyridine	7	4	92	4	<0.1	<0.1	<0.1
2-nonyl pyridine	14	0.2	0.5	97	2	<0.1	< 0.1
2-pentadecyl pyridine	20	< 0.1	< 0.1	98	2	<0.1	< 0.1
2-pentatetracontyl pyridine	50	< 0.1	< 0.1	98	2	< 0.1	< 0.1
Cyclopentane-3-methyl-1-carboxylic							
acid	7	4	88	8	0.2	<0.1	<0.1
[4.3.0]bicyclononane-5-methyl-1-	,	т	00	5	0.2	.0.1	.0.1
carboxylinc acid	11	0.5	30	68	1.5	< 0.1	< 0.1
[4.2.4]tricyclotetradecane-11-	11	0.5	50	00	1.5	~U.1	
	20	Z0 1	<0 1	04	2	-0 1	-0.1
methyl-1-penanoic acid	20	<0.1	<0.1	94	2	<0.1	<0.1
[4.2.4]tricyclodecane-7-eicosyl-1-					_		
decacarboxylic acid	50	< 0.1	<0.1	98	2	<0.1	< 0.1
2-propyl thiophene	7	96	1	2	<0.1	<0.1	<0.1
dibenzothiophene	12	3	4	91	2	<0.1	< 0.1
dibenzothiophene 4,6-dibutyl	20	< 0.1	< 0.1	98	2	<0.1	< 0.1
dibenzothiophene 4,6-didecanyl	50	< 0.1	< 0.1	98	2	< 0.1	< 0.1

<u>Temperature</u> :	20°C		
<u>Level of Multi-media</u> Model :	1		
		Water Solubility mg/L	Reference
	Alkanes		
	n-heptane	3.4*	1
	n-undecane	0.0044*	1
	n- eicosane	9 X 10 ⁻⁶	1
	n-pentacontane	5 X 10 ⁻²¹	1
	iso-heptane	2.54*	1
	iso-undecane	0.30	1
	iso- eicosane	1×10^{-5}	1
	iso-pentacontane	5 X 10 ⁻²¹	1
	Naphthenes		
	methylcyclohexane	14*	1
	pentylcyclohexane	0.4	1
	tetradecylcyclohexane	1×10^{-5}	1
	tetratetracontylcyclohexane	8 X 10 ⁻²¹	1
	2-methyl[4.4.0]bicylcodecane	2.5	1
	2-decyl[4.4.0]bicyclodecane	1×10^{-4}	1
	2-tetracontryl[4.4.0]bicyclodecane	5 X 10 ⁻²⁰	1
	1,8-dimethyl[4.4.2]tricyclodecane	1.2	1
	3-hexyltricyclotetradecane	6 X 10 ⁻⁴	1
	3-hexatriacontyltricyclotetradecane	3 X 10 ⁻¹⁹	1
	Olefins		
	1-heptene	18.2*	1
	1-undecene	0.34	1
	1- eicosene	1×10^{-5}	1
	1-pentacontene	7 X 10 ⁻²¹	1
Model Input (<u>Water</u> <u>Solubility</u> :)	Aromatics		
<u> </u>	toluene	526*	1
	n-pentylbenzene	3.4*	1
	n-tetradecylbenzene	4×10^{-4}	1
	n-pentacontylbenzene	2 X 10 ⁻¹⁹	1
	1-methylnaphthalene	25*	1
	1-tetradecylnaphthalene	0.002	1
	1-pentacontylnaphthalene	1 X 10 ⁻¹⁸	1
	phenanthrene	1.2	1
	2-hexylphenanthrene	8 X 10 ⁻⁴	1
	2-hexatriacontylphenanthrene	5 X 10 ⁻¹⁹	1
	Heterocyclics		
	quinoline	6100*	1
	4-pentaquinoline	3.7	1
	3-butyl-4-propyl-5-butyl quinoline	0.004	1
	4-hentetracontyl quinoline	2×10^{-18}	1
	2-ethyl pyridine	3 X 10 ⁵ *	1
	2-nonyl pyridine	25	1
	2-pentadecyl pyridine	0.3	1
	2-pentatetracontyl pyridine	8 X 10 ⁻²⁰	1
	Cyclopentane-3-methyl-1-carboxylic		
	acid	4900	1
	[4.3.0]bicyclononane-5-methyl-1-		
	carboxylinc acid	170	1
	[4.2.4]tricyclotetradecane-11-		
	methyl-1-penanoic acid	0.045	1
	[4.2.4]tricyclodecane-7-eicosyl-1-		
	decacarboxylic acid	2 X 10 ⁻¹⁷	1
	2-propyl thiophene	130	1
	dibenzothiophene	1.5*	- 1

Id Heavy fuel oilDate December 7, 2012

	dibenzothiophene 4,6-dibutyl dibenzothiophene 4,6-didecanyl	1 X 10 ⁻⁴ 6 X 10 ⁻²⁰	1 1	
	(1) US EPA, 2000 (WSKOWWIN, EPI-Suite V3.10) Note: Model input data signified by "*" indicates the value was cited by EPI-Suite [™] as being from the experimental database (EPA 2000).			
		Vapor Pressure	Reference	
		Ра		
	Alkanes n-heptane n-undecane	6130* 55*	1	
	n- eicosane	6 x 10 ⁻⁴ *	1	
	n-pentacontane	2×10^{-7}	1	
	iso-heptane	8800*	1	
	iso-undecane	80*	1	
	iso- eicosane	0.09	1	
	iso-pentacontane	3×10^{-13}	1	
		5 / 10		
	Naphthenes			
	methylcyclohexane	6130*	1	
	pentylcyclohexane	50*	1	
	tetradecylcyclohexane	0.02	1	
		2×10^{-13}	1	
	tetratetracontylcyclohexane		_	
	2-methyl[4.4.0]bicylcodecane	90	1	
	2-decyl[4.4.0]bicyclodecane	0.03	1	
	2-tetracontryl[4.4.0]bicyclodecane	2×10^{-13}	1	
	1,8-dimethyl[4.4.2]tricyclodecane	33	1	
	3-hexyltricyclotetradecane	0.02	1	
	3-hexatriacontyltricyclotetradecane	2 x 10 ⁻¹³	1	
	Olefins			
	1-heptene	7900*	1	
lodel Input (<u>Vapor</u>	1-undecene	97*	1	
P <u>ressure</u> :)	1- eicosene	0.001	1	
	1-pentacontene	3 x 10 ⁻¹³	1	
	Aromatics			
	toluene	3790*	1	
	n-pentylbenzene	59*	1	
	n-tetradecylbenzene	0.003*	1	
	n-pentacontylbenzene	2 x 10 ⁻¹⁴	1	
	1-methylnaphthalene	7.3*	1	
	1-tetradecylnaphthalene	7×10^{-4}	1	
	1-pentacontylnaphthalene	3 x 10 ⁻¹⁵	1	
	phenanthrene	0.016*	1	
	2-hexylphenanthrene	1×10^{-4}	1	
	2-hexatriacontylphenanthrene	5 x 10 ⁻¹⁶	1	
	Heterocyclics			
			_	
	quinoline	8.0*	1	
	4-pentaquinoline	0.02	1	
	3-butyl-4-propyl-5-butyl quinoline	1×10^{-4}	1	
	4-hentetracontyl quinoline	9 x 10 ⁻¹⁶	1	
	2-ethyl pyridine	650*	1	
	2-nonyl pyridine	0.21	1	
	2-pentadecyl pyridine	8 x 10 ⁻⁴	1	
	2-pentatetracontyl pyridine	2×10^{-16}	1	
	cyclopentane-3-methyl-1-carboxylic	-		
	acid	7.6	1	
	[4.3.0]bicyclononane-5-methyl-1-	,	i –	

Id Heavy fuel oilDate December 7, 2012

	carboxylinc acid	0.08	1
	[4.2.4]tricyclotetradecane-11-		
	methyl-1-penanoic acid	4 x 10 ⁻⁵	1
	[4.2.4]tricyclodecane-7-eicosyl-1-		
	decacarboxylic acid	3 x 10 ⁻¹⁶	1
	2-propyl thiophene	370	1
	dibenzothiophene	0.03*	1
	dibenzothiophene 4,6-dibutyl	1 x 10 ⁻⁵	1
	dibenzothiophene 4,6-didecanyl	5 x 10 ⁻¹⁷	1
	(1) US EPA, 2000 (MPBPWIN, EPI Suit		
	Note: Model input data signified by "*		e was cited by
	EPI-Suite [™] as being from the experim	ental database (EP	Á 2000).
		Lee Kow	Deference
		Log Kow	Reference
	Alkanes		
	n-heptane	4.7*	1
	n-undecane	5.7	1
	n- eicosane	10.2	1
	n-pentacontane	25	1
	iso-heptane	3.7	1
	iso-undecane	5.7	1
	iso-eicosane		
		10.1	1
	iso-pentacontane	25	
	Nankthones		
	Naphthenes		_
	methylcyclohexane	3.6*	1
	pentylcyclohexane	5.6	1
	tetradecylcyclohexane	10	1
	tetratetracontylcyclohexane	25	1
	2-methyl[4.4.0]bicylcodecane	4.6	1
	2-decyl[4.4.0]bicyclodecane	9.0	1
		24	—
	2-tetracontryl[4.4.0]bicyclodecane		1
	1,8-dimethyl[4.4.2]tricyclodecane	4.9	1
	3-hexyltricyclotetradecane	8.1	1
	3-hexatriacontyltricyclotetradecane	23	1
	Olefine		
	Olefins	1.04	-
	1-heptene	4.0*	1
Model Input (<u>log K_{ow}:</u>)	1-undecene	5.6	1
	1- eicosene	10	1
	1-pentacontene	25	1
	Aromatics		
	toluene	2.7*	1
	n-pentylbenzene	4.9*	1
	n-tetradecylbenzene	8.9	1
	n-pentacontylbenzene		
		24	1
	1-methylnaphthalene	3.9*	1
	1-tetradecylnaphthalene	8.1	1
	1-pentacontylnaphthalene	23	1
	phenanthrene	4.5*	1
	2-hexylphenanthrene	7.4	1
	2-hexatriacontylphenanthrene	22	1
			_
	Heterocyclics		
	quinoline	2.0*	1
	4-pentaquinoline	4.7	1
	3-butyl-4-propyl-5-butyl quinoline	7.7	1
			_
	4-hentetracontyl quinoline	22	1
	2-ethyl pyridine	1.7*	1
	2-nonyl pyridine	5.3	1
	2-pentadecyl pyridine	8.2	1
	2-pentatetracontyl pyridine	25	1

	acid	2.0*	1
	[4.3.0]bicyclononane-5-methyl-1-	-	
	carboxylinc acid	3.4	1
	[4.2.4]tricyclotetradecane-11-		
	methyl-1-penanoic acid	6.8	1
	[4.2.4]tricyclodecane-7-eicosyl-1-		_
	decacarboxylic acid	22	1
	2-propyl thiophene	3.3	1
	dibenzothiophene	4.4	1
	dibenzothiophene 4,6-dibutyl	8.2	1
	dibenzothiophene 4,6-didecanyl	23	1
		25	T
	(1) US EPA, 2000 (KOWWIN, EPI Suit Note: Model input data signified by "* EPI-Suite [™] as being from the experim	" indicates the valu	e was cited by A 2000).
		Melting Pt °C	Reference
	Alkanes	- C	Reference
	n-heptane	-90.6*	1
	n-neptane n-undecane	-90.6*	1 1
			_
	n- eicosane	36.8* 87*	1 1
	n-pentacontane		1 1
	iso-heptane	-118.2*	1 1
	iso-undecane	-48.9*	-
	iso- eicosane	39.5	1
	iso-pentacontane	298	1
	Naphthenes	100.0*	
	methylcyclohexane	-126.6*	1
	pentylcyclohexane	-58*	1
	tetradecylcyclohexane	24*	1
	tetratetracontylcyclohexane	300	1
	2-methyl[4.4.0]bicylcodecane	-21	1
	2-decyl[4.4.0]bicyclodecane	68.8	1
	2-tetracontryl[4.4.0]bicyclodecane	300	1
	1,8-dimethyl[4.4.2]tricyclodecane	1.47	1
	3-hexyltricyclotetradecane	77	1
	3-hexatriacontyltricyclotetradecane	300	1
Model Input (<u>Melting</u>			
Point:)	Olefins		
	1-heptene	-119.7*	1
-			-
			1
	1-undecene	-49*	1 1
	1-undecene 1- eicosene	-49* 28.5	1
	1-undecene	-49*	
	1-undecene 1- eicosene 1-pentacontene	-49* 28.5	1
	1-undecene 1- eicosene 1-pentacontene Aromatics	-49* 28.5 297	1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene	-49* 28.5 297 -94.9*	1 1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene n-pentylbenzene	-49* 28.5 297 -94.9* -75*	1 1 1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene n-pentylbenzene n-tetradecylbenzene	-49* 28.5 297 -94.9* -75* 16*	1 1 1 1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene n-pentylbenzene n-tetradecylbenzene n-pentacontylbenzene	-49* 28.5 297 -94.9* -75* 16* 305	1 1 1 1 1 1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene n-pentylbenzene n-tetradecylbenzene n-pentacontylbenzene 1-methylnaphthalene	-49* 28.5 297 -94.9* -75* 16* 305 34.4*	1 1 1 1 1 1 1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene n-pentylbenzene n-tetradecylbenzene n-pentacontylbenzene 1-methylnaphthalene 1-tetradecylnaphthalene	-49* 28.5 297 -94.9* -75* 16* 305 34.4* 109	1 1 1 1 1 1 1 1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene n-pentylbenzene n-tetradecylbenzene 1-methylnaphthalene 1-tetradecylnaphthalene 1-pentacontylnaphthalene	-49* 28.5 297 -94.9* -75* 16* 305 34.4* 109 316	1 1 1 1 1 1 1 1 1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene n-pentylbenzene n-tetradecylbenzene 1-methylnaphthalene 1-tetradecylnaphthalene 1-pentacontylnaphthalene phenanthrene	-49* 28.5 297 -94.9* -75* 16* 305 34.4* 109 316 99.2*	1 1 1 1 1 1 1 1 1 1 1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene n-pentylbenzene n-tetradecylbenzene 1-methylnaphthalene 1-tetradecylnaphthalene 1-pentacontylnaphthalene 2-hexylphenanthrene	-49* 28.5 297 -94.9* -75* 16* 305 34.4* 109 316 99.2* 132	1 1 1 1 1 1 1 1 1 1 1 1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene n-pentylbenzene n-tetradecylbenzene 1-methylnaphthalene 1-tetradecylnaphthalene 1-pentacontylnaphthalene 2-hexylphenanthrene 2-hexatriacontylphenanthrene	-49* 28.5 297 -94.9* -75* 16* 305 34.4* 109 316 99.2*	1 1 1 1 1 1 1 1 1 1 1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene n-pentylbenzene n-tetradecylbenzene 1-methylnaphthalene 1-tetradecylnaphthalene 1-pentacontylnaphthalene 2-hexylphenanthrene 2-hexatriacontylphenanthrene	-49* 28.5 297 -94.9* -75* 16* 305 34.4* 109 316 99.2* 132 328	1 1 1 1 1 1 1 1 1 1 1 1 1
	1-undecene 1- eicosene 1-pentacontene Aromatics toluene n-pentylbenzene n-tetradecylbenzene 1-methylnaphthalene 1-tetradecylnaphthalene 1-pentacontylnaphthalene 2-hexylphenanthrene 2-hexatriacontylphenanthrene	-49* 28.5 297 -94.9* -75* 16* 305 34.4* 109 316 99.2* 132	1 1 1 1 1 1 1 1 1 1 1 1 1

		320	1
	4-hentetracontyl quinoline		
	2-ethyl pyridine	-63*	1
	2-nonyl pyridine	64	
	2-pentadecyl pyridine	120	1
	2 periodeceyi pyridiric		
	2-pentatetracontyl pyridine cyclopentane-3-methyl-1-carboxylic	330	1
	acid	32*	1
	[4.3.0]bicyclononane-5-methyl-1-	01	
	carboxylinc acid [4.2.4]tricyclotetradecane-11-	81	1
	methyl-1-penanoic acid	150	1
	[4.2.4]tricyclodecane-7-eicosyl-1- decacarboxylic acid	330	1
	2 propul thiophone	-3.1	1
	2-propyl thiophene		1 I
	dibenzothiophene	97*	1
	dibenzothiophene 4,6-dibutyl	160	1
	uberizothiophene 4,0-ubutyi		1
	dibenzothiophene 4,6-didecanyl	340	1
	(1) US EPA, 2000 (MPBPW IN, EPI Suite	e V3.10)	
	Note: Model input data signified by "*"		e was cited by
	FDI Cuite TM as being from the superior		
	EPI-Suite [™] as being from the experime	ental database (EF	A 2000).
Henry's Law Constant :	Calculated by EQC for each constituent		
Model Concentration Air			
<u>Model Concentration</u> <u>Water</u> :			
<u>Model Concentration</u> <u>Soil</u> :			
<u>Model Concentration</u> Sediment_:			
Results Remarks :			
STUDY/METHOD			
<u>Key Study Sponsor</u> <u>Indicator</u> :	Кеу		
Year Study Performed :			
<u>Method/Guideline</u> Followed :	EQC-Equilibrium Criterion Model, Fugacity-	Based Level 1	
<u>Deviations_from</u> <u>Method/Guideline_</u> :			
<u>Method/Guideline</u> <u>Description</u> :	The EQC model calculates the distribution non-reacting) chemical, in a closed enviror reactions, no advective processes, and no wet deposition or sedimentation). The mec unimportant because the chemical is assur distributed.	iment at equilibriu intermedia transp lium receiving the	m, with no degrading ort processes (e.g., no emission is
<u>Method/Guideline_and</u> <u>Test Condition Remarks</u> :			
<u>GLP</u> :	No		
Study Reference :	Trent University. 2003. EQC fugacity-based Version 2.02. Canadian Environmental mod URL: <u>http://www.trentu.ca/cemc/</u>		
	-		

,	•
	Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC.
	Potter, T.L. and K.E. Simmons. 1998. Total petroleum hydrocarbon criteria working group series, Volume 2. Composition of petroleum mixtures. Amherst Scientific Publishers, Amherst, Massachusetts. 114 pp.
	Quann, R.J. and S.B. Jaffe. 1992. Structure-oriented lumping: Describing the chemistry of comples hydrocarbon mixtures. Ind. Eng. Chem. Res. 31(11):2483-2497.
	Saeger, R.B. and S.B. Jaffe. 2002. Petroleum stream compositional modeling for the petroleum HPV testing group program. ExxonMobil Process Research Laboratories, Paulsboro, NJ.
RELIABILITY/DATA	QUALITY
<u>Reliability</u> :	(2) Reliable with restrictions
<u>Reliability Remarks</u> :	Environmental distribution was estimated using an accepted validated model.

3.5 **BIODEGRADATION**

Remark : See Section 3.8

3.8 ADDITIONAL REMARKS

Memo

Biodegradability of heavy fuel oils

Few studies are available on the biodegradation of heavy fuel oils under Remark laboratory conditions using standardized guideline testing methods. Most of the understanding on the biodegradability of petroleum hydrocarbons comes from biodegradation studies on crude oil, various streams from the fractional distillation of crude oil, and investigations of spill events, all of which have been reviewed by Bartha and Atlas (1977) and Connell and Miller (1980). Based on such reviews, a general consensus has developed on the biodegradability of petroleum hydrocarbons. First, virtually all kinds of oil are susceptible to microbial oxidation. The rate of oxidation is influenced by microbial characteristics, and environmental factors such as available nutrients, oxygen, temperature and degree of dispersion. Second, the molecular weight influences the rates at which microbial communities can utilize those hydrocarbons, with low molecular weight components being relatively easy to metabolize, while higher molecular weight components take longer to be consumed. Third, the ease of aerobic microbial biodegradation is affected by the structure of the hydrocarbon constituents in the petroleum substance. Such structure-related trend shows hydrocarbons in order of increasing difficulty to be degraded: (1) nalkanes, (2) isoalkanes, (3) alkenes, (4) one-ring alkylbenzenes (e.g., BTEX), (5) polyaromatic hydrocarbons, and (6) high molecular weight cycloalkanes (Bartha and Atlas, 1977; Potter and Simmons, 1998). Prince (2002), Prince et al. (2003) and Garrett, et al. (2003) reviewed the findings of many laboratory and field biodegradation studies under temperate or summer arctic conditions. They summarize that the majority of compounds in crude and refined oil products are biodegradable, but their disappearance from the environment following a spill follows a well-defined

order. This order holds for spills in temperate climates and arctic summer conditions alike (Garrett et al., 2003). When biodegradation begins, the smaller linear alkanes and one and two-ring aromatic molecules are initially degraded followed by branched alkanes and polynuclear aromatic compounds. Three-ring aromatics such as fluorene, phenanthrene, and dibenzothiophene are degraded at similar rates and in preference to fourring compounds. Another general rule for biodegradation of PAHs is that parent compounds tend to degrade faster than alkylated analogs. Less is known about the biodegradability of resins and asphaltenes, but the current knowledge suggests these are not very biodegradable and will persist in the environment for a long time.

For heavy fuel oils, none would be expected to be readily biodegradable based on the molecular weights of constituent hydrocarbons. However, studies have shown that these materials follow the general understanding for biodegradation of the individual components. For example, Walker et al. (1975) found that while only 11% of a Bunker C fuel oil was biodegraded by a mixed culture of estuarine bacteria, 25% of the saturated fraction and 10% of the aromatic fraction were degraded. Inoculum originated from an estuarine creek known to be exposed to low levels of oil contamination. Culture flasks containing nutrient medium supplemented with nitrogen and phosphorus were inoculated with the creek water, spiked with Bunker C (0.1% v/v), then incubated on a shaker (60 strokes/min) for 28 days at 15 ° C. After 28 days, the cultures were extracted with chloroform, fractionated, and analyzed by mass spectrometry.

The 1970 spill of 108,000 barrels of Bunker C fuel oil in Chedabucto Bay, Nova Scotia afforded an opportunity to study the natural fate of such substances. Over the course of several years, high energy areas of shoreline intertidal and sublittoral locations showed a greater loss of nalkane and aromatic components than in isolated protected areas (Rashid, 1974; Keizer et al., 1978). Although the loss was not specifically identified as being due to biodegradation, Rashid (1974) suggested that the hydrocarbon constituents remaining in the environmental samples were indicative of what would be expected from a combination of biodegradation and physical weathering processes.

A 1973 spill of heavy fuel oil near Vancouver Island, British Columbia also provided opportunities to study the fate of heavy fuel oil. Cretney et al. (1978) studies the chemical characteristics of the spilled fuel over a fouryear period. They showed initial loss of the lower molecular weight components by dissolution and evaporation, with almost complete removal within the first year of the spill of n-alkanes by biodegradation. High molecular weight saturates were more resistant, followed by the non-alkane components in the C28+ range. After four years, an unresolved complex consisting of high molecular weight cycloalkanes remained.

Mulkins-Phillips and Stewart (1974) studied the ability of mixed cultures of bacteria to degrade Bunker C fuel oil. Beach and water samples were taken from different locations from Chedabucto Bay, Nova Scotia, one year following the spill. These samples were enriched by growing the indigenous bacteria in minimal medium containing 0.125% Bunker C fuel oil. Flasks were incubated for 14 days in the laboratory and the resulting enriched culture was used as inoculum for the different experiments. Biodegradation experiments were carried out in culture flasks holding 50 ml of minimal medium containing 0.125% by volume of Bunker C. Periodically, the entire contents of a flask was extracted with benzene. The extracts were placed in a pre-weighed bottle and evaporated at 80 °C, and the weight of the bottle and contents was recorded. The weight of the test flasks were corrected for the weight of control flasks and biodegradation was calculated as a percent of the weight loss. Such experiments were carried out at various temperatures (5, 10 and 15 °C). Results showed

Reliability	 comparable degradation rates at 10 and 15 °C but considerably slower rates at 5 °C. Bunker C was degraded as high as 88% in these experiments. These rates are likely overstated because the gravimetric method did not account for high molecular weight resins and asphaltenes. Isolated pure cultures of Nocardia sp. from the environmental samples were enriched and used to measure the effect of additions of nitrogen and phosphorus on the generation time and size of the microbial populations. Additions of phosphorus were found to shorten the generation time and increase the population size, but no effect on generation time. The authors concluded that the rate of natural biodegradation would be limited by temperature and phosphorus but likely not by open sea nitrogen concentrations. In summary, when a heavy fuel oil is spilled, microbial communities respond quickly to the oiling, with numbers of hydrocarbon-degrading bacteria and mineralization potentials increasing after exposure (Leahy and Colwell, 1990). The rate of mineralization is limited by the high viscosity of these substances and available nutrients (Richmond et al., 2001), while over time, the weathering of the material into discrete tar balls can physically isolate and prevent dispersion and microbial attack. Given time, component hydrocarbons are depleted from spilled heavy fuels through selective biodegradation (Lee et al., 2003; Bartha and Atlas, 1977). (2) valid with restrictions The technical discussion was prepared from a review of recent and past research and field investigations covering the current accepted scientific understanding on the biodegradability of petroleum hydrocarbons. (27) (31) (38) (48) (54) (55) (56) (82) (86) (87) (88) (90) (91) (127)
Memo	: Photodegradation of polyaromatic hydrocarbons
Remark	: Saturated hydrocarbon components of crude oil and refined products do not undergo photodegradation because they do not absorb light energy in the range of 290 to 800 nm. For those components, indirect photodegradation by reaction with sensitized oxygen radicals is the major photochemical degradation pathway (Atkinson, 1990). In contrast, polyaromatic hydrocarbons (PAHs) may be degraded by either direct or indirect photochemical reactions (Fasnacht and Blough, 2002). Most PAHs can absorb surface solar radiation, and if sufficient energy is absorbed, degradation of the parent material may occur(Garrett et al, 1998). Dutta and Harayama (2000) found that photooxidation affected mainly aromatic hydrocarbons and concluded that an oil's susceptibility to biodegradation is increased by the photooxidation of the PAH components. Recent studies by Prince et al. (2003) and Jezequel et al (2003) on the photodegradation of crude and heavy fuel oils have shown that photodegradation follows a clear pattern, with alkylated PAH derivatives being more affected than the parent compound. This has been demonstrated for homologous series of chrysenes, dibenzothiophenes, and phenanthrenes as well as whole product materials such as crude and heavy fuel oils (Bunker C).
Reliability	 The vast majority of the hydrocarbon components of the substances in the heavy fuel oils category, and particularly those with carbon numbers of 20 or more, will have little or no tendency to partition to air. However any hydrocarbons that do partition to air will be exposed to the combination of direct and indirect photodegradation. (2) valid with restrictions The technical discussion was prepared from a review of recent and past research covering the current accepted scientific understanding of photodegradation of polyaromatic hydrocarbons. (26) (40) (45) (47) (52) (88)

4.1 ACUTE/PROLONGED TOXICITY TO FISH

Type Species Exposure period Unit Limit test Analytical monitoring Method Year GLP Test substance	 Semistatic Oncorhynchus mykiss (Fish, fresh water) 96 hour(s) mg/l No Yes OECD Guide-line 203 "Fish, Acute Toxicity Test" 1994 Yes Fuel oil, residual CAS 68476-33-5
Method Result	 Statistical method: Visual inspection No fish exposed to WAF of light fuel oil died during the test. 96-hr LL₀ = 1000 mg/l based on nominal loading rates. After 96 h, 1 of the 7 control fish died. All fish in the 100 mg/l treatment exhibited no toxic symptoms. All fish in the 1000 mg/l WAF showed abnormal swimming. Total peak area of the dissolved components of each batch of freshly prepared WAFs was similar. Peak area values ranged from 19-21 x 10⁸ at loading rate of 1000 mg/l and 9-11 x 10⁸ at 100 mg/l. Peak profile was different at different loading rates but peak profile for new and old media was similar. Mean reduction in total peak area was 27% during the test (range 5 - 47%). Peak profiles for the WAFs differed significantly from profile of light fuel oil in dichloromethane. Only two loading rates were tested which is less than a minimum of five concentrations stated in the guidelines. Water hardness was higher than targeted range of 50 - 250 mg/l as CaCO₃. Hardness range of 286 - 292 mg/l as CaCO3 was normal for this laboratory and did not adversely affect the health of the fish.
Test condition	Individual treatment concentrations were prepared as water accomodated fractions (WAF). Nominal loading rates in the definitive test were 0, 100, and 1000 mg/l. Control and dilution water was laboratory mains tap water obtained from bore holes, and passed through particle and activated carbon filters (alkalinity 252 mg/l as CaCO ₃ , hardness 277 mg/l as CaCO ₃ , conductivity 520 S/cm, pH 7.4). Test substance was mixed in dilution water for 70 hrs in sealed vessels with minimal headspace. Mixing time was determined in an equilibration study in which the test substance concentration in the aqueous phase of the WAFs was monitored by GC-MSD. Mixtures were allowed to settle ~1 hr prior to drawing off the aqueous phase for testing. Test vessels were sealed 11-liter glass aspirators which were completely filled with WAF and contained 7 fish per vessel. Test fish had a mean length of 4.7 cm (range 4.0 to 5.2 cm) and a mean weight of 1.0 g (range 0.67 to 1.3 g). Fingerlings were obtained from Zeals Trout Farm, Zeals, Wiltshire, U.K. One replicate per treatment and control were used. Test solutions were renewed daily with surviving fish transferred to the freshly prepared WAFs. Dissolved oxygen and pH were measured in the fresh and old media at 24-h intervals. Temperature of water in a vessel adjacent to test vessels was determined at hourly intervals throughout the test. Total hardness and residual chlorine were determined in each batch of fresh control media. Test temperature was 15 - 16 °C. Photoperiod was 16 hrs light and 8 hrs dark. Dissolved oxygen ranged from 8.8 to 9.1 mg/l in the fresh media and 8.1 to 9.2 mg/l in the old solutions. pH was 7.2 - 7.7. A gas chromatographic method with mass selective detection was used to quantify the total peak area of dissolved components of light fuel oil in the test media. Samples were collected from each freshly prepared WAF and control and each batch of old media except at 96 h. 500 ml samples were extracted with dichloromethane and then analyzed.
Reliability	: (1) valid without restriction

Id Heavy fuel oilDate December 7, 2012

4. Ecotoxicity

(96)

Type Species Exposure period Unit Limit test Analytical monitoring Method Year GLP Test substance	Semistatic Oncorhynchus mykiss (Fish, fresh water) 96 hour(s) mg/I No Yes OECD Guide-line 203 "Fish, Acute Toxicity Test" 1994 Yes Fuel oil, residual CAS 68476-33-5	
Method Result	Statistical method: Visual inspection 96-h LL ₅₀ lie within the range of 100-1000 mg/l loading NOEL _R (loading rate in which 1 fish died per test vesse After 96 h, there was 100% survival in the control and survived in the 100 mg/l but two fish showed abnormal the seven fish died in the 1000 mg/l WAF and the other immobilized. Amount of heavy fuel oil in the test solutions varied bet batches of media prepared to give RIC values of 1.9 x 10 mg/l loading rate, 6.8×10^5 to 27 x 10^5 at 100 mg/l, 10^5 at 1000 mg/l. Mean reduction in peak area over the 20% (range 0 - 57%). Water hardness was higher than targeted range of 50 - CaCO ₃ . Hardness range of 262 - 285 mg/l as CaCO ₃ v laboratory and did not adversely affect the health of the Use of loading rates, which differed by a factor of 10, w because of logistical difficulties of daily renewal of WA ~72 h of stirring.	I) was 100 mg/l. 10 mg/l WAF. All fish swimming. Four of r 3 were ween the four 10^5 to 2.7 x 10^5 at and 31 x 10^5 to 53 x e 24-h period was - 250 mg/l as was normal for this e fish. was necessary
Test condition	Individual treatment concentrations were prepared as were and the definitive functions (WAF). Nominal loading rates in the definitive function of the definition of the definition of the definitive function of the definition of the defini	test were 0, 10, oratory mains tap article and activated 287 mg/l as CaCO ₃ , nixed in dilution dspace. Mixing time est substance monitored by GC- wing off the 1-liter glass contained 7 fish per 4.3 to 4.7 cm) and a gs were obtained ne replicate per enewed daily with b. Dissolved oxygen 4-h intervals. els was determined and residual chlorine hrs light and 8 hrs the fresh media and tection was used to ion chromatographic in the test media. (AF and control and
Reliability	dichloromethane and then analyzed. (1) valid without restriction 28 / 370	

Id Heavy fuel oilDate December 7, 2012

4. Ecotoxicity

(98)

Type Species Exposure period Unit Limit test Analytical monitoring Method Year GLP Test substance	 Static Lepomis macrochirus (Fish, fresh water) 96 hour(s) mg/l No No OECD Guide-line 203 "Fish, Acute Toxicity Test" 1987 No No No State the state t
Method Remark Result	 Binomial Probability Analysis (not used) Only four concentrations were tested which is less than a minimum of five concentrations stated in the guidelines. A 96-hr LC₅₀ value was not determined due to insufficient mortality at the
	maximum treatment of 10,000 mg/l. Therefore no statistical analysis was performed. Mortality at 96hr: no mortality in the control treatment; 5% for 500, 1000, and 5000 mg/l treatments and 25% for the 10,000 mg/l treatment.
Test condition	 Individual treatment concentrations were prepared as oil-water dispersions (OWD). Nominal loading rates in the definitive test were 0, 500, 1000, 5000, and 10,000 mg/l. Control and dilution water were site well water. Report characteristic alkalinity of 150 mg/l as CaCO₃, hardness 262 mg/l as CaCO₃, and pH 7.7 for well water. Test fish had a mean length of 27 mm and a mean weight of 0.41 g. Fish were obtained from ARO Inc, Hampton, N.H, and acclimated at least 14 days prior to testing. Twenty fish per treatment and control were used. The semi-solid test substance was heated in a 60 °C oven prior to dispensing and then added volumetrically to glass petri dishes, and which were then reheated to provide uniform distribution of the oil on the petri dish. The density of the process oil of 1.00 g/ml was used to calculate the mass of test material added. The glass petri dishes were then transferred to 10 gallon glass aquaria (test systems) containing 30 liters of well water within one hour after the transfer of the fish test organisms. The control chamber consisted of the same dilution water, petri dish, and test organisms. Test systems were held in a recirculating water bath maintained at a mean temperature of 21.5 °C (20.3-22). Generation of the oil-water dispersion was based on a modification of the procedure used by the Ministry of Agriculture, Fisheries and Food (MAFF), England. The test chambers were fitted with a removable PVC cylinder that housed a stainless steel shaft and a 3 bladed propeller. The propeller was rotated in order to produce flow in the cylinder by drawing small quantities of water and soluble oil components into the top of the cylinder and expelling them through apertures near the bottom of the cylinder. The motor speed settings were adjusted so that the vortex extended 0.25 to 0.50 inches below the water surface. Test solutions were not renewed during the study. Photoperiod was 16 hrs light and 8 hrs dark. Dissolved oxygen was >60% saturation (7.5 to
Reliability	: (1) valid without restriction (64)

4. Ecotoxicity

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

Type Species Exposure period Unit Analytical monitoring Method Year GLP Test substance Result	 Static Daphnia magna (Crustacea) 48 hour(s) mg/l Yes OECD Guide-line 202 1994 Yes Fuel oil, residual CAS 68476-33-5 There was no immobilization of D. magna in the control and 1000 mg/l WAF during the test. 48-hr EL₀ = 1000 mg/l based on nominal loading rates. Total peak area of the dissolved components in the 0 hr new and 48 hr old 1000 mg/l WAF solutions was 27 x 10⁸ and 5 x 10⁸ representing a
	reduction in total peak area of 81%. Peak profile for the WAF differed significantly from profile of light fuel oil in dichloromethane. Only one loading rate was tested. Test temperature was higher than targeted.
Test condition	 Individual treatment concentrations were prepared as water accommodated fractions (WAF). Nominal loading rates in the definitive test were 0 and 1000 mg/l. Control and dilution water was reconstituted hard water prepared by adding salts to reverse osmosis filtered water following EPA guidelines (hardness 196 mg/l as CaCO₃). Test substance was mixed in dilution water for 69 hrs (mixing time of 24 hr would have been sufficient to attain equilibrium) in sealed vessels with minimal headspace. Mixing time was determined in an equilibration study in which the test substance concentration in the aqueous phase of the WAFs was monitored by GC-MSD. Mixtures were allowed to settle ~1hr prior to drawing off the aqueous phase for testing. Test vessels were sealed 150-ml Erlenmeyer flasks which were completely filled with WAF and contained 10 daphnids per vessel. Test daphnids were <24 hrs old and collected from cultures supplied by the testing laboratory that have been aged between 14 and 28 days. Two replicates per treatment and control were used. Dissolved oxygen and pH were measured at the beginning and end of the test. Temperature of water in a vessel adjacent to test vessels was determined at hourly intervals throughout the test. Total hardness of the control medium was determined at the start of the test. A gas chromatographic method with mass selective detection was used to quantify the total peak area of dissolved components of light fuel oil in the test media. Samples, collected at the beginning and end of the test, were extracted with dichloromethane and analyzed. (1) valid without restriction
	(95)
Type Species	: Static : Daphnia magna (Crustacea)
Exposure period	: 48 hour(s)
Unit	: mg/l
Analytical monitoring	: Yes
Method Year	: OECD Guide-line 202 : 1994
GLP	: 1994 : Yes
Test substance	: Fuel oil, residual CAS 68476-33-5
Result	: 48-h EL ₅₀ lie within the range of 220-460 mg/l loading rates. The highest NOEL _R (loading rate which caused 10% immobilization) was 100 mg/l. $30/370$

4. Ecotoxicity	Id Heavy fuel oil Date December 7, 2012
Test condition	 There was no immobilization of D. magna in the control and 46 and 100 mg/l WAF after 48-h. There were 5, 13, and 20 daphnids immobilized in the 220, 460, and 1000 mg/l WAFs, respectively. RIC peak areas for the 0-h samples were 3.6, 10, 9.1, 17, and 29 x 10⁵ for the 46, 100, 220, 460, and 1000 mg/l WAFs. The corresponding RIC peak areas for the 48-h samples were 3.9, 7.8, 8.7, 14, and 17 x 10⁵. Mean reduction in peak area over the 48-h period was 17% (range 0-41%). Individual treatment concentrations were prepared as water accommodated fractions (WAF). Nominal loading rates in the definitive test were 0, 46, 100, 220, 460, and 1000 mg/l. Control and dilution water was reconstituted hard water prepared by adding salts to reverse osmosis filtered water following EPA guidelines (hardness 180 mg/l as CaCO₃). Test substance was mixed in dilution water for 44 hrs in sealed vessels with minimal headspace. Mixing time was determined in an equilibration study in which the test substance concentration in the aqueous phase of the WAFs was monitored by GC-MSD. Mixtures were allowed to settle ~1hr prior to drawing off the aqueous phase for testing. Test vessels were sealed 150-ml Erlenmeyer flasks which were completely filled with WAF
Reliability	 and contained 10 daphnids per vessel. Test daphnids were <24 hrs old and collected from cultures supplied by the testing laboratory that have been aged between 14 and 28 days. Two replicates per treatment and control were used. Dissolved oxygen and pH were measured at the beginning and end of the test. Temperature of water in a vessel adjacent to test vessels was determined at hourly intervals throughout the test. Total hardness of the control medium was determined at the start of the test. Test temperature was 19 - 21 °C. Photoperiod was 16 hrs light and 8 hrs dark. Dissolved oxygen ranged from 8.7 to 8.9 mg/l. pH was 8.1 - 8.2. A gas chromatographic method with mass selective detection was used to quantify the areas of two representative reconstructed ion chromatographic (RIC) peaks of dissolved components of heavy fuel oil in the test, were extracted with dichloromethane and analyzed. (1) valid without restriction
Type Species Exposure period Unit Analytical monitoring Method	 Static Daphnia magna (Crustacea) 48 hour(s) mg/l No OECD Guide-line 202
Year GLP	: 1987 : No
Test substance	No. 6 Fuel oil, vacuum residual oil
Method Result	 Binomial Probability Analysis (not used) A 48-hr EC₅₀ value was not determined due to insufficient mortality at the maximum treatment of 10,000 mg/l. Therefore, no statistical analysis was performed. Number of immobilized daphnids after 48 hrs were 1, 0, 0, 1, 0, and 0 in the 0, 100, 500, 1000, 5000, and 10,000 mg/l treatments.
Test condition	 Nominal loading rates in the definitive test were 0, 100, 500, 1000, 5000, and 10,000 mg/l. Control and dilution water were site well water. Report characteristic alkalinity of 150 mg/l as CaCO₃, hardness 262 mg/l as CaCO₃, and pH 7.7 for well water. The semi-solid test substance was heated in a 60 °C oven prior to dispensing and then added volumetrically to 250 ml glass beakers, which were then reheated to provide uniform distribution of the oil. The density of the process oil of 1.00 g/ml was used to calculate the mass of test material added. Two hundred ml of well water (control and dilution) was added after test material distribution, with subsequent addition of test organisms. Test solutions were not renewed during the study. Test systems were held in a water bath maintained at a mean temperature of 22.5 °C (±2 °C). 31 / 370

Reliability 3 TOXICITY TO AQU Species Exposure period Unit Analytical monitoring Method Year GLP Test substance	: ATIC	maintained by the primary culture orig Columbia, MO. Tr with 10 organisms Photoperiod was 1 9.1 mg/l. pH was 7 (1) valid without re	6 hrs light and 8 hr .71 to 8.29. striction	that have been ag ical Bio-Chemistry er treatment and	ed <28 days. The / Laboratories Inc control were used
3 TOXICITY TO AQU Species Exposure period Unit Analytical monitoring Method Year GLP	ATIC	PLANTS E.G. ALC Selenastrum capri 72 hour(s) mg/l Yes OECD Guide-line 2	GAE		(6
Species Exposure period Unit Analytical monitoring Method Year GLP	ATIC : : : : :	Selenastrum capri 72 hour(s) mg/l Yes OECD Guide-line 2			
Exposure period Unit Analytical monitoring Method Year GLP		72 hour(s) mg/l Yes OECD Guide-line 2	cornutum (Algae)		
Unit Analytical monitoring Method Year GLP		mg/l Yes OECD Guide-line 2			
Analytical monitoring Method Year GLP		Yes OECD Guide-line 2			
Method Year GLP		OECD Guide-line 2			
Year GLP	:		201 "Algae Growth	Inhibition Test"	
GLP	:				
Test substance	:	Yes			
		Fuel oil, residual (CAS 68476-33-5		
Method	:	Williams test used	to determine NOEL	S	
Result	:	Based on nominal			
		respectively. 72-h	nr EL ₅₀ (growth rate r NOEL (biomass) :		
		<1 mg/l. Nominal	72 h	72 h Mean Cell	Conc.
		Conc. (mg/l)	% Inhibition	(x10 ⁶ cells/ml)	
		Control	n/a	0.12	
		1.0 3.0	22 19	0.093 0.097	
		10	46	0.065	
		30	58	0.05	
		100	44	0.067	
		300	77	0.027	
		1000	72	0.033	
		n/a - Not ap Difference betweer	ווכמסופ ו EbL ₅₀ and ErL ₅₀ v	was due to an initia	al lag followed by
		recovery at loading			
		the 72-hr EbL ₅₀ an	d not the 72-hr ErL	50.	-
			the dissolved comp		
			y/I to 16-20 x 10 ⁸ at rates but peak pro		
			ction in total peak a		
			ofiles for the WAFs		
		light fuel oil in dich			
			num pH change of		
		of <1. This was a r avoided.	esult of the growth	or the cultures an	a coula not de
Test condition	:	Individual treatmen	t concentrations w	ere prepared as w	vater
	-	accommodated fra were 0, 1.0, 3.0, 10 water was algal nu except that boric a	ctions (WAF). Nom 0, 30, 100, 300, and trient medium prep	inal loading rates d 1000 mg/l. Contr ared according to 105 g/l and sodiu	in the definitive te rol and dilution EPA guidelines m bicarbonate at s
		mixture was allowe	d to settle for appr testing. Test vess illed with test solution on control flasks. T	oximately 1 hr prid els were sealed 3 on. There were fo hree of the four tr	or to drawing off th 00 ml Erlenmeyer our flasks for each eatment and six o

4. Ecotoxicity				Id Heavy fuel oil	
				Date December 7, 2012	
Reliability	cultur Cultur deter marb Flask cons were avera loadin coun meas incut Test initiat A gas quan test r were	res that were of re Collection (mine particle les were place s were incuba- tant illuminatio calculated on age specific gr ng rate compa- ts were made sured at the sta- bator was mon temperature we tion and 8.5 - 8 s chromatogra tify the total pe- nedia. 500 ml	originally derived fr (ATCC 22662). Uni- counts without alga- ed in each flask to ated in a cooled ort in. Loading rates c the basis of areas rowth rates (ErL_{50}). ared to controls was on samples from e art and end of the itored at hourly inte- vas 24 - 25 °C. The 8.7 at test terminati- phic method with r eak area of dissolve samples, collected in dichloromethane	nass selective detection was used to ed components of light fuel oil in the at the beginning and end of the test,	
Species Exposure period Unit Analytical monitoring Method Year GLP Test substance	: 72 ho : mg/l : Yes : OEC : 1994 : Yes	bur(s) D Guide-line 2	cornutum (Algae) 201 "Algae, Growth CAS 68476-33-5	Inhibition Test"	
Method Result	: 72-h mg/l rate) Nom Conti 1.0 3.0 10 30 100 300 1000 800 1000 800 1000 800 1000 800 1000 20 x (rang 20 x (rang 0 f < 1	EL ₅₀ for bioma loading rates. = 3 mg/l. inal :. (mg/l) rol rol n/a - Not ap peak areas for pr the 1, 3, 10, peak areas for 10 ⁵ . Mean red ge 17-33%). e was a maxim . This was a red	72-hr NOEL (bion 72 h % Inhibition n/a 8 15 36 38 82 93 92 pplicable the 0-h samples v , 30, 100, 300, and the 72-h samples luction in peak area	S both lie within the range of 30-100 hass) = 1 mg/l; 72-hr NOEL (growth) 72 h Mean Cell Conc. (x10 ⁶ cells/ml) 0.13 0.12 0.11 0.083 0.08 0.023 0.009 0.01 vere 0.07, 0.24, 1.2, 3.0, 14, 18, 27 x 1000 mg/l WAFs. The corresponding were 0.05, 0.2, 0.89, 2.2, 10, 12, and a over the 72-h period was 27% 1.8 which was greater than the target of the cultures and could not be	
Test condition	acco were water exce mg/l. mixtu	dual treatment mmodated fra 0, 1.0, 3.0, 10 was algal nut ot that boric ad Test substan re was allowe ous phase for	ctions (WAF). Nom 0, 30, 100, 300, and trient medium prep cid was present at ce was mixed with d to settle for appr	ere prepared as water inal loading rates in the definitive test 1000 mg/l. Control and dilution ared according to EPA guidelines 105 g/l and sodium bicarbonate at 50 dilution water for 47 hrs, and the eximately 1 hr prior to drawing off the els were sealed 300 ml Erlenmeyer	

4. Ecotoxicity	Id Heavy fuel oil Date December 7, 2012					
	 flasks completely filled with test solution. There were four flasks for each treatment and seven control flasks. Three of the four treatment and six of the seven control flasks were inoculated with algal cells to yield an initial concentration of 5000 cells/ml. Algal cells were obtained from laboratory cultures that were originally derived from a strain from American Type Culture Collection (ATCC 22662). Uninoculated flasks were used to determine particle counts without algal cells using a Coulter Counter. Two marbles were placed in each flask to ensure good mixing during incubation. Flasks were incubated in a cooled orbital (100 cycles/min) incubator under constant illumination (~5000 lux). Loading rates causing a 50% reduction in growth were calculated on the basis of areas under the growth curves (EbL50) and average specific growth rates (ErL₅₀). Percent reduction in growth at each loading rate compared to controls was used to estimate EL₅₀ values. Cell counts were made on samples from each flask at 24-hr intervals. pH was measured at the start and end of the test. Air temperature in the test incubator was monitored at hourly intervals throughout the test. Test temperature was 24 - 25 °C. The pH ranged from 7.7 - 7.9 at test initiation and 8.6 - 9.7 at test termination. A gas chromatographic method with mass selective detection was used to quantify the areas of two representative reconstructed ion chromatographic (RIC) peaks of dissolved components of heavy fuel oil in the test, were 					
	extracted with dichloromethane and analyzed.					
Reliability	: (1) valid without restriction (94)					
Creation						
Species Exposure period	: Selenastrum capricornutum (Algae) : 96 hour(s)					
Unit	: mg/l					
Analytical monitoring	: No					
Method	: OECD Guide-line 201 "Algae, Growth Inhibition Test"					
Year GLP	1987 No					
Test substance	No. 6 Fuel oil, vacuum residual oil					
Method	: Binomial Probability Analysis (not used)					
Remark	: Since test material was coated on the flasks during administration, there					
	may have been some physical obstruction of light transmittance which may have affected cell growth. The report does not clarify whether only the flask bottoms or bottom and sides were coated with the test material.					
Result	: The reported 96-hr EC_{50} was greater than 5000 ppm. The reported NOEC					
	was less than 100 ppm. No additional data analysis for algal effects are					
	reported. Cell growth and percent inhibition for each treatment relative to the control are reported at 96 hr:					
	Nominal 96 hr 96 hr Cell Conc.					
	Conc. (mg/l) % Inhibition (cells/ml)					
	Control n/a 1.2E ⁶					
	100 27.5 $8.7E^5$					
	500 22.5 $9.3E^5$ 1000 24.5 $9.1E^5$					
	5000 39.2 $7.3E^5$					
	10,000 47.5 6.3E ⁵					
Test condition	: Nominal loading rates in the definitive test were 0, 100, 500, 1000, 5000, and 10,000 mg/l.					
	The semi-solid test substance was heated in a 60 °C oven prior to dispensing and then added volumetrically to 250 ml glass Erlenmeyer flasks, which were then reheated to provide uniform distribution of the oil. The density of the process oil of 1.00 g/ml was used to calculate the mass of test material added. Control and dilution water was algal nutrient medium prepared with distilled, autoclaved site well water.					
	34 / 370					

4. Ecotoxicity					Heavy fuel oil December 7, 2012	
Reliability	Algal cells were obtained from laboratory cultures that were originally derived from a strain from American Type Culture Collection (ATCC 22662). Cells were incubated in algal media contained in 250 ml flasks which were maintained in an orbital (100 cycles/min) incubator at 24 ± 2 °C. Cell density was determined prior to study initiation by microscopic ce count. Nutrient medium was inoculated with algal cells (in log phase growth) to yield an initial concentration of 10,000 cells/ml. One hundred milliliters of inoculated nutrient medium was then added to each 250 ml Erlenmeyer flask previously dosed with process oil. Control systems containing only algal inoculated medium were also prepared. There were three flasks for each of the dose treatments and control test systems. After media addition, the flasks were fitted with cotton plugs and maintained in an orbital (100 cycles/min) incubator at 24 ± 2 °C. After 96 hrs, the cell density was determined microscopically for each flask. The 96-hour EC ₅₀ value was calculated on the basis of percent cell number increase or reduction relative to growth in controls. Lighting was continuous at ~4304 lumens. The pH of all test treatment solutions ranged from 7.95 - 8.75.					
4.9 ADDITIONAL RE	MARK	5				
Memo		Aquatic toxicity	of Bunker C Fuel Oils			
Merrio	•					
Remark	:	Aquatic toxicity values reported as water soluble fraction (mg/L). Data cited in an Environment Canada database (Jokuty et al., 2002;).				
		Species	Endp		ng/l	
		Neanthes arena Capitaella capit		00		
		Mysidopsis alm	<i>yra</i> 48H L	_C ₅₀ 1		
		Palaemonetes p				
		Penaeus aztecus96H LC502Menidia beryllina96H LC502				
		Fundulus similis $96H LC_{50}$ 2				
Deliability	_	Cyprinodon var		_C ₅₀ 3		
Reliability	:	(4) not assignab Endpoint values		database lacked d	etails of exposure	
		Endpoint values given in government database lacked details of exposure information and explanation of concentration measurements.				
					(53	
	:	Aquatic toxicity	of Heavy Fuel Oils			
Memo						
Memo	-				11.50	
Memo Remark	:		EL50	EL50	LL50	
	:	Heavy Fuel Oil	Alga	Invertebrate	Fish	
	:	Heavy Fuel Oil Sample No.			Fish (Oncorhynchus mykiss)	
	:	Sample No. 3	Alga (Pseudokirchneriella subcapitata) 3.3	Invertebrate (<i>Daphnia magna</i>) 2	Fish (Oncorhynchus mykiss) >96	
	:	Sample No.	Alga (Pseudokirchneriella subcapitata)	Invertebrate (Daphnia magna)	Fish (Oncorhynchus mykiss)	
	:	Sample No. 3 4 5 7	Alga (Pseudokirchneriella subcapitata) 3.3 3 8 8 approx. 1	Invertebrate (Daphnia magna) 2 3.2 10 >99	Fish (Oncorhynchus mykiss) >96 >94 79 >95	
	:	Sample No. 3 4 5 7 9	Alga (Pseudokirchneriella subcapitata) 3.3 3 8 8 approx. 1 >107	Invertebrate (Daphnia magna) 2 3.2 10 >99 >99	Fish (Oncorhynchus mykiss) >96 >94 79 >95 >98	
	:	Sample No. 3 4 5 7 9 Five different he	Alga (Pseudokirchneriella subcapitata) 3.3 3 8 approx. 1 >107 eavy fuel oil samples v	Invertebrate (Daphnia magna) 2 3.2 10 >99 >99 >99	Fish (Oncorhynchus mykiss) >96 >94 79 >95 >98 an alga,	
	:	Sample No. 3 4 5 7 9 Five different he invertebrate, an	Alga (Pseudokirchneriella subcapitata) 3.3 3 8 approx. 1 >107 eavy fuel oil samples v d fish using water acc	Invertebrate (Daphnia magna) 2 3.2 10 >99 >99 were tested against commodated fractio	Fish (Oncorhynchus mykiss) >96 >94 79 >95 >98 an alga, ns (WAF) of each	
	:	Sample No. 3 4 5 7 9 Five different he invertebrate, an sample. Sample	Alga (Pseudokirchneriella subcapitata) 3.3 3 8 approx. 1 >107 eavy fuel oil samples v	Invertebrate (Daphnia magna) 2 3.2 10 >99 >99 were tested against commodated fractio sted as full definitive	Fish (Oncorhynchus mykiss) >96 >94 79 >95 >98 an alga, ns (WAF) of each e tests, while	

4. Ecotoxicity				Id Heavy fuel oil			
			D	ate December 7, 2012			
		e or invertebrate,	e that fish are less se while algae appear r	ensitive to HFO WAFs nore sensitive than			
	read-across r	ange of acute tox	I conclusion for the H icity values for these ates used to prepare	substances is 1 – 100			
Reliability	: (4) not assign Endpoint valu appropriate C WAF prepara Febbo, et al.	es cited in compa DECD guidelines, tion or environme [no date]. A multi-	but no details were g ntal conditions durin	g the tests. assessment of heavy			
Memo	: Aquatic toxici	ty of Kerosene/Je	t fuel and Gas Oil H	PV Category members.			
Remark	 Individual petroleum streams in the heavy fuel oil category generally have hydrocarbon constituents consisting of 20 to 50 carbon atoms, although some streams in this category have low-end carbon atoms from 7 to 15. Heavy fuel oils also may be blended with gas oils or similar low viscosity oils to meet market specifications. Therefore, existing ecotoxicity data for heavy fuels may not represent toxicity values for all process streams defined in the HPV category. However, constituents in heavy fuels are generic hydrocarbon structures (e.g., saturates, aromatics, etc.) represented in other petroleum HPV category groups. For this reason, data from other petroleum categories were used to bridge existing ecotoxicity data for heavy fuels such that all members in the heavy fuel oil category are covered. The following data for kerosene and gas oils are included because they provide potential ecotoxicity endpoints for heavy fuel oil streams with low initial boiling points and low-end hydrocarbon constituents of C7 to C15. Data from the kerosene and gas oils categories were selected because these substances contain similar hydrocarbon structures with molecular weights covering the low-end carbon numbers of heavy fuel oil category 						
	were used to of 1) existing gas oils HPV	read across to the heavy fuel oil dat categories, and 3	a, 2) current data cite 3) data from proposed	petroleum streams gory. The combination ed in the kerosene and d testing of specific gas point values that span			
	expected ecotoxicity of all substances in the heavy fuel oil HPV category. Complete robust summaries of the cited studies were included in the robust summary files submitted to EPA under their respective HPV category (API, 2003a,b).						
	Test <u>Substance</u> Fish	Exposure Type Endpo	Results int (mg/l)	Ref.			
	Kerosene	WAF 96-h Ll	-50 18	API, 2003a			
			" 20 >10, <100	API, 2003a API, 2003a			
			" 25	API, 2003a			
	Gas Oil	n n	57	API, 2003b			
			" 3.2 " 6.6	API, 2003b API, 2003b			
		" "	" 57	API, 2003b			
			" 21 " 65	API, 2003b			
			" 65	API, 2003b			
		00 / 070					
		36 / 370					

4. Ecotoxicity						Heavy fuel oil
					Date	December 7, 2012
	Invertebrate					
	Kerosene	"	48-h EL	-50	21	API, 2003a
		"	"	"	1.4	API, 2003a
		"	"	"	>40, <89	API, 2003a
		"	"	"	1.9	API, 2003a
	Gas Oil	"	"	"	7.8	API, 2003b
		"	"	"	5.3	API, 2003b
		"	"	"	14	API, 2003b
		"	"	"	42	API, 2003b
		"	"	"	2.0	API, 2003b
		"	"	"	210	API, 2003b
		"	"	"	68	API, 2003b
		"	"	"	13	API, 2003b
		"	"	"	>100, <300	API, 2003b
		"	"	"	13	API, 2003b
		"	"	"	6.4	API, 2003b
		"	"	"	36	API, 2003b
		II	"	"	9.6	API, 2003b
	Algae					
	Kerosene	"	96-h EL		6.2	API, 2003a
		"	96-h EL	.b ₅₀	11	API, 2003a
		"	72-h EL	r ₅₀	>10, <30	API, 2003a
		"	72-h EL	.b ₅₀	>10, <30	API, 2003a
		"	96-h EL	r ₅₀ .	5.0	API, 2003a
		"	96-h EL		5.9	API, 2003a
	Gas Oil	"	72-h EL		2.9	API, 2003b
		"	72-h EL		1.8	API, 2003b
		"	72-h EL	r ₅₀	2.2	API, 2003b
		"	72-h EL		2.2	API, 2003b
		"	72-h EL	r ₅₀	78	API, 2003b
		"	72-h EL	.b ₅₀	25	API, 2003b
		"	72-h EL		22	API, 2003b
		"	72-h EL		10	API, 2003b
		"	72-h EL		>22, <46	API, 2003b
		"	72-h EL		>10, <22	API, 2003b
	WAF = water			action		
Reliability :	(1) valid witho	ut restric	ction			
						(22) (23)
1						

37 / 370

4. Ecotoxicity						ld	Heavy fuel oil
-					Da	te	December 7, 20 ⁻
Memo	: Acute aquatic toxici oils and streams.	ty of h	eteroato	om-conta	iining consti	tuer	nts in heavy fuel
Remark	: Heteroatom compor heavy fuel oil stream crude oil after carbo benzothiophene, dil been measured in b lower than sulfur co heteroatoms can ex resin molecules. Du asphaltenes and res aquatic toxicity.	ns and on and oenzot ooth cr mpou ist tog ist tog ie to th	d product hydrog hiophen rude and nds and lether in heir extre	ets. Sulfu en, and he, and b residua oxygen high mo emely hi	Ir is the mos congeners o benzonaphth al fuels . Nitr compounds blecular weig gh molecula	t ab of thi othic oge less pht a r we	oundant atom in ophene, ophenes have in content is muc ser yet. All three asphaltene and eights,
	It is not known whet become bioavailable data on heavy fuel LL/EL50 values for EL50 may fall betwee toxicity to aquatic bi following data were compounds. Examp the lower end of the those would be exp bioavailability. Howe constituents in heav may not contribute to The table below ind compounds were fla soluble to measure range would be exp the table (example: 0.0016 mg/L). Resid hydrocarbons, and present in significar data are provided to by the Q-SAR mode	e upor bils cit oils cit oils ar fish ar een 3 ota of assen les of molece ected ever, i y fuel to toxic icates agged an eff ected solubi dual f hetero ogethe	n enterin e on tree not ver and 10 n heteroa hbled fo S- and cular we to show t should oils con city in an that the by ECC ect. Hyce to have lity of ei uels are atom co centratio r with as	ing the acception of th	quatic enviro summaries to aquatic of are >100 mg o shed some nstituents in ed individual patom comp ectrum of hea atest water s prestood that of thousands ous preparate ed toxicity va potentially r ns within the rater solubilit is 9x10 ⁻⁶ mg ally made of ts would not ueous prepa	nme india g/L l g/L l g/L l heav heta soluti as in ion. heta soluti as in ion. klues hot k y th C20 c be aratio	ent, but the test cate that in hisms (typical loading; algal ht on the potentia vy fuel oils, the eroatom ds were chosen fuel oils because bility, and hence ndividual compounds, the s of two C12 being sufficiently bical C20-C50 an those cited in benzo(a)pyrene 0 – C50 expected to be ons. Measured
	Compound	C- Num	Water Sol. (mg/L)	Taxon Group	Empirical Data LC/EC50 (mg/L)	Ref	ECOSAR Estimate
	benzo(b)thiophene	8	130	Fish	13.6 (n)	А	11.6
				Invert.	2.9 (n)	A	13.4
					63.7 (n) 59 (n)	B C	
				Algae	53 (11)	0	8.9
	5-methyl	9	74	Fish			3.9
	benzo(b)thiophene			-			
				Invert.	14 (n)	С	4.7
				Algae			3.2
	dibenzothiophene	12	1.5	Fish	0.7 (n)	A	1.8*
				Invert.	>1 (n) 0.42 (n)	C A	1.4
					0.47 (n)	В	

8

3560

indole

Algae

Fish

Invert.

Algae

1.7*

78

84

53

4. Ecotoxicity

3-methyl indole	9	468	Fish	8.8 (m)	D	27
			Invert.			30
			Algae			19
carbazole	12	1.8	Fish	0.93 (m) >1.1 (m) <1.5 (n)	E E E	10.6*
			Invert.	3.35 (m)	Е	7.2*
			Algae			5.8*
quinoline	9	6110	Fish	77.8 (m) 0.44 (m) 29.9 (m)	D G H	71
			Invert.	34.5 (m) 42 (n)	G A	77
			Algae	74 (n) 90 (n) >100 (n)	l J J	48

(m) = measured concentrations; (n) = nominal concentrations

Empirical Data References: A = Maas (1990);B = Eastmond et al. (1984); C = Seymour et al. (1997); D = Geiger et al. (1990); E = Brooke (1991); F = Van Vlaardingen et al. (1996); G = Millemann et al. (1984); H = Ramos et al. (1999); I = Ramos et al. (1999); J = Kuhn and Pattard (1990). All empirical data and references may be found in U.S. EPA ECOTOX Database (URL:

http://cfpub.epa.gov/ecotox/quick_query.htm).

Notes:

1) Toxicity values are based on a 96-h exposure for fish and algae, and a 48-h exposure for invertebrates.

 For values indicated by "*", ECOSAR states that the chemical may not be soluble enough to measure the predicted effect.

The above data show that for studies using nominal concentrations, the toxicity values ranged from 0.42 to >100 mg/L. For studies using measured exposure concentrations, the toxicity values range from 0.44 to 77.8 mg/L. These ranges are not substantially different from other classes of hydrocarbon compounds in heavy fuel oils. Because HFOs are composed of many individual constituents, these specific compounds would not be expected to make-up a significant proportion of the sample or partition to the aqueous phase of a WAF preparation to levels that would elicit acute toxicity.

5.1.1 ACUTE ORAL TOXICITY

Type Value Species Strain Sex Number of animals Vehicle Doses Year GLP Test substance	 LD₅₀ > 5000 mg/kg bw Rat Sprague-Dawley Male/female 5 Undiluted Single dose of 5 g/kg bw 1990 Yes CAS RN 64741-45-3 sample F-132.
Method	 Undiluted test material was administered orally by gavage to groups of 5 male and 5 female, fasted young adult, Sprague-Dawley rats. Following administration of test material, each animal was observed hourly for the first four hours and twice daily thereafter for 14 days. Body weights were recorded the day before dosing, immediately before test material administration and again seven and 14 days after dosing. At study termination surviving animals were euthanized and subjected to a gross necropsy examination. Any abnormalities were recorded. There were no mortalities during the study. Clinical signs consisted of an oral discharge occurring in one animal within an hour of dosing and stained coat of eight animals on day 1. A swollen penis was also observed in one animal on day 2. There were no other clinical observations and growth was normal throughout the study. At necropsy, lesions consisting of dark red areas 1-2 mm in diameter in some lung lobes of 3 males and 2 females. No other adverse effects observed.
Reliability	: (1) valid without restriction (117)
Type Value Species Strain Sex Number of animals Vehicle Doses Year GLP Test substance	 LD₅₀ > 5000 mg/kg bw Rat Sprague-Dawley Male/female 5 Undiluted Single dose of 5 g/kg 1988 No data CAS RN 64741-81-7
Method Remark	 A single oral dose of undiluted test material was administered to groups of 5 male and 5 female Sprague Dawley rats that had been fasted overnight prior to dosing. The animals were observed for signs of toxicity 30 minutes after dosing and again at 1 and 4 hours and daily thereafter for 14 days. Body weights were recorded prior to dosing and again on days 0, 7 and 14 after dosing. All animals were necropsied on day 14 of the study. LD₅₀ values determined according to the same protocol have been reported for two other samples of vacuum distillate with the following results.

Visbreaker HGO	>5000 mg/kg	Mobil 62496-99
VB Mittelol	>5000 mg/kg	Mobil 64635-38

Toxicity	Id Heavy fuel oil Date December 7, 2012
Result Test substance	 There were no deaths and all animals gained weight throughout the study. Clinical signs of toxicity included decreased activity of all animals at 30 minutes and in 8/10 animals 1 hour after dosing. On day 1, observations i up to half the animals included: chromorhinorrhea, decreased fecal output and urogenital staining, and decreased urine output. The incidence of these observations was smaller on day 2. There were no clinical observations after day 8. There were no findings at gross necropsy. The LD₅₀ was, therefore, greater than 5 g/kg. Visbreaker HGO >5000 mg/kg Mobil 62496-99 Vis gas oil VIBRA >5000 mg/kg Mobil 62500-03 VB Mittelol >5000 mg/kg Mobil 64635-38 F-97-01 >5000 mg/kg ARCO ATX-88-0086 Data are available on four samples of vacuum distillate.
Test substance	. Data are available on four samples of vacuum distillate.
	The samples are: Visbreaker HGO Vis gas oil VIBRA VB Mittelol
Reliability	 (2) valid with restrictions The report was a summary report consolidating the results of several acute studies. Complete experimental details and results were not included. However, the results are consistent and considered to be valid.
	(70) (71) (75
Type Value Species Strain Sex	: LD ₅₀ : = 4320 - 5270 mg/kg bw : Rat : Sprague-Dawley : Male/female
Number of animals Vehicle Doses Year	 10 None – undiluted 3.2, 4.0, 4.0, 6.25 & 7.81 g/kg 1982
GLP	: Yes
Test substance	: CAS RN 64741-62-4 Catalytically cracked clarified oil (API 81-15)
Method	 Undiluted test material was administered orally by gavage to groups of 5 male and 5 female, fasted young adult, Sprague-Dawley rats. Following administration of test material, each animal was observed for pharmacotoxic signs and mortality at hourly intervals for the first six hours and twice daily thereafter for 14 days. Body weights were recorded the day before dosing, before test material administration and again seven and 14 days after dosing. At study termination surviving animals were euthanized and subjected to a gross necropsy examination. Any abnormalities were recorded. Pharmacotoxic signs observed included: hypoactivity, ataxia, decreased limb tone, prostration, piloerection, opacity in the left or right eye, red staining around mouth and nose, urogenital and anal areas, brown stain around nose, soft stool, diarrhea, urine stained abdomen, brown stained abdominal and anal region, hair loss from abdominal and anal region, bloating and death.
	Weight loss occurred in all dose groups between dosing and day 7 and growth resumed thereafter. The two high dose female groups were exceptions since most animals died before day 7. At necropsy no abnormalities were observed in any animal surviving 14 days. In animals that died during the study the intestinal mucosa was severely reddened and blood was
	41 / 370

5. Toxicity	Id Heavy fuel oil	
-	Date December 7, 201	12
	seen on the ventral surface of the animals in the lower dose groups. In the highest dose group, the stomach contained a dark brown, tenacious material and in the mid dose groups intestines also contained a red or brown material. Mortalities were as follows	Ie
	Dose Male Female	
	<mark>(g/kg)</mark> 3.2 1/5 1/5	
	4.0 1/5 3/5	
	5.0 2/5 2/5	
	6.25 3/5 5/5 7.81 5/5	
	7.81 5/5 5/5	
	The LD_{50} was estimated to be:	
	Males: 5.27 g/kg 95% confidence limits 4.03-6.95	
Reliability	Females: 4.32 g/kg 95% confidence limits 2.65-5.47 : (1) valid without restriction	
Reliability		(7)
_		
Type Value	: LD₅₀ : > 5000 mg/kg bw	
Species	: Rat	
Strain	: Sprague-Dawley	
Sex	: Male/female	
Number of animals	: 5	
Vehicle	: Undiluted	
Doses Year	: Single dose of 5 g/kg : 1988	
GLP	: Yes	
Test substance	: CAS RN 64741-81-7 Coker heavy gas oil, sample F-97-01	
Method	: Undiluted test material was administered orally by gavage to groups of 5 male and 5 female, fasted young adult, Sprague-Dawley rats. Following administration of test material, each animal was observed hour for the first four hours and twice daily thereafter for 14 days. Body weights were recorded the day before dosing, before test material administration and again seven and 14 days after dosing. At study termination surviving animals were euthanized and subjected to gross necropsy examination. Any abnormalities were recorded.	
Result	 No animals died during the study. Clinical signs included: oral discharge (2/10), nasal discharge (6/10), ocul discharge (1/10), abnormal stools (4/10) and/or lethargy (1/10). All animals were normal by day 4. All animals gained weight by the end of the study. At necropsy, kidneys appeared pale in 5/5 males and 2/5 females and mottling was also observed in 2 males and 3 females. In one of the affected females the corpus uteri was slightly enlarged and in the same animal the right apical and caudate lobes of the liver were mottled 	ar
	throughout. The LD ₅₀ was greater than 5 g/kg.	
Reliability	: (1) valid without restriction	
	(10)8)
Туре	: LD ₅₀	
Value	: > 25 ml/kg bw	
Species Strain	: Rat Sprague Dawley	
Strain Sex	: Sprague-Dawley : Male/female	

Toxicity	Id Heavy fuel oil Date December 7, 20
Number of animals	: 5
Vehicle	: Undiluted
Doses	: Single dose of 25 ml/kg
Year	: 1980
GLP	: Yes
Test substance	: CAS RN 68553-00-4, sample API 78-6
Method	: Undiluted test material was given orally by gavage at a dose of 25 ml/kg groups of 5 male and 5 female fasted Sprague Dawley rats. Animals wer observed daily for signs of toxic or pharmacological signs. Body weights were recorded prior to dosing and again 7 and 14 days after dosing. All animals were sacrificed and subjected to gross autopsy 15 days after dosing.
Remark	: Acute oral toxicity studies were conducted on three additional fuel oil blends (described in section 1.1.1.) with the following results. Stream LD ₅₀ Reference No. 6 Heavy Fuel Oil [CAS 68553-00-4]
Result	API 78-7 >25 ml/kg API 27-32774 API 78-8 >25 ml/kg API 27-32816 API 79-2 5.13 ml/kg API 27-32813 : No animals died during the study. After dosing all animals seemed slight
	lethargic but recovery was complete the day after dosing. All animals we normal except for grease on the fur, especially around the anal area. Thi persisted until sacrifice on day 15. The LD ₅₀ was greater than 25 ml/kg.
Reliability	: (1) valid without restriction
	(3) (4) (5)
.1.3 ACUTE DERMAL	TOXICITY

Туре	:	LD ₅₀
Value	:	> 2000 mg/kg bw
Species	:	Rabbit
Strain	:	New Zealand white
Sex	:	Male/female
Number of animals	:	5
Vehicle	:	Undiluted
Doses	:	Single dose level of 2 g/kg
Year	:	1992
GLP	:	Yes
Test substance	:	CAS RN 64741-45-3 sample F-132
Method	:	Undiluted test material was applied as a single dose of 2 g/kg to the shorn skin of 5 male and 5 female New Zealand White rabbits. The application site was immediately covered with an occlusive dressing which was left in place for 24 hours. Observations were made hourly for the first 4 hours after dosing and then twice daily for the next 13 days. Body weights were recorded immediately prior to dosing and again 7 and 14 days after dosing. All animals terminated at the end of the study underwent a post mortem examination.
Result Reliability	:	No animals died during the study and growth was normal throughout. Four of the ten animals exhibited abnormal stools on day 1 and all animals appeared normal on day 2 throughout the remainder of the study. At necropsy nine of the animals were found to be normal and one male rabbit had dark red foci (6-8mm diam) on the left diaphragmatic lobe. The LD_{50} was greater than 2 g/kg. (1) valid without restriction
i tondonity	•	(1) valid without restriction (121)

Туре	: LD ₅₀
Value	: > 2000 mg/kg bw
Species Strain	: Rabbit : New Zealand white
Sex	: Male/female
Number of animals	
Vehicle	: Undiluted
Doses	: Single dose level of 2 g/kg
Year	: 1988
GLP	: No data
Test substance	: CAS RN 64741-81-7, Visbreaker Gas Oils [3 samples]
	CAS RN 64741-57-7 Heavy Vacuum Gas Oil
Method Remark	 Undiluted test material was applied as a single dose of 2 g/kg to the shorn skin of 3 male and 3 female New Zealand White rabbits. The test site was covered with an occlusive dressing which remained in place for 24 hours. After 24 hours the dressing was removed and any residual test material was wiped from the skin. Animals were observed for signs of toxicity 2 and 4 hours after dosing and daily thereafter (except weekends). Body weights were recorded immediately prior to dosing and again on days 7 and 14 of the study. All animals were necropsied after day 14 of the study. The LD50s for 3 other samples of heavy vacuum distillates tested according to the same protocol in the same laboratory are shown below.
	Sample LD ₅₀ Report Visbreaker HGO >2000 mg/kg Mobil 62496-99 Vis gas oil VIBRA >2000 mg/kg Mobil 62500-03 VB Mittelol >2000 mg/kg Mobil 64635-38 Hvy Vac Gas OII >2000 mg/kg Mobil 62443-45
Result	: There were no deaths and all animals gained weight during the study. Soft stool was noted in 5 animals and decreased food consumption was seen in 3 animals on day 1 post dosing. Decreased food consumption and decreased fecal output was also noted in one animal on day 2. No gross pathology was noted at necropsy.
Reliability	 (2) valid with restrictions The report was a summary report consolidating the results of several acute studies. Complete experimental details and results were not included. However, the results are consistent and considered to be valid. (69) (70) (71) (75)
Turno	
Type Value	: LD ₅₀ : > 2000 mg/kg bw
Species	: Rabbit
Strain	: New Zealand white
Sex	: Male/female
Number of animals	: 2
Vehicle	: None - undiluted
Doses Year	: 2 g/kg : 1982
GLP	: Yes
Test substance	: CAS RN 4741-62-4 (API 81-15)
Method	: Undiluted test material was applied to the dorsal skin of each of 4 male and 4 female rabbits at a dose of 2 g/kg. The skin of the patched area of two rabbits of each sex had been abraded whilst the other two had intact skin. The applied dose was covered with an occlusive dressing (gauze and an impermeable covering). 24 hours after dosing, the patches were removed, the skin wiped and collars fitted to the rabbits to prevent oral intake of any residual test
	44 / 370

5. Toxicity	ld Heavy fuel oil
	Date December 7, 2012
Result	 material. The collars were removed 24 hours later. The rabbits were observed hourly for the first six hours after dosing for pharmacotoxic signs and mortality, and twice daily for a period of 14 days. Irritation was recorded once daily throughout the observation period. Body weights were recorded just before dosing and again at 7 and 14 days. At study termination the animals were killed with carbon dioxide and a gross necropsy was performed. Any abnormalities were recorded. All animals survived the 14 day observation period and there were no signs of systemic toxicity. There was a slight loss in body weight during the first seven days after dosing, but growth resumed thereafter and at 14 days body weights were greater than they were at the beginning of the study. There were no treatment-related findings at gross necropsy.
Reliability	: (1) valid without restriction (7)
	(\prime)
Туре	: LD ₅₀
Value	: > 2000 mg/kg bw
Species Strain	: Rabbit : New Zealand white
Strain	: Male/female
Number of animals	: 5
Vehicle	: Undiluted
Doses	: Single dose level of 2 g/kg
Year GLP	: 1989 : Yes
Test substance	: CAS RN 64741-81-7 sample F-97-01, Coker heavy gas oil
Method	: Undiluted test material was applied as a single dose of 2 g/kg to the shorn skin of 5 male and 5 female New Zealand White rabbits. The application site was immediately covered with an occlusive dressing which was left in place for 24 hours. Observations were made hourly for the first 4 hours after dosing and then twice daily for the next 13 days. Body weights were recorded immediately prior to dosing and again 7 and 14 days after dosing. All animals terminated at the end of the study underwent a post mortem examination.
Remark	In a study carried out in the same laboratory to the same protocol (ATX-90-0092), the LD ₅₀ of a sample of Heavy thermocracked distillate was also found to be greater than 2 g/kg.
Result	 No animals died during the study. Although the animals gained weight during the first week, there was a minimal weight loss during the second week of the study. Overall there was a weight gain between the first and final day of the study. The only clinical observations were effects on the skin. These consisted of erythema and edema which was apparent on day 1 and persisted through day 13. At necropsy, dry skin at the test site was seen in all animals. In two females abnormalities were noted in the kidneys, these were light red to tan color and mottled appearance in one animal and dark patches in the
Reliability	other. The LD ₅₀ was greater than 2 g/kg. : (1) valid without restriction
	(109) (120)
Type Value Species Strain Sex Number of animals Vehicle	: LD ₅₀ : > 5 ml/kg bw : Rabbit : New Zealand white : Male/female : 4 : Undiluted
	45 / 370

5. Toxicity		Id Heavy fuel oil Date December 7, 2	2012
Doses	: Single dose of	5 ml/kg	
Year	: 1979		
GLP	: No data		
Test substance	: CAS RN 68553	3-00-4 Heavy fuel oil API sample 78-6	
Method	skin of 4 male a for two males a test material. T occlusive dress made for 14 da dosing and aga end of the stud : No animals die systemic toxicit animals gained animals. Gross	material was applied as a single dose of 5ml/kg to the sl and 4 female New Zealand White rabbits. The testing s and two females had been abraded prior to application of The application site was immediately covered with an sing which was left in place for 24 hours. Observations w ays. Body weights were recorded immediately prior to ain 7 and 14 days after dosing. All animals terminated a dy underwent a gross necropsy. ed during the study and there were no clinical signs of ty. Two rabbits lost weight during the study but all other d weight normally. Slight erythema was noted in a few is post mortem examination revealed two rabbits with slig	ite f the vere t the
			ghtly
	associated with In addition, thre	rs and two that had pitted kidneys, the latter being h a common parasite in rabbits. ee other samples were examined to the same protocol in ry with the following results.	
	associated with In addition, thre	h a common parasite in rabbits. ee other samples were examined to the same protocol in	
	associated with In addition, thre same laborator	h a common parasite in rabbits. ee other samples were examined to the same protocol in ry with the following results.	
	associated with In addition, thre same laborator <u>Sample</u>	h a common parasite in rabbits. ee other samples were examined to the same protocol in ry with the following results. <u>LD50 Reference</u>	

(3) (4) (5) (6)

5.2.1 SKIN IRRITATION

Species	: Rabbit
Concentration	: Undiluted
Exposure	: Occlusive
Exposure time	: 24 hour(s)
Number of animals	: 6
Vehicle	: Undiluted
PDII	: 3.5
Result	: Moderately irritating
Year	: 1992
GLP	: Yes
Test substance	: CAS RN 64741-45-3
Method	: Undiluted test material (0.5 ml) was applied to four different intact skin sites on each of six New Zealand White rabbits. The treated skin sites were covered with occlusive patches fro 24 hours. After the 24 hour exposure period, the patches were removed and any residual test material was removed by wiping. Observations for skin irritation were made at prescreen, within sixty minutes of patch removal and at 72 hours, 4, 5, 6 and 7 days.
Result	 At the 24 hour scoring period, edema was observed in all animals but erythema could not be assessed due to the staining nature of the test material. As the study progressed more sites could be assessed for erythema. One of the rabbits died on day 5. The average values scored at each of the observation times is summarized below. Erythema Edema 24 hr NA 2.4 72 hour 1.2 1.6 Day 4 0.8 0.6
	40 / 270
	46 / 370

Toxicity					eavy fuel oil ecember 7, 2012		
	Day 5	0.9	0.6				
	Day 6 Day 7	0.3 0	0.4 0.1				
	-	-					
			ion index was 3. at the test mater		ate irritant		
Reliability		thout restrictio					
					(123		
Species	: Rabbit						
Concentration	: Undiluted						
Exposure	: Occlusive						
Exposure time Number of animals	: 24 hour(s) : 6						
Vehicle	: None						
PDII	: 0.18						
Result	: Not irritatin	g					
Year	: 1989						
GLP Test substance	: Yes	1711 01 71/		~~~			
Test substance		+/41-01-/ Vac	uum tower Botto	112			
Result	treated skin the 24 hou test materia made at pr	Undiluted test material (0.5 ml) was applied to four different skin sites (two intact and two abraded) on each of six New Zealand White rabbits. The treated skin sites wee covered with occlusive patches fro 24 hours. After the 24 hour exposure period, the patches were removed and any residual test material was removed by wiping. Observations for skin irritation were made at prescreen, within sixty minutes of patch removal and at 72 hours, 4, 5, 6 and 7 days.					
			na. Therefore ar		for erythema and		
			ervation times ar Ec				
	edema at t	he various obs Erythema Intact A	ervation times ar Ec braded Int	e summarized b lema act Abraded			
		he various obs Erythema	ervation times ar braded Int 2 0	e summarized be lema			
	edema at t 24 hours 72 hour Day 4	he various obs Erythema Intact A 0.2 0.	ervation times ar braded Int 2 0 2 0 0	e summarized be lema <u>act Abraded</u> 0 0 0 0			
	edema at t 24 hours 72 hour Day 4 Day 5	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0	ervation times ar braded Int 2 0 2 0 0 0 0	e summarized b lema <u>act Abraded</u> 0 0 0 0 0 0			
	edema at t 24 hours 72 hour Day 4 Day 5 Day 6	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 0 0 0 0			
	edema at t 24 hours 72 hour Day 4 Day 5	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0	ervation times ar braded Int 2 0 2 0 0 0 0	e summarized b lema <u>act Abraded</u> 0 0 0 0 0 0			
Reliability	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 0 0 0 0 0	elow.		
Reliability	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 0 0 0 0 0	n irritant.		
-	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author : (1) valid wi	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 0 0 0 0 0	n irritant.		
Species	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author : (1) valid wi	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 0 0 0 0 0	n irritant.		
Species Concentration	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author : (1) valid wi	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 0 0 0 0 0	n irritant.		
Species Concentration Exposure Exposure time	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author : (1) valid wi : Rabbit : Undiluted : Occlusive : 4 hour(s)	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 0 0 0 0 0	n irritant.		
Species Concentration Exposure Exposure time Number of animals	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author : (1) valid wi : Rabbit : Undiluted : Occlusive : 4 hour(s) : 6	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 0 0 0 0 0	elow.		
Species Concentration Exposure Exposure time Number of animals Vehicle	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author : (1) valid wi : Rabbit : Undiluted : Occlusive : 4 hour(s) : 6 : None	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 0 0 0 0 0	n irritant.		
Species Concentration Exposure Exposure time Number of animals Vehicle Year	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author : (1) valid wi : Rabbit : Undiluted : Occlusive : 4 hour(s) : 6 : None : 1988	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 0 0 0 0 0	n irritant.		
Species Concentration Exposure Exposure time Number of animals Vehicle Year GLP	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author : (1) valid wi : Rabbit : Undiluted : Occlusive : 4 hour(s) : 6 : None : 1988 : No data	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 s considered t thout restrictio	ervation times ar braded Int 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 0	n irritant.		
Reliability Species Concentration Exposure Exposure time Number of animals Vehicle Year GLP Test substance	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author : (1) valid wi : Rabbit : Undiluted : Occlusive : 4 hour(s) : 6 : None : 1988 : No data : CAS RN 6	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 s considered t thout restrictio 4741-81-7 Vist	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0 0 0	e summarized be lema 0 0 0 0 0 0 rial was not a ski	n irritant.		
Species Concentration Exposure Exposure time Number of animals Vehicle Year GLP	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author : (1) valid wi : Rabbit : Undiluted : Occlusive : 4 hour(s) : 6 : None : 1988 : No data : CAS RN 6 CAS RN 6 : Three 1 sq and 3 fema	he various obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 s considered t thout restriction 4741-81-7 Visted 4741-57-7 Heal inch test sites alle rabbits (total	ervation times ar braded Int 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e summarized be lema act Abraded 0 0 0 0 0 0 0 0 0 0 0 0 0	n irritant. (11: ach of 3 male aree sites on the		
Species Concentration Exposure Exposure time Number of animals Vehicle Year GLP Test substance	edema at t 24 hours 72 hour Day 4 Day 5 Day 6 Day 7 The author : (1) valid wi : Rabbit : Undiluted : Occlusive : 4 hour(s) : 6 : None : 1988 : No data : CAS RN 6 CAS RN 6 : CAS RN 6 : Three 1 sq and 3 fema right flank	Arvanious obs Erythema Intact A 0.2 0. 0.1 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ervation times ar braded Int 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e summarized be lema act Abraded 0 0 0 0 0 rial was not a ski [3 samples] Oil n each flank of e th rabbit). The th s on the left flan	n irritant. (11: ach of 3 male irree sites on the k remained		

5. Toxicity					Heavy fuel oil December 7, 201
					,
		e anterior and mi posterior sites w			
	exposure p	period, the patche	s were remove	d from the an	terior sites on eac
		ch animal and the s were re evaluate			
		residual test mate			
		using the standard			
		again at 7 days.	a nariad that	we mid dered	notohoo waxa
		a 24 hour exposur nd the rsidual test			
		ne posterior sites			
		at 7 days post do			11 - 21 - 2
Result		ol was followed for the sample of			
Result		tion scores	i neavy vacuui	n yas on were	; as 1010005.
	4 hour occ	lusion			
		Intact skin	Edama	Abradeo	
	4.5 hrs	Erythema 1.2	Edema 1.2	Erythen 1.2	na Edema 1.0
	28 hrs	0.7	0.7	0.8	0.7
	52 hrs	0.7	0.7	0.8	0.7
	76 hrs 7 davs	0.5	0.5	0.3	0.3
	7 days	0	0	0	0
	24 hour oc	clusion			
	26 hrs	1.7	1.3	1.5	1.3
	72 hrs 7 days	1.0 0.5	0.5 0.5	1.0 0.5	0.7 0.5
	i uays	0.0	0.0	0.5	0.0
		n-occlusion			
	26 hrs 72 hrs	1.8 1.3	1.2 1.0	1.8 1.3	1.3
	72 his 7 days	0.3	0.3	0.3	1.0 0.3
	,	cluded test sites w			
			-		
		ual scores for the e following indices			
		uum gas oil	Mobil 6244		
		occl. PII occl. PII	1.2 2.2		
		non occl. PII	2.2		
	Visbreaker			bil 62496-99	
	4 h	occl. average ery			
		average ed PII	3.1		
	24h	occl. PII	3.1		
	Vis gas oil		Mobil 6250		
	4 h	occl. average ery average ed			
		PII	2.2		
	24h	occl. PII	2.4		
	VB Mittelol		Mobil 6463	5-38	
	4 h	occl. average ery			
		average ed PII	ema 1.2 2.9		
	24h	occl. PII	2.9		
Reliability		th restrictions			
rendonity					

5. Toxicity			ld Heavy fu Date Decemb	
	studies. Con	nplete experimental det	onsolidating the results of sev ails and results were not inclu and considered to be valid. (69) (70	
Species Concentration Exposure Exposure time	: Rabbit : Undiluted : Occlusive : 24 hour(s)			
Number of animals Vehicle PDII Mathed	: 6 : None : 0.2 : Draize Test			
Method Year GLP Test substance	: 1982 : Yes	741-62-4, Sample API 8	31-15	
Method	: 0.5 ml of und on the dorsa abraded skir dressing. Af was wiped to and edema v of skin respo Results of th Irritation Inde At study term dioxide and v abnormalities	diluted test material was I skin of each of six rab ter 24 hours the dressin remove any residue of was recorded according onses was made at 72 h e 24 and 72 hour readi ex.	s applied to two areas bits. One area was intact and s then covered with an occlus ng was removed and the treat f test material. The degree of g to the Draize scale. A secon nours again at 96 hours, 7 and ngs were used to determine t e killed with an overdose of c oss necropsy examination. Ar	tive ted skin f erythema nd reading d 14 days. he Primary arbon
rtooun	Observatior	n Erythema	Edema	
	<u>time</u> 24 hrs 72 hrs 96 hrs 7 days 14 days	Intact Abraded 0 0 0 0 0 0 2.7 2.7 1.7 1.8	Intact Abraded 0.2 0.2 0.2 0.3 0.2 0.3 2.5 2.8 1.2 1.2	
	The primary		s the sum of the irritation sco 4 and rounded to the nearest	
	from the test material was	sites following the 24 e	material all of it could not be exposure period. The remaini for the increased dermal irritation	ng test
Reliability		no gross lesions at nec out restriction	ropsy.	(7)
Species Concentration Exposure Exposure time Number of animals Vehicle PDII Result	: Rabbit : Undiluted : Occlusive : 24 hour(s) : 6 : None : 5.6 : Moderately i	rritating		
Year	: 1989	49 / 370		

GLP : Yes Test substance : CAS RN 64741-81-7 [F97-01] Method : Undiluted test material (0.5 ml) was applied to four different ski intact and two abraded) on each of six New Zealand White rake intact and two abraded) on each of six New Zealand White rake and the 24 hour exposure period, the patches were removed and a test material was removed by wijne, Observations for skin intimade at prescreen, within sixty minutes of patch removal and a 4, 5, 6 and 7 days. Result : Due to the staining of the skin at the application sites, it was diff assess scores for erythema. Therefore an assessment of eryth made adjacent to the patch test site. The average scores for e edema at the various observation times are summarized below tervitema adjacent to the patch test site. The average scores for erythema Intact Abraded Result : Due to the staining of the skin at the application sites, it was different skin made adjacent to the patch test site. The average scores for erythema Intact Abraded Result : Due to the staining of the patch test site. The average scores for erythema Intact Abraded Intact Abraded 24 hours 2.5 2.7 2.6 2.7 72 hour 2.8 2.8 2.4 3.0 Day 4 2.0 1.8 2.1 Day 7 2.2 1.8 1.7 Day 7 2.2 1.8 1.0 0.9 The primary irritation index for intact skin was 5.1 and for abract 5.6 <	[,] fuel oil mber 7, 201							
Test substance : CAS RN 64741-81-7 [F97-01] Method : Undiluted test material (0.5 ml) was applied to four different ski intact and two abraded) on each of six New Zealand White rabit treated skin sites were covered with occlusive patches fro 24 h the 24 hour exposure period, the patches were removed and at test material was removed by wiping. Observations for skin irr made adjacent to the staining of the skin at the application sites, it was diff assess scores for erythema. Therefore an assessment of erythema edgacent to the patch test site. The average scores for edema at the various observation times are summarized below. Result : Due to the staining of the skin at the application sites, it was diff assess scores for erythema. Therefore an assessment of erythema intext. Abraded Intact. Abraded Intact. Abraded Intact. Abraded 24 hours 2.5 2.7 2.6 2.7 25 hour 2.8 2.4 3.0 0.9 Day 6 2.3 1.9 1.8 1.7 Day 7 <td< th=""><th></th></td<>								
Species : Rabbit Concentration : Undituted Species : Rabbit Species : Rabbit Species : Rabbit Species : CAS RN 68553-00-4 Heavy fuel oil Species : CAS RN 68553-00-4 Heavy fuel oil Species : CAS RN 68553-00-4 Heavy fuel oil Method : Two test sites were prepared either side of the dorsal mid line of and 3 female New Zealand White rabbits. The average scores for a were then covered with occlusive pateroid. (API 78-6, 78-7, 72 hour 2.3 2.5 2.7 2.6 2.7 72 hour 2.3 2.8 2.4 3.0 Day 4 2.0 2.0 1.8 2.1 Day 5 2.2 2.0 1.8 2.1 Day 6 2.3 1.9 1.8 1.7 Day 7 2.2 1.8 1.0 0.9 The primary irritation index for intact skin was 5.1 and for abract 5.6 Reliability : (1) valid without restriction Species : Rabbit Concentration : Undituted Exposure time : 2.4 hour(s) Number of animals : 6 Vehicle : None Test substance : CAS RN 68553-00-4 Heavy fuel oil Method : Two test sites were prepared either side of the dorsal mid line or male and 3 female New Zealand White rabbits. The anterior site are remained intact. 0.5 m of undituted test material was applied to each test site are removed and any excess test material was removed by wo Observations for skin irritation were made at 24 hours, twere								
Result : Due to the staining of the skin at the application sites, it was difficult assess scores for erythema. Therefore an assessment of erythmade adjacent to the patch test site. The average scores for edema at the various observation times are summarized below. Erythema Edema Intact Abraded Intact <td< td=""><td colspan="8">Undiluted test material (0.5 ml) was applied to four different skin sites (two intact and two abraded) on each of six New Zealand White rabbits. The treated skin sites were covered with occlusive patches fro 24 hours. After the 24 hour exposure period, the patches were removed and any residual test material was removed by wiping. Observations for skin irritation were made at prescreen, within sixty minutes of patch removal and at 72 hours, 4.5.6 and 7 days</td></td<>	Undiluted test material (0.5 ml) was applied to four different skin sites (two intact and two abraded) on each of six New Zealand White rabbits. The treated skin sites were covered with occlusive patches fro 24 hours. After the 24 hour exposure period, the patches were removed and any residual test material was removed by wiping. Observations for skin irritation were made at prescreen, within sixty minutes of patch removal and at 72 hours, 4.5.6 and 7 days							
72 hour2.82.82.43.0Day 42.02.01.82.1Day 52.22.01.81.7Day 72.21.81.00.9The primary irritation index for intact skin was 5.1 and for abract 5.6The authors considered that the test material was moderately i(1) valid without restrictionSpecies:RabbitConcentration:UndilutedExposure:CoclusiveExposure time:24 hour(s)Number of animals:CAS RN 68553-00-4 Heavy fuel oilMethod:Two test sites were prepared either side of the dorsal mid line of male and 3 female New Zealand White rabbits. The anterior sit side and posterior site of the left side were abraded, the other side and a posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and male new ere then covered with an occlusive dressing. After 24 hours, twee removed and any excess test material was removed by workservations for skin irritation were made at 24 and 72 hours a of reactions were made using the Draize scale.Four samples of blended No. 6 heavy fuel oil (A	thema was erythema ar							
Day 4 2.0 1.8 2.2 Day 5 2.2 2.0 1.8 2.1 Day 6 2.3 1.9 1.8 1.7 Day 7 2.2 1.8 1.0 0.9 The primary irritation index for intact skin was 5.1 and for abract 5.6 Reliability : (1) valid without restriction Species : Rabbit Concentration : Undiluted Exposure : Occlusive Exposure time : 24 hour(s) Number of animals : 6 Vehicle : None Test substance : CAS RN 68553-00-4 Heavy fuel oil Method : Two test sites were prepared either side of the dorsal mid line of male and 3 female New Zealand White rabbits. The anterior sit side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and mosterior site of the left side were abraded, the other side and mosterior site of the left side were abraded, the other side and were removed and any excess test material was removed by wo Observations for skin irritation were made at 24 and 72 hours a of reactions were made using the Draize scale. Four samples of blended No. 6 heavy fuel oil (API 78-6, 78-7, 7)								
Day 5 2.2 2.0 1.8 2.1 Day 6 2.3 1.9 1.8 1.7 Day 7 2.2 1.8 1.0 0.9 The primary irritation index for intact skin was 5.1 and for abract 5.6 Reliability : (1) valid without restriction Species : Rabbit Concentration : Undiluted Exposure : Occlusive Exposure time : 24 hour(s) Number of animals : 6 Vehicle : None Test substance : CAS RN 68553-00-4 Heavy fuel oil Method : Two test sites were prepared either side of the dorsal mid line of male and 3 female New Zealand White rabbits. The anterior sit side and posterior site of the left side were abraded, the other s remained intact. 0.5 mil of undiluted test material was applied to each test site ar were then covered with an occlusive dressing. After 24 hours, t were then covered with an occlusive dressing. After 24 hours, t were removed and any excess test material was removed by w Observations for skin irritation were made at 24 and 72 hours a of reactions were made using the Draize scale. Four samples of blended No. 6 heavy fuel oil (API 78-6, 78-7, 7) Were tes								
Day 6 2.3 1.9 1.8 1.7 Day 7 2.2 1.8 1.0 0.9 The primary irritation index for intact skin was 5.1 and for abract 5.6 Reliability : (1) valid without restriction Species : Rabbit Concentration : Undiluted Exposure : Occlusive Exposure time : 24 hour(s) Number of animals : 6 Vehicle : None Test substance : CAS RN 68553-00-4 Heavy fuel oil Method : Two test sites were prepared either side of the dorsal mid line of male and 3 female New Zealand White rabbits. The anterior sit side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of site in a coclusive dressing. After 24 hours, there is the and were then covered with an occlusive dressing. After 24 hours, there is a side and posterior site of site is material was removed by were removed and any excess test material was removed by were soft reactions were made using the Draize scale. Four samples of blended No. 6 heavy fuel oil (API 78-6, 78-7, 7) Were tested according to the above method. The ob								
Day 7 2.2 1.8 1.0 0.9 The primary irritation index for intact skin was 5.1 and for abract 5.6 Reliability : (1) valid without restriction Species : Rabbit Concentration : Undiluted Exposure : Occlusive Exposure time : 24 hour(s) Number of animals : 6 Vehicle : None Test substance : CAS RN 68553-00-4 Heavy fuel oil Method : Two test sites were prepared either side of the dorsal mid line of male and 3 female New Zealand White rabbits. The anterior sit side and posterior site of the left side were abraded, the other s remained intact. 0.5 ml of undiluted test material was applied to each test site ai were then covered with an occlusive dressing. After 24 hours, t were removed and any excess test material was removed by w Observations for skin irritation were made at 24 and 72 hours a of reactions were made using the Draize scale. Four samples of blended No. 6 heavy fuel oil (API 78-6, 78-7, 7) 2) were tested according to the above method. The observation								
The primary irritation index for intact skin was 5.1 and for abract 5.6 Reliability The authors considered that the test material was moderately it (1) valid without restriction Species : (1) valid without restriction Species : Rabbit Concentration : Undiluted Exposure : Occlusive Exposure time : 24 hour(s) Number of animals : 6 Vehicle : None Test substance : CAS RN 68553-00-4 Heavy fuel oil Method : Two test sites were prepared either side of the dorsal mid line of male and 3 female New Zealand White rabbits. The anterior sit side and posterior site of the left side were abraded, the other s remained intact. 0.5 ml of undiluted test material was applied to each test site ar were then covered with an occlusive dressing. After 24 hours, t were removed and any excess test material was removed by w Observations for skin irritation were made at 24 and 72 hours ar of reactions were made using the Draize scale. Four samples of blended No. 6 heavy fuel oil (API 78-6, 78-7, 7) Were tested according to the above method. The observation								
Reliability : (1) valid without restriction Species : Rabbit Concentration : Undiluted Exposure : Occlusive Exposure time : 24 hour(s) Number of animals : 6 Vehicle : None Test substance : CAS RN 68553-00-4 Heavy fuel oil Method : Two test sites were prepared either side of the dorsal mid line of male and 3 female New Zealand White rabbits. The anterior sit side and posterior site of the left side were abraded, the other s remained intact. 0.5 ml of undiluted test material was applied to each test site ar were then covered with an occlusive dressing. After 24 hours, t were removed and any excess test material was removed by w Observations for skin irritation were made at 24 and 72 hours a of reactions were made using the Draize scale. Four samples of blended No. 6 heavy fuel oil (API 78-6, 78-7, 72) were tested according to the above method. The observation	ded skin wa							
Species : Rabbit Concentration : Undiluted Exposure : Occlusive Exposure time : 24 hour(s) Number of animals : 6 Vehicle : None Test substance : CAS RN 68553-00-4 Heavy fuel oil Method : Two test sites were prepared either side of the dorsal mid line of male and 3 female New Zealand White rabbits. The anterior sit side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side and posterior site of the left side were abraded, the other side are then covered with an occlusive dressing. After 24 hours, there is the removed and any excess test material was removed by we observations for skin irritation were made at 24 and 72 hours are of reactions were made using the Draize scale. Four samples of blended No. 6 heavy fuel oil (API 78-6, 78-7, 72) were tested according to the above method. The observation	irritating.							
Concentration:UndilutedExposure:OcclusiveExposure time:24 hour(s)Number of animals:6Vehicle:NoneTest substance:CAS RN 68553-00-4 Heavy fuel oilMethod:Two test sites were prepared either side of the dorsal mid line of male and 3 female New Zealand White rabbits. The anterior sit side and posterior site of the left side were abraded, the other side of intact.0.5 ml of undiluted test material was applied to each test site ar were then covered with an occlusive dressing. After 24 hours, the were removed and any excess test material was removed by we observations for skin irritation were made at 24 and 72 hours are of reactions were made using the Draize scale.Four samples of blended No. 6 heavy fuel oil (API 78-6, 78-7, 72) were tested according to the above method. The observation	(11							
 male and 3 female New Zealand White rabbits. The anterior sits side and posterior site of the left side were abraded, the other seremained intact. 0.5 ml of undiluted test material was applied to each test site ar were then covered with an occlusive dressing. After 24 hours, the were removed and any excess test material was removed by we Observations for skin irritation were made at 24 and 72 hours are of reactions were made using the Draize scale. Four samples of blended No. 6 heavy fuel oil (API 78-6, 78-7, 72) were tested according to the above method. The observation 	on each of							
2) were tested according to the above method. The observation	0.5 ml of undiluted test material was applied to each test site and these were then covered with an occlusive dressing. After 24 hours, the patches were removed and any excess test material was removed by wiping. Observations for skin irritation were made at 24 and 72 hours and scoring							
 extended for sample 79-2 to include 7 and 14 days. Erythema and edema was minimal at either 24 or 72 hours for samples. Sample 79-2 caused severe erythema (scores of 3) in rabbit at 24 hours which resolved by 72 hours. In another fema with sample 79-2, erythema was minimal after 24 hours but inc (score of 2) by 72 hours. For this sample observations were als and 14 days and erythema scores for this single animal were 2 respectively. 	n times wer three of the in one fema ale treated creased so made at 2 and 1							
A summary of the dermal irritation scores (based on 72 hour re tabulated below for all four samples. 50 / 370	eadings) is							

Patch and Exposure (hrs)		Samp	le		
Erythema	78-6	78-7	78-8	79-2	
intact (24 hrs)	0.08	0.08	0.17	1.25	
(72 hrs)	0.17	0.08	0	0.67	
abraded (24 hrs)	0	0.75	0.42	1.33	
(72 hrs) ´	0.25	0.33	0	0.67	
Edema					
intact (24 hrs)	0.17	0.17	0.08	1.0	
(72 hrs)	0.08	0	0	0	
abraded (24 hrs)	0.58	1.08	0.42	1.25	
(72 hrs)	0.08	0.42	0	0	
Primary irritation score	0.35	0.73	0.27	1.54	
,					(3) (4) (5) (
					. , . , . , .

5.2.2 EYE IRRITATION

Species Concentration Dose Number of animals Vehicle Result Year GLP Test substance		Rabbit Undiluted 0.1 ml 3 None Not irritating 1991 Yes CAS RN 64741-45-3								
Method	:	0.1 ml undiluted test materi right eye of each of three m were then held closed for a material. The left eye of ea Eyes were examined 1, 24, was used to assist in the as	nale New pproximat ch anima 48 and 7	Zealand tely one I was ur 2 hours	White rabbi second to p ntreated and after treatme	ts. The eyelids prevent loss of test served as control.				
Result	:	There was no evidence of of Fluorescein staining scores times. The only responses observ	There was no evidence of damage to the iris throughout the study period. Fluorescein staining scores were zero for all three animals at all scoring times. The only responses observed were one hour after treatment and these are shown below. No responses were observed at any other examination time.							
			A !	- 1						
		Cornea	Anim	2 2	3					
		A opacity	1	1	2					
		B area involved	1	1	3					
		Cornea score (AxBx5) Iris Conjunctivae	5	5	30					
		A redness	2	1	2					
		B Chemosis	2	2	2					
		C Discharge	3	2	2 3					
		Conjunctivae score (A+B+C) x2	14	12	14					
		Based on the average scor 24 and 72 hour readings, th irritant.								
Reliability	:	(1) valid without restriction								
						(119)				
Species	:	Rabbit								
Concentration	:	Undiluted								
Dose	:	0.1 ml								
Exposure time	:	0.5 minute(s)								
Comment	:	Rinsed after (see exposure	time)							
Number of animals	:	12								
Vehicle	:	None								
Year	:	1989								
GLP	:	Yes								
Test substance	:	CAS RN 68512-62-9								
Method	:	0.1 ml undiluted test materi right eye of each of 12 New eyelids were held closed fo test material. The treated e 52 / 370	[,] Zealand r approxir	White ranately o	abbits. The one second to	upper and lower o prevent loss of				

. Toxicity	Id Heavy fuel oil Date December 7, 2012								
	In the remaining six rabbits 20 to 30 seconds after application of test material, the treated eyes were flushed for one minute with lukewarm								
	water. The untreated control eyes of these six animals were also flushed a similar manner. Observations of ocular lesions were made 1, 24, 48 and								
	72 hours after treatment and again 4, 7, 10 and 14 days after treatment.								
	Fluoroscein was used as an aid to assessing ocular effects at all								
Result	observation times except for the one hour reading.The test material was extremely viscous and this caused large globules to								
Result	form and adhere to the eyelids when the eyes were flushed with water.								
	Rinsing of the eye did not caused any observable changes in the								
	consistency of the test material. The incidence of conjunctival redness								
	(Red.) and chemosis (Chem.) are summarized in the following table, together with the average scores at each observation time.								
	Unrinsed eyes Rinsed eyes								
	Red. Chem. Score Red. Chem. Score								
	1 hr 6/6 6/6 (2) 6.7 6/6 6/6 (2) 5.7								
	24 hr 6/6 6/6 (1) 5.0 6/6 6/6 5.7 48 hr 6/6 6/6 5.0 6/6 6/6 5.0								
	48 hr 6/6 6/6 5.0 6/6 6/6 5.0 72 hr 6/6 6/6 4.7 6/6 6/6 4.7								
	4 day 6/6 6/6 4.0 6/6 6/6 4.3								
	7 day 4/6 6/6 3.3 6/6 6/6 4.0								
	10 day 0/6 2/6 (1) 1.0 3/6 1/6 (1) 1.3								
	14 day $0/6$ $0/6$ 0 $0/6$ $0/6$ 0								
	Values shown () are the incidence of animals in which a discharge was observed. On the basis of the above results it was concluded that the test								
	material was non-irritant in unrinsed eyes and minimally irritant in rinsed								
	eyes.								
Reliability	: (1) valid without restriction (11								
- ·									
Species Concentration	: Rabbit : Undiluted								
Dose	: 0.1 ml								
Number of animals	: 6								
Method	: Draize Test								
Year	: 1988								
GLP Test substance	: No data : CAS RN 64741-81-7 VIsbreaker gas oils (3 samples)								
Test substance	CAS RN 64741-57-7 Heavy Vacuum Gas Oil								
Method	 0.1 ml of test material was instilled into the conjunctival sac of the left eye of 3 male and 3 female rabbits. The untreated eye served as control. Eye 								
	were grossly examined and scored according to the Draize method at 1,								
	24, 48 and 72 hours.								
Result	: The total Draize scores for the four test materials are shown in the								
	following table. All responses observed were entirely due to conjunctival								
	redness and swelling. No corneal opacity or iritis was observed in any animal.								
	Values given are the total Draize scores.								
	Time after instillation (hours)								
	Test material 1 24 48 72 Hoovy yoo yuum goo oil 10 10.2 2.3 0.3								
	Heavy vacuum gas oil 10 10.3 3.3 0.3 Visbreaker heavy gas oil 1.7 2.3 2.3								
	Visbreaker heavy gas on 1.7 2.3 2.3 Vis gas oil VIBRA 4.0 2.0 1.7								
	VB MITTELOL 5.3 4.0 2.7								
	(69) (70) (71) (7								
Snecies									
Species Concentration	: Rabbit								
Species Concentration Dose									
Concentration	: Undiluted								

5. Toxicity						ld Heavy fu te Decembe	
Method Year GLP Test substance	: Draize Te : 1982 : Yes : CAS RN	est 64741-62-4, Sa	mple API 81	1-15			
Method	eye of ea control. <i>A</i> lukewarm Readings and 7 day revealing	undiluted test m ch of 9 rabbits, t After 30 seconds water for 1 min of ocular lesion vs after treatmer possible cornea	the other ey s the treated ute. Eyes o s for all anin t. Sodium al injury.	ve was ur d eyes of of the oth mals wer fluoresce	ntreated 3 rabbit er 6 rab e made ein was	and served is were wash obits were no at 1, 24, 48, used to aid in	as ied with t washed. , 72 hours n
Result	observation eyes were	eye irritation sco	Irritation or res recorde	nly lasted d in this s	l for 24 l study ar	hours after w e as follows:	
	Unwashed		Hr. 24 Hi 3 2.0	r <u>s 48 Hr</u> 0	<u>s 72 Hr</u> 0	r <mark>s 7 days</mark> 0	
	(6 rabbit ı						
	Washed ((3 rabbit i		0 2.0	0.0	0.0	0.0	
Reliability		ta demonstrate vithout restrictio		t material	l was mi	inimally irrita	nting. (7)
Species Concentration Dose Exposure time Comment Number of animals Vehicle Result Year GLP Test substance Method	 12 None Not irritat 1989 Yes CAS RN 0.1 ml un right eye eyelids witest material, water. Tha similar of Observati treatment aid to assist 	ter (see exposur ing 64741-81-7 [F9 diluted test mate of each of 12 Ne ere held closed rial. The treated rial. The treated naining six rabbit the treated eyes ne untreated eyes	7-01] erial was dro ew Zealand for approxin d eyes of six ts 20 to 30 s were flush ntrol eyes of sions were ys after trea	White ra nately or rabbits seconds ed for on f these si made 1, atment. F	bbits. T ne secor received after ap le minute x anima 24, 48 a Fluorosc	he upper an hd to prevent d no further t plication of t e with lukewa ls were also and 72 hours ein was use	d lower loss of reatment. est arm flushed in after d as an
Result	summariz	ling. ence of conjunc ed in the followi ervation time.					

	Unrin	sed eyes	;	Rinsed eyes			
	Red	Chem	Score	Red	Chem	Score	
1 hr	6/6	6/6 (4)	8.3	6/6	6/6 (4)	8.7	
24 hr	6/6	5/6	5.7	6/6	4/6 (1)	5.3	
		54 / 3	70				

5. Toxicity									Heavy fuel oil December 7, 2012
		48 hr 72 hr 4 day	0	3/6 0 0	2.3 0 0	5/6 0 0	3/6 0 0	3.3 0 0	
Reliability	:	observ On the was no	/ed. e basis on-irrit		bove rea rinsed e	sults it w	as conc	luded that	a discharge was the test material (114)
Species Concentration Dose Exposure time Comment Number of animals Vehicle Year Test substance		9 None 1980	ted nute(s d after) (see exp 553-00-4		·	4 sample	es	
Method	:	right e eyelids materi rinsed applica not rin Scorin applica extend accore Sampl	ye of € s were al. Th for on ation o sed. ∃ ng of ou ation o led un ding to <u>e 78-6</u>	each of n held tog e test ey e minute f the test f the untre cular lesi f test ma til no irrit the Drai <u>b</u> (API rej	ine New res of the with wateria ated ey ons was iterial. If tation wa ze scale port No.	v Zealand r approx- ree rabb arm disti al. The es of all carried For two s as seen. 27-328	d White imately its (two lled wate test eye rabbits out 24, samples Gradin	rabbits. T one secon females, c er starting es of the of served as 48 and 72 the obser of ocula	2 hours after vation period was r lesions was
		animal Conjur negativ Sampl No iric cornea Conjur	ls. nctival ve at ² <u>e 78-7</u> dial infla al opac nctival	irritation 8 hours. (API repartmention ity at the	was se port No. h was s 24 hou was ap	en in eig 27-3277 een in a r examir	yht rabb 74) ny anim nation.	its at 24 ho al and one	any of the test ours but all were e rabbit showed 24 hours but this
		<u>Sampl</u> Corne 24 and any ar Conjur	<u>e 78-8</u> al opa d 48 ho nimal a nctival	(API rep cities of g our obset any tim	port No. grade 1 rvation t ne. was se	and area ime. No	a 1 were iridial ir	nflammation	hree animals at the n was observed in I 48 hours but by 72
		Two a showe to be t Conjur	nimals d opao reatme nctival	cities at 7 ent-relate	neal opa 72 hours d. was pre	acities at and 14 esent in	t the 48 days b	ut these w	on. Other rabbits ere not considered 4 hour observation.
		The av	/erage	eye irrit 55 /		ores for	each of	the sample	es were as follows:

Id Heavy fuel oilDate December 7, 2012

5. Toxicity

		Samp	le			
		78-6	78-7	78-8	79- <u>2</u>	
	Washed eyes					
	24 hour	4.67	2.67	7.67	6.67	
	48 hour	0	1.33	5.0	5.0	
	72 hour	0	0	0	1.33	
	7 day	ND	ND	0	0.67	
	14 day	ND	ND	ND	0	
	Unwashed eyes					
	24 hour	4.0	4.83	7.33	7.33	
	48 hour	1.0	0.67	4.67	3.83	
	72 hour	0	0	1.0	1.33	
	7 day	ND	ND	0	1.0	
	14 day	ND	ND	ND	0	
Reliability	: (1) valid without rest	riction				
-						(3) (4) (5) (6
5.3 SENSITIZATION						
CIC CENTREATION						

Type	: Buehler Test				
Species Concentration	 Guinea pig 1st: Induction undiluted occlusive epicutaneous 				
Concentration	2 nd : Challenge undiluted occlusive epicutaneous				
Number of animals	: 10				
Result	: Not sensitizing				
Year GLP	: 1992 : Yes				
Test substance	: CAS RN 64741-45-3 Sample F-132				
Method	: 0.5 ml undiluted test material was applied under occlusion to the shorn skin of 10 guinea pigs. The patch was left in place for six hours after which all covering was removed from the test site. This induction procedure was carried out once each week for three weeks.				
	Fourteen days after the third induction dose the animals were challenged at a different skin site. The challenge dose of 0.5 ml was applied in the same manner as the induction doses.				
	24 and 48 hours after each induction and challenge dose an assessment of the treated site was made and scored for response.				
	The following control groups were included in the study				
	Challenge control group received a challenge dose of test material only				
	Positive control group received 0.5 ml of a 0.3% solution of DNCB in 80% ethanol once each week during the induction phase.				
	Challenge dose for the positive controls was 0.5 ml of 0.2% DNCB in 80% ethanol.				
	Challenge control group received the challenge dose of DNCB only.				
Result	: The following responses were recorded.				
	GroupIncidenceSeverityF-132 test group0/10				
	56 / 370				

56 / 370

Toxicity	Id Heavy fuel oil Date December 7, 2012
	F-132 challenge control 0/4
	Positive control 10/10 5.1 & 3.6
	DNCB challenge control 2/4 0 & 1.3
Reliability	These data demonstrate that the test material is not a skin sensitizer. (1) valid without restriction
	(122)
Toma	Duchlas Test
Type Species	: Buehler Test : Guinea pig
Concentration	: 1 st : Induction undiluted occlusive epicutaneous
Concontration	2^{nd} : Challenge undiluted occlusive epicutaneous
Number of animals	: 9
Result	: Not sensitizing
Year	: 1989
GLP Test substance	: Yes : CAS RN 68512-62-9 Vacuum Tower Bottoms
וכסו סטשסומווטש	. OAS NIN 00512-02-3 VACUUITI TOWEL BOUUTIS
Method	 0.5 ml undiluted test material was applied under occlusion to the shorn skin of 10 guinea pigs. The patch was left in place for six hours after which all
	covering was removed from the test site. This induction procedure was
	carried out once each week for three weeks. Fourteen days after the third
	induction dose the animals were challenged at a different skin site. The
	challenge dose of 0.5 ml was applied in the same manner as the induction
	doses. 24 and 48 hours after each induction and shallongs does an appacement of
	24 and 48 hours after each induction and challenge dose an assessment of the treated site was made and scored for response.
	The following control groups were included in the study
	Challenge control group
	received a challenge dose of test material only
	Positive control group
	received 0.5 ml of a 0.3% solution of DNCB in 80% ethanol once
	each week during the induction phase. Challenge dose for the positive controls was 0.5 ml of 0.2% DNCB
	in 80% ethanol.
	Challenge control group
- <i>i</i>	received the challenge dose of DNCB only.
Result	: The following responses were recorded.
Result	: The following responses were recorded. <u>Group</u> Incidence Severity
Result	: The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10
Result	: The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10 F-98-01 challenge control 0/4
Result	: The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10 F-98-01 challenge control 0/4 Positive control 9/9 4.1 & 3.1
Result	: The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10 F-98-01 challenge control 0/4 Positive control 9/9 4.1 & 3.1 DNCB challenge control 4/4 0.8 & 0.8
	: The following responses were recorded. <u>Group</u> <u>Incidence</u> <u>Severity</u> F-98-01 test group 0/10 F-98-01 challenge control 0/4 Positive control 9/9 4.1 & 3.1 DNCB challenge control 4/4 0.8 & 0.8 These data demonstrate that the test material is not a skin sensitizer.
Result Reliability	: The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10 F-98-01 challenge control 0/4 Positive control 9/9 4.1 & 3.1 DNCB challenge control 4/4 0.8 & 0.8
Reliability	 The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10 F-98-01 challenge control 0/4 Positive control 9/9 4.1 & 3.1 DNCB challenge control 4/4 0.8 & 0.8 These data demonstrate that the test material is not a skin sensitizer. (1) valid without restriction
Reliability Type	 The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10 F-98-01 challenge control 0/4 Positive control 9/9 4.1 & 3.1 DNCB challenge control 4/4 0.8 & 0.8 These data demonstrate that the test material is not a skin sensitizer. (1) valid without restriction
Reliability	 The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10 F-98-01 challenge control 0/4 Positive control 9/9 4.1 & 3.1 DNCB challenge control 4/4 0.8 & 0.8 These data demonstrate that the test material is not a skin sensitizer. (1) valid without restriction (111) Buehler Test Guinea pig 1st Induction 33 % occlusive epicutaneous
Reliability Type Species Concentration	 The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10 F-98-01 challenge control 0/4 Positive control 9/9 4.1 & 3.1 DNCB challenge control 4/4 0.8 & 0.8 These data demonstrate that the test material is not a skin sensitizer. (1) valid without restriction (111) Buehler Test Guinea pig 1st. Induction 33 % occlusive epicutaneous 2nd. Challenge 11 % occlusive epicutaneous
Reliability Type Species Concentration Number of animals	 The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10 F-98-01 challenge control 0/4 Positive control 9/9 4.1 & 3.1 DNCB challenge control 4/4 0.8 & 0.8 These data demonstrate that the test material is not a skin sensitizer. (1) valid without restriction (111) Buehler Test Guinea pig 1st. Induction 33 % occlusive epicutaneous 2nd: Challenge 11 % occlusive epicutaneous 10
Reliability Type Species Concentration Number of animals Result	 The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10 F-98-01 challenge control 0/4 Positive control 9/9 4.1 & 3.1 DNCB challenge control 4/4 0.8 & 0.8 These data demonstrate that the test material is not a skin sensitizer. (1) valid without restriction (111) Buehler Test Guinea pig 1st. Induction 33 % occlusive epicutaneous 2nd. Challenge 11 % occlusive epicutaneous 10 Not sensitizing
Reliability Type Species Concentration Number of animals	 The following responses were recorded. <u>Group</u> Incidence Severity F-98-01 test group 0/10 F-98-01 challenge control 0/4 Positive control 9/9 4.1 & 3.1 DNCB challenge control 4/4 0.8 & 0.8 These data demonstrate that the test material is not a skin sensitizer. (1) valid without restriction (111) Buehler Test Guinea pig 1st. Induction 33 % occlusive epicutaneous 2nd: Challenge 11 % occlusive epicutaneous 10

Toxicity	Id Heavy fuel oil Date December 7, 2012		
Test substance	: CAS RN. 64741-57-7 Heavy Vacuum Gas Oil (HVGO),		
Method	: 0.5 ml diluted (1:2 in mineral oil) test material was applied under occlusion to the shorn skin of 10 guinea pigs. The patch was left in place for six hours after which all covering was removed from the test site. This induction procedure was carried out once each week for three weeks. Fourteen days after the third induction dose the animals were challenged a different skin site. The challenge dose of 0.5 ml was applied as a 1:8 dilution in mineral oil in the same manner as the induction doses. 24 and 48 hours after each induction and challenge dose an assessment of the treated site was made and scored for response.		
	The following control groups were included in the study Challenge control group received a challenge dose of test material only Positive control group received 0.5 ml of a 0.3% solution of DNCB in 80% ethanol once each week during the induction phase. Challenge dose for the positive controls was 0.5 ml of 0.2% DNCB in 80% ethanol. Challenge control group received the challenge dose of DNCB only.		
Result	Vehicle Control received 0.5 ml mineral oil once each week during the induction phase. Challenge dose of 0.5 ml. : The following responses were recorded.		
	GroupIncidenceSeverityHVGO test group1/100.1 & 0.0HVGO challenge control0/40.3 & 0.0Positive control10/103.6 & 3.3DNCB challenge control0/41.0 & 0.0These data demonstrate that the test material is not a skin sensitizer.		
Reliability	: (1) valid without restriction (11		
Type Species Concentration	 Buehler Test Guinea pig 1st: Induction undiluted occlusive epicutaneous 2nd: Challenge undiluted occlusive epicutaneous 		
Number of animals Result Method Year GLP Test substance	10 Not sensitizing Beuhler 1984 Yes CAS RN 64741-62-4, sample API 81-15		
Method	 0.4 ml undiluted test material was applied under an occlusive dressing to the shaved skin of 10 male Guinea pigs. Six hours after application the dressing was removed and the skin wiped to remove residues of test material. The animals received one application each week for 3 weeks. Due to severe irritation at the test site of the positive control animals, the third application was made slightly posterior to the previous site. Two weeks following the third application a challenge dose was applied in the same manner as the sensitizing doses. A previously untreated site was used for the challenge application. The application sites for sensitizing and challenge doses were read for erythema and edema 24 and 48 hours after patch removal. To assist in the reading of the response to the final challenge dose the test site was depilated 3 hours prior to reading by using a commercially available depilatory cream. 		

. Toxicity	Id Heavy fuel oil Date December 7, 2012
	Positive control, vehicle control and naive control groups were included in this study.
	Concentrations of positive control were as follows:
Result	 Sensitizing doses: 0.4 ml of 0.3% w/v in 80% aqueous ethanol Challenge dose: 0.4 ml of 0.1% w/v suspension in acetone During the sensitization phase of the study, dermal irritation included very slight edema and very slight to well define erythema. No dermal irritation was exhibited by either the test group or naive controls following challenge application with undiluted test material. All 20 Guinea pigs treated with DNCB were sensitized at the end of the study.
Reliability	study. : (1) valid without restriction
	9)
Туре	: Buehler Test
Species Concentration	: Guinea pig : 1 st : Induction undiluted occlusive epicutaneous
Concentration	2 nd : Challenge 50 % occlusive epicutaneous
Number of animals	: 10
Vehicle Result	: Mineral oil : Not sensitizing
Year	: 1989
GLP	: Yes
Test substance	: CAS RN 64741-81-7
	of 10 guinea pigs. The patch was left in place for six hours after which all covering was removed from the test site. This induction procedure was carried out once each week for three weeks. Fourteen days after the third induction dose the animals were challenged at a different skin site. The challenge dose of 0.5 ml was applied as a 50% dilution in mineral oil in the same manner as the induction doses. 24 and 48 hours after each induction and challenge dose an assessment of the treated site was made and scored for response.
	The following control groups were included in the study
	Challenge control group received a challenge dose of test material only
	Positive control group received 0.5 ml of a 0.3% solution of DNCB in 80% ethanol once each week during the induction phase. Challenge dose for the positive controls was 0.5 ml of 0.2% DNCB in 80% ethanol.
	Challenge control group received the challenge dose of DNCB only.
Result	: The following responses were recorded.
	Group Incidence Severity
	F-97-01 test group0/10F-97-01 challenge control0/4Positive control10/101.5 & 1.3DNCB challenge control0/4
Reliability	F-97-01 challenge control 0/4 Positive control 10/10 1.5 & 1.3

(110)

Type Species Concentration Number of animals Year GLP Test substance Method	 Buehler Test Guinea pig 1st: Induction undiluted occlusive epicutaneous 2nd: Challenge undiluted occlusive epicutaneous 10 1980 No data CAS RN 68553-00-4 Heavy fuels, 4 samples Undiluted test material (0.5 ml) was applied under an occlusive patch to the shorn dorsal skin of 10 guinea pigs. Six hours after application the patches were removed. This procedure was followed three times a week for 3 weeks. Following a two week rest period a challenge dose was given in exactly the same manner as the induction doses, except that the skin site was a fresh site on each animal. Skin reactions were graded for erythema and edema 24 hours after each dose. 			
Reliability	The following control group was used. Positive control Induction with a 0.05% (w/w) dilution of DNCB in ethanol. The test sites were only occluded 5 times during the study.:Three of the samples were not skin sensitizers since the degree of response to the challenge dose was less than that for the positive controls. Sample 78-7 was considered to be mildly sensitizing. This was because the challenge scores were in some cases greater than the those for the induction doses.MaterialResultReferenceAPI 78-6Not sensitizing 27-32814 API 78-727-32814 API 78-8 API 79-2API 78-8Not sensitizing 27-32816 API 79-227-32813:(2) valid with restrictions The selection of dose concentrations in this study was on the basis of irritancy studies in rabbits. It is possible that the dose concentrations used were excessive. The study is not sufficiently robust.			
Type Species Concentration Number of animals Result Year GLP Test substance Method	 Buehler Test Guinea pig 1st. Induction undiluted occlusive epicutaneous 2nd. Challenge undiluted occlusive epicutaneous 6 Not sensitizing 1986 Yes CAS RN 68553-00-4 Heavy fuel oil sample F-74-01 0.5 ml undiluted test material was applied under occlusion to the shorn skin of 10 guinea pigs. The patch was left in place for six hours after which all covering was removed from the test site. This induction procedure was carried out once each week for three weeks. Fourteen days after the third induction dose the animals were challenged at a different skin site. The challenge dose of 0.5 ml was applied as a 50% dilution in mineral oil in the 60 / 370 			

5. Toxicity			Id Heavy fuel oil
	Date December 7, 2012		
	the treated site was made a	induction and ch nd scored for re	allenge dose an assessment sponse. The following control
	groups were included in the	study:	
	Challenge control group received a challenge	dose of test ma	terial only
	Positive control group received 0.5 ml of a 0.3% solution of DNCB in 80% ethanol of each week during the induction phase. Challenge dose for the positive controls was 0.5 ml of 0.2% D in 80% ethanol.		
	Challenge control group received the challenge dose of DNCB only.		
Result	: The following responses we		o ony.
	Group	Incidence	Severity
	F-74-01 test group	4/10	0.4-0
	F-97-01 challenge control Positive control	0/4 10/10	21 22
	DNCB challenge control	1/4	3.1 - 2.3 0.2
	These data demonstrate the	at the test materi	al is not a skin sensitizer
Reliability	: (1) valid without restriction		
Reliability	These data demonstrate that the test material is not a skin sensitizer. : (1) valid without restriction (106		

5.4 REPEATED DOSE TOXICITY

Repeated Dose Toxicity	
Test Substance	
Category Chemical (CAS #):	64741-57-7
Test Substance (CAS #):	64741-57-7; Heavy Vacuum Gas Oil Stock (F-113-01)
Test Substance Purity/Composition and Other Test Substance Comments :	No information available
Category Chemical Result Type :	Measured
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Doses Control group Method/Guideline followed GLP Year Post exposure period Test substance Method/Guideline and Test Condition Remarks	Repeated dose; 4 week dermal exposure Rat Male/Female Sprague-Dawley Dermal 28 days; 4 weeks Daily, 5 days/week 0.01, 0.10, 1.00 ml/kg/day (9.3, 93, 930 mg/kg/day) Yes, untreated Other Yes 1993 None Heavy Vacuum Gas Oil Stock (F-113-01) CAS 64741-57-7 NOTE: After completion of this study, quality control deficiencies were noted with the hematology analyses. It was possible that subtle changes in hematology parameters were not detected. Therefore, a follow-up study was performed, Study No. ATX-930173. The follow-up study included only one dose group, 930 mg/kg/day, the same dose given the high dose group in this study.
	Three groups of ten male and ten female young adult albino Sprague-Dawley rats were administered F-113-01 dermally once daily, five days per week for four weeks, at doses of 0.01, 0.10, 1.00 ml/kg/day (9.3, 93, 930 mg/kg/day). The test article was applied to previously clipped sites on the backs of the animals. The site of application was occluded for a period of approximately six hours following application of the test article. The skin was then wiped to remove residual material. One additional group of ten male and ten female rats served as controls (untreated). The backs of the control group animals were clipped and the occlusive wrap was applied daily, five days per week, for four weeks.
	the study (Mondays, Wednesdays and Fridays) and just prior to necropsy. At the time of necropsy, blood was collected for hematology and clinical chemistry evaluations. Measured hematological parameters were hematocrit, hemoglobin, number of red blood cells, platelets and the number and differential count of white blood cells. The following clinical chemistry 62 / 370

5. Toxicity			ld	Heavy fuel oil
			Date	December 7, 2012
	parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, cholesterol, creatinine, glucose, total protein, triglycerides, urea nitrogen, calcium, chloride, iron, phosphorus, potassium, and sodium, globulin (calculated), NG ratio (calculated).			
	evaluation: adrenals' with articular surface gonads, heart*, duod liver*, lungs* (perfus glands*, rectum*, pit spinal cord, spleen*, thymus*, thyroid*, pa gross lesions. Bone	prain, kidneys, liver ed in 10% neutral *, aorta, cecum, ce a, ileum*, bone and denum*, jejunum*, ed) with trachea , p uitary, peripheral n sternum with bone arathyroid glands, u marrow smears (fe control and high do	r, testes, and ovaries buffered formalin for ervical lymph nodes* I marrow, brain*, eye mammary glands, c bancreas*, skeletal r herve, skin* (untreate e marrow*, testes*, c uterus, vagina, urina emur) were preparec bse groups, those tis	s. The following r possible histological , esophagus, femur es and optic nerve, olon*, kidneys*, nuscle, salivary ed and treated), ovaries*, stomach*, ry bladder*, and any l, preserved and ssues marked with (*)
	were statistically ana done by an appropria	alyzed. Statistical e ate one way analys e groups. First, Bar e equal variance a ual, the testing we	evaluations of equalit sis of variance and a "tlett's test was perfo at the 1 percent level re done using paran	a test for ordered ormed to determine if of significance. If
	For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means are indicated, Dunnett's test were used to determine which treatment groups differ significantly <i>from</i> control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression was also test for linear lack of fit in the model. For the nonparametric procedures, the test of equality of means were performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test were used to determine which treatment groups differ significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed.			differences to determine which n to the ANOVA, a e groups was
				ences among the ed to determine addition to the
	Mean Draize irritation nonparametric proce when appropriate. So by the arc sine trans variances. The test f of significance. All ot significance.	edures described a exes were analyze formation and Coc or equal variance (bove were used on d separately. All rati hran's transformatio (Bartlett) was conduc	this irritation data os were transformed n to stabilize cted at the 1% level
NOAEL/LOAEL		93 mg/kg/day (0.1 930 mg/kg/day (1.		
	Females: NOAEL = LOAEL = *	= 93 mg/kg/day (0. = 930 mg/kg/day (1		
Result Remarks	Clinical: Skin irritation:	Slight in 930 n	ng/kg females	
	Mortality	<i>Males</i> None	<i>Females</i> None	
	(63 / 370		

5. Toxicity			Id Heavy fuel oil	
			Date December 7, 2012	
	Body wt., terminal	Males	Females	
	Body wt., gain	No difference Males	↓ 93 (8%), 930 (9%) mg/kg Females	
	Organ weights Liver, rel bw Liver, rel brain	No difference Males ↑ 930 (10%) mg/kg* No difference	↓ 930 mg/kg Females ↑ 930 (16%) mg/kg* ↑ 930 (8%) mg/kg*	
	Brain, Abs. Kidney, Abs.	No difference No difference	↓ 93 (5%) mg/kg* ↓ 93 (10%), 930 (14%) mg/kg*	
	Kidney, rel brain Hematology Hb Hematocrit	Males ↓ 930 (5%) mg/kg ↓ 930 (8%) mg/kg	↓ 930 (10%) mg/kg* Females ↓ 930 (6%) mg/kg ↓ 930 (10%) mg/kg	
	Serum chemistry Cholesterol	Males No difference	Females ↑ 930 (47%) mg/kg	
	Histopath (control & No test article-relat Testes – normal; C	ed systemic findings		
	Note: * = not consi study directors	dered compound-relate	d and/or biologically relevant by	
Conclusion	Effects defining LOAEL: Male (930 mg/kg/day) Hematocrit, Hb			
	Female (930 mg/kg/c Hematocrit, Hb	lay)		
Reliability	1 - Reliable without restrictions			
Reliability remarks	Similar to guideline study; sufficient detail provided in appendices and tables.			
Key study sponsor	Yes			
Reference	ARCO. 1993. Twenty-eight day dermal toxicity study in rats administered test article F-113-01. Report no. ATX-890011			

Repeated Dose Toxicity	
Test Substance	
Category Chemical (CAS #):	64741-61-3
Test Substance (CAS #):	64741-61-3; Heavy Cycle Oil (F-134)
Test Substance Purity/Composition and Other Test Substance Comments :	No information available
Category Chemical Result	Measured
	64 / 370

Type :	
Type : Type Species Sex Strain Route of admin. Exposure period Frequency of treat. Doses Control group Method/Guideline followed Year GLP Test substance Post exposure period Method/Guiedline and Test Condition Remarks	Repeated dose; 4 week dermal exposure Rat Male/Female Sprague-Dawley Dermal 28 days/4weeks Daily, 5 days/week 0.01, 0.1, 1.0 ml/kg/day (9.9, 99, 990 mg/kg/day) Yes, untreated Other 1992 Yes Heavy Cycle Oil (F-134) CAS 64741-61-3 None Three groups of ten male and ten female young adult albino Sprague-Dawley rats were administered F-134 dermally once daily, five days per week for four weeks, at doses of 0.01, 0.1, 1.0 ml/kg/day (9.9, 99, 990 mg/kg/day). The test article was applied to previously clipped sites on the backs of the animals. The site of application was occluded for a period of approximately six hours following application of the test article. The skin was then wiped to remove residual material. One additional group of ten male and ten female rats served as controls (untreated). The backs of the control group animals were clipped and the occlusive wrap was applied daily, five days per week, for four weeks. The animals were observed twice daily for signs of toxicity and viability. Dermal irritation at the site of application was evaluated daily just prior to the application of the test article, twenty-four hours after the fifth weekly application and just prior to necropsy. Body weights were determined three times per week during the study (Mondays, Wednesdays and Fridays) and just prior to necropsy. At the time of necropsy, blood was collected for hematology and clinical chemistry evaluations. Measured hematological parameters were hematocrit, hemoglobin, number of red blood cells, platelets and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, cholesterol, creatinine, glucose, total protein, triglycerides, urea nitrogen calcium chloride iron phosphorus portassium and sodium
	 animotransierase, cholesteroi, creatinne, glocose, total protein, trigiveendes, urea nitrogen, calcium, chloride, iron, phosphorus, potassium, and sodium, globulin (calculated), NG ratio (calculated). All animals were then killed and necropsied. The following organs were weighed: adrenals, brain, kidneys, liver, testes, and ovaries. The following organs were preserved in 10% neutral buffered formalin for possible histological evaluation: adrenals*, aorta, cecum, cervical lymph nodes*, esophagus, femur with articular surface, ileum*, bone and marrow, brain*, eyes and optic nerve, gonads, heart*, duodenum*, jejunum*, mammary glands, colon*, kidneys*, liver*, lungs* (perfused) with trachea, pancreas*, skeletal muscle, salivary glands*, rectum*, pituitary, peripheral nerve, skin* (untreated and treated), spinal cord, spleen*, sternum with bone marrow*, testes*, ovaries*, stomach*, thymus*, thyroid*, parathyroid glands, uterus, vagina, urinary bladder*, and any gross lesions. Bone marrow smears (femur) were prepared, preserved and maintained. For the control and high dose groups, those tissues marked with (*) were stained and sectioned for examination by a qualified pathologist. Clinical pathology data, terminal organ weights, and organ to body weight ratios were statistically analyzed. Statistical evaluations of equality of means were done by an appropriate one way analysis of variance and a test for ordered response in the dose groups. First, Bartlett's test was performed to determine if the dose groups have equal variance at the 1 percent level of significance. If the variances are equal, the testing were done using parametric methods, otherwise, nonparametric techniques were used.

5. Toxicity	Id Heavy fuel oil Date December 7, 2012			
	For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means are indicated, Dunnett's test were used to determine which treatment groups differ significantly <i>from</i> control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression was also test for linear lack of fit in the model.			
	For the nonparametric procedures, the test of equality of means were performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test were used to determine which treatment groups differ significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. Mean Draize irritation scores were plotted by group and time. The nonparametric procedures described above were used on this irritation data when appropriate. Sexes were analyzed separately. All ratios were transformed by the arc sine transformation and Cochran's transformation to stabilize variances. The test for equal variance (Bartlett) was conducted at the 1% level of significance.			
NOAEL/LOAEL		= 99 mg/kg/day (0.1 ml/k = 990 mg/kg/day (1.0 ml/		
	Females: NOAEL = 9.9 mg/kg/day (0.0.01 ml/kg/day)* LOAEL = 99 mg/kg/day (0.1 ml/kg/day) *Authors indicate "NOEL".			
Result remarks	Clinical: Skin irritation:	Very slight – Mode	rate, dose-related	
	Mortality Males None		<i>Females</i> None	
	Body wt., terminal Males ↓ 990 (11%) mg/kg/day Females No difference Organ weights Brain, rel BW Males ↑ 990 (11%) mg/kg/day			
	Females			
	Liver, Abs	No difference Males No difference Females		
	Liver, rel BW	 ↑ 990 (28%) mg/kg/day Males ↑ 990 (19%) mg/kg/day Females 		
	Liver, rel brain	↑ 990 (33%) mg/kg/day Males No difference Females		
	Kidney, rel brain	↑ 99 (11%), 990 (30%) • Males ↓ 990 (10%) mg/kg/day Females		
		66 / 370		

		No difference	
	Hematology RBC	Males ↓ 990 (6%) mg/kg/day Females	
	Hematocrit	↓ 99 (6%), 990 (9%) mg/kg/day Males ↓ 990 (10%) mg/kg/day Females	
	Hb	↓ 99 (6%), 990 (13%) mg/kg/day Males ↓ 990 (10%) mg/kg/day Females	
	Platelets	↓ 99 (4%), 990 (10%) mg/kg/day Males No difference Females ↓ 990 (33%) mg/kg/day	
	Serum chemistry SGOT	Males No difference Females ↑ 990 (24%) mg/kg/day**	
	Cholesterol	Males No difference	
	Females	↑ 990 (60%) mg/kg/day	
	Histopath (sham	n controls & high dose)	
	Males No test article-	related systemic findings	
	Females No test article-i	related systemic findings	
	Testes – norma	al; Ovaries – normal	
	Note: ** not co biologically	onsidered by study directors to be compound-related and/or relevant	
Conclusion	Conclusion Effects defining LOAEL:		
	Male (990 mg/kg/ Terminal BW; Liv	/day) ⁄er wts; RBC, Hematocrit, Hb	
	Female (99 mg/k Liver wt; RBC, He		
Reliability	1 - Reliable without restrictions		
Reliability remarks	Similar to guideline study; sufficient detail provided in appendices and tables.		
Key study sponsor	Yes		
Reference		enty-eight day dermal toxicity study in rats administered test port no. ATX-90-0082.	

Repeated Dose Toxicity	
Test Substance	
Category Chemical (CAS #):	64741-75-9
Test Substance (CAS #):	64741-75-9; Hydrocracker Recycle Oil (F-127)
Test Substance Purity/Composition and Other Test Substance Comments :	No information available
Category Chemical Result Type :	Measured
Type Species Sex Strain Route of admin. Exposure period Frequency of treat. Doses No. of animals/dose Control group Method/Guideline followed Year GLP Test substance Post exposure period	Repeated dose; 4 week dermal exposure Rat Male/Female Sprague-Dawley Dermal 4 weeks; 28 days Daily, 5 days/week for 4 weeks 0.01, 0.05, 0.25 ml/kg/day (8.4, 42, 210 mg/kg/day) 10 animals/sex/group Yes, untreated Other 1992 Yes Recycle Oil, Hydrocracker (F-127) CAS 64641-75-9 None
Method/Guideline and Test Condition Remarks	Three groups of ten male and ten female young adult albino Sprague-Dawley rats were administered F-127 dermally once daily, five days per week for four weeks, at a dose of 0.01, 0.05, 0.25 ml/kg/day (8.4, 42, 210 mg/kg/day). The test article was applied to previously clipped sites on the backs of the animals. The site of application was occluded for a period of approximately six hours following application of the test article. The skin was then wiped to remove residual material. A fourth group of ten male and ten female rats served as a control. The backs of the control group animals were clipped and the occlusive wrap was applied daily, five days per week, for four weeks.

5. Toxicity			Id Heavy fuel oil Date December 7, 2012
	analyzed: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, cholesterol, creatinine, glucose, total protein, triglycerides, urea nitrogen, calcium, chloride, iron, phosphorus, potassium, and sodium, globulin (calculated), NG ratio (calculated).		
	All animals were then killed and necropsied. The following organs were weighed: adrenals, brain, kidneys, liver, testes, and ovaries. The following organs were preserved in 10% neutral buffered formalin for possible histological evaluation: adrenals*, aorta, cecum, cervical lymph nodes*, esophagus, femur with articular surface, ileum*, bone and marrow, brain*, eyes and optic nerve, gonads, heart*, duodenum*, jejunum*, mammary glands, colon*, kidneys*, liver*, lungs* (perfused) with trachea , pancreas*, skeletal muscle, salivary glands*, rectum*, pituitary, peripheral nerve, skin* (untreated and treated), spinal cord, spleen*, sternum with bone marrow*, testes*, ovaries*, stomach*, thymus*, thyroid*, parathyroid glands, uterus, vagina, urinary bladder*, and any gross lesions. Bone marrow smears (femur) were prepared, preserved and maintained. For the control and high dose groups, those tissues marked with (*) were stained and sectioned for examination by a qualified pathologist.		
	Clinical pathology data, terminal organ weights, and organ to body weight ratios were statistically analyzed. Statistical evaluations of equality of means were done by an appropriate one way analysis of variance and a test for ordered response in the dose groups. First, Bartlett's test was performed to determine if the dose groups have equal variance at the 1 percent level of significance. If the variances are equal, the testing were done using parametric methods, otherwise, nonparametric techniques were used.		
	For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means are indicated, Dunnett's test were used to determine which treatment groups differ significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression was also test for linear lack of fit in the model.		
	performed using the k means were indicated which treatment group	, Dunn's Summed Rank os differ significantly from	equality of means were hificant differences among the test were used to determine a control. In addition to the hotonic trend in the dose response
	Mean Draize irritation scores were plotted by group and time. The nonparametric procedures described above were used on this irritation data when appropriate. Sexes were analyzed separately. All ratios were transformed by the arc sine transformation and Cochran's transformation to stabilize variances. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.		
NOAEL /LOAEL		210 mg/kg/day (0.25 ml/k >210 mg/kg/day (0.25 m	
	Females: NOAEL = 210 mg/kg/day (0.25 ml/kg/day) LOAEL = >210 mg/kg/day (0.25 ml/kg/day)		
	* Note: Authors indic	ate "NOEL"	
Result remarks	Clinical: Skin irritation:	Very slight - moderate	
	Mortality	Males	Females
	6	None 9 / 370	None

	Body wt., termin	al Males No difference	Females No difference	
	Organ weights	Males No difference	Females No difference	
	Hematology	Males No difference	Females No difference	
	Serum chemistry	<i>Males</i> No difference	<i>Females</i> No difference	
	Histopath (sham controls & high dose)			
	Males No test article-related systemic findings			
	Females No test article-related systemic findings			
	Testes – normal; Ovaries – normal			
Conclusion	Effects defining LOAEL:			
Male >210 mg/kg/day (0.25 ml/kg/day) None – highest dose tested was NOAEL for systemic effects Female >210 mg/kg/day (0.25 ml/kg/day) None – highest dose tested was NOAEL for systemic effects				
				Reliability
Reliability remarks	Similar to guideline study; sufficient detail provided in appendices and tables.			
Key study sponsor	Yes			
Reference	ARCO. 1992. Twenty-eight day dermal toxicity study in rats administered test article F-127. Report no. Study No. ATX-900026.			

Repeated Dose Toxicity			
Test Substance			
Category Chemical (CAS #):	64741-81-7		
Test Substance (CAS #):	64741-81-7; Coker Heavy Gas Oil (F-97-01)		
Test Substance Purity/Composition and Other Test Substance Comments :	No information available		
Category Chemical Result Type :	Measured		
	70 / 370		

Id Heavy fuel oilDate December 7, 2012

Туре	Repeated dose; 4 week dermal exposure
Species	Rat
Sex	Male/Female
Strain	Sprague-Dawley
Route of admin.	Dermal
Exposure period	28 days/4 weeks
Frequency of treat.	Daily, 5 days/week for 4 weeks
Doses	0.001 (10% test article in acetone), 0.1, 1.0 ml/kg/day (0.93, 93, 930 mg/kg/day)
Control group	Yes, untreated and acetone (1.0 ml/kg)
Method/Guideline followed:	Other
Year	1990
GLP	Yes
Test substance	Coker, Heavy Gas Oil (F-97-01) CAS 684741-81-7
Post exposure period	None
Method/Guideline and Test Condition Remarks	Three groups of ten male and ten female young adult albino Sprague-Dawley rats were administered F97-01 dermally once daily, five days per week for four
	weeks, at doses of 0.001 (10% test article in acetone), 0.1, 1.0 ml/kg/day (0.93, 93, 930 mg/kg/day. The test article was applied to previously clipped sites on the backs of the animals. The site of application was occluded for a period of approximately six hours following application of the test article. The skin was then wiped to remove residual material. Two additional groups of ten male and ten female rats served as controls (untreated and acetone). The backs of the control group animals were clipped and the occlusive wrap was applied daily,
	five days per week, for four weeks.
	The animals were observed twice daily for signs of toxicity and viability. Dermal irritation at the site of application was evaluated daily just prior to the application of the test article, twenty-four hours after the fifth weekly application and just
	prior to necropsy. Body weights were determined three times per week during the study (Mondays, Wednesdays and Fridays) and just prior to necropsy.
	At the time of necropsy, blood was collected for hematology and clinical chemistry evaluations. Measured hematological parameters were hematocrit, hemoglobin, number of red blood cells, platelets and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, cholesterol, creatinine, glucose, total protein, triglycerides, urea nitrogen, calcium, chloride, iron, phosphorus, potassium, and sodium, globulin (calculated), NG ratio (calculated).
	All animals were then killed and necropsied. The following organs were weighed: adrenals, brain, kidneys, liver, testes, and ovaries. The following organs were preserved in 10% neutral buffered formalin for possible histological evaluation: adrenals*, aorta, cecum, cervical lymph nodes*, esophagus, femur with articular surface, ileum*, bone and marrow, brain*, eyes and optic nerve, gonads, heart*, duodenum*, jejunum*, mammary glands, colon*, kidneys*, liver*, lungs* (perfused) with trachea , pancreas*, skeletal muscle, salivary glands*, rectum*, pituitary, peripheral nerve, skin* (untreated and treated), spinal cord, spleen*, sternum with bone marrow*, testes*, ovaries*, stomach*, thymus*, thyroid*, parathyroid glands, uterus, vagina, urinary bladder*, and any gross lesions. Bone marrow smears (femur) were prepared, preserved and maintained. For the control and high dose groups, those tissues marked with (*) were stained and sectioned for examination by a qualified pathologist.
	Clinical pathology data, terminal organ weights, and organ to body weight ratios were statistically analyzed. Statistical evaluations of equality of means were done by an appropriate one way analysis of variance and a test for ordered response in the dose groups. First, Bartlett's test was performed to determine if the dose groups have equal variance at the 1 percent level of significance. If the variances are equal, the testing were done using parametric methods, otherwise, nonparametric techniques were used.

5. Toxicity				Heavy fuel oil December 7, 2012
	For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means are indicated, Dunnett's test were used to determine which treatment groups differ significantly <i>from</i> control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression was also test for linear lack of fit in the model. For the nonparametric procedures, the test of equality of means were performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test were used to determine which treatment groups differ significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed.			
NOAEL/LOAEL	Males: NOAEL = 0.93 mg/kg/day LOAEL = 93 mg/kg/day (0.1 ml/kg/day)			
	Females: NOAEL = 0.93 mg/kg/day LOAEL = 93 mg/kg/day (0.1 ml/kg/day)			
Result remarks	Clinical: Skin irritation:	Slight – moderate, o	dose related	
	Mortality	<i>Males</i> None	Females 10% 0.93 mg	g/kg/day**
	Body wt., termina	al Males No difference Females ↓ 930 (9%) mg/kg/d	ау	
	Organ weights Spleen, Abs	Males ↑ 930 (24%) mg/kg/day Females No difference		
	Spleen, rel bw	Males ↑ 930 (21%) mg/kg/day		
		Females ↑ 930 (17%) mg/kg/day		
	Spleen, rel brain Males ↑ 930 (35%) mg/kg/day			
		Females No difference		
	Liver, Abs	Males		
		72 / 370		

-			Date	December 7, 2012
Liver, ı	rel bw	↑ 930 (24%) mg/kg/day Females No difference Males ↑ 93 (8%), 930 (23%) mg/kg/day		
		Females ↑ 930 (12%) mg/kg/day		
Liver, r	rel brain	Males ↑ 930 (35%) mg/kg/day Females No difference		
Hematol RBC	logy	Males ↓ 930 (9%) mg/kg/day Females		
Hemat	tocrit	↓ 93 (6%), 930 (9%) mg/kg/day Males ↓ 93 (5%), 930 (11%) mg/kg/day		
Females				
Hb		↓ 930 (10%) mg/kg/day Males ↓ 93 (7%), 930 (13%) mg/kg/day Females		
Neutro ↓ 0.93		↓ 930 (11%) mg/kg/day Males g/kg/day**		
Lymph	nocytes	Females No difference Males ↑ 0.93 (10%) mg/kg/day** Females No difference		
Serum ch	hemistry	Males No difference Females No difference		
		ne & sham controls; 0.93 & 930 i elated systemic findings	mg/kg	
Testes	s – normal;	; Ovaries – normal		
Note: **		dered by study directors to be com ally relevant	npound	I-related and/or
Conclusion Effects of	defining L	-OAEL:		
	(93 mg/kg/ Liver wt, re	day) el. bw; ↓ Hematocrit, ↓Hb		
		73 / 370		

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	Female (93 mg/kg/day) ↓ RBC
Reliability	1 – Reliable without restrictions
Reliability remarks	Similar to guideline study; sufficient detail provided in appendices and tables.
Key study sponsor	Yes
Reference	: ARCO. 1990. Twenty-eight day dermal toxicity study in rats administered test article F97-01. Report no. Study No. ATX-88-0092.

Repeated Dose Toxicity	
Test Substance	
Category Chemical (CAS #):	64741-45-3
Test Substance (CAS #):	64741-45-3; Atmospheric Tower Bottoms (F-132)
Test Substance Purity/Composition and Other Test Substance Comments :	No information available
Category Chemical Result Type :	Measured
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Doses Control group Method/Guideline followed Year GLP Test substance Post exposure period Method/Guideline and Test Condition Remarks	Repeated dose; 4 week dermal exposure Rat Male/Female Sprague-Dawley Dermal 28 days Daily, 5 days/week for 4 weeks 0.01, 0.25, 1.0 ml/kg/day (9.4, 235, 940 mg/kg/day) Yes, untreated Other 1992 Yes Atmospheric Tower Bottoms (F-132) CAS 64741-45-3 None Three groups of ten male and ten female young adult albino Sprague-Dawley rats were administered F-132 dermally once daily, five days per week for four weeks, at doses of 0.01, 0.25, 1.0 ml/kg/day (9.4, 235, 940 mg/kg/day). The test article was applied to previously clipped sites on the backs of the animals. The site of application was occluded for a period of approximately six hours following application of the test article. The skin was then wiped to remove residual material. One additional group of ten male and ten female rats served as an untreated control. The backs of the control group animals were clipped and the occlusive wrap was applied daily, five days per week, for four weeks.

At the time of necropsy, blood was collected for hematology and clinical chemistry evaluations. Measured hematological parameters were hematocrit, hemoglobin, number of red blood cells, platelets and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, cholesterol, creatinine, glucose, total protein, triglycerides, urea nitrogen, calcium, chloride, iron, phosphorus, potassium, and sodium, globulin (calculated), NG ratio (calculated).

All animals were then killed and necropsied. The following organs were weighed: adrenals, brain, kidneys, liver, testes, and ovaries. The following organs were preserved in 10% neutral buffered formalin for possible histological evaluation: adrenals*, aorta, cecum, cervical lymph nodes*, esophagus, femur with articular surface, ileum*, bone and marrow, brain*, eyes and optic nerve, gonads, heart*, duodenum*, jejunum*, mammary glands, colon*, kidneys*, liver*, lungs* (perfused) with trachea , pancreas*, skeletal muscle, salivary glands*, rectum*, pituitary, peripheral nerve, skin* (untreated and treated), spinal cord, spleen*, sternum with bone marrow*, testes*, ovaries*, stomach*, thymus*, thyroid*, parathyroid glands, uterus, vagina, urinary bladder*, and any gross lesions. Bone marrow smears (femur) were prepared, preserved and maintained. For the control and high dose groups, those tissues marked with (*) were stained and sectioned for examination by a qualified pathologist.

Clinical pathology data, terminal organ weights, and organ to body weight ratios were statistically analyzed. Statistical evaluations of equality of means were done by an appropriate one way analysis of variance and a test for ordered response in the dose groups. First, Bartlett's test was performed to determine if the dose groups have equal variance at the 1 percent level of significance. If the variances are equal, the testing were done using parametric methods, otherwise, nonparametric techniques were used.

For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means are indicated, Dunnett's test were used to determine which treatment groups differ significantly *from* control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression was also test for linear lack of fit in the model.

For the nonparametric procedures, the test of equality of means were performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test were used to determine which treatment groups differ significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed.

Mean Draize irritation scores were plotted by group and time. The nonparametric procedures described above were used on this irritation data when appropriate. Sexes were analyzed separately. All ratios were transformed by the arc sine transformation and Cochran's transformation to stabilize variances. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.

NOAEL/LOAEL		= 2350 mg/kg/day		
		= > 940 mg/kg/da	,	
	Females: NOAEL =			
	LOAEL	= > 940 mg/kg/da	y (1.0 ml/kg/day)	
	* Note: Authors ind	icate "NOEL"		
Result remarks	Clinical:			
	Skin irritation:	None – very	minimal in all dosed groups	
	Mortality	Males	Females	
	····· y	75 (070		
		75 / 370		

5. Toxicity None None

		None	None
	Body wt., terminal	Males No difference	Females No difference
	Organ weights Liver, rel BW Brain, Abs	Males No difference ↓ 9.4 mg/kg (6%)*	Females ↑ 235 mg/kg (9%)* No difference
	Hematology Platelets Hb HCT	Males No difference No difference No difference	Females ↓ 940 mg/kg (14%)* ↓ 940 mg/kg (6%)* ↓ 940 mg/kg (7%)*
	Serum chemistry Glucose Triglycerides Albumin Globulin A/G Ratio Alk. Phos. Potassium Chloride Phosphorous Histopath (control & No test article-relate Testes – normal; Ov	ed systemic findings aries – normal	Females ↑ 940 mg/kg (22%)* No difference No difference ↓ 940 mg/kg (26%)* No difference ↓ 940 mg/kg (6%)* No difference ↓ 940 mg/kg (6%)* No difference
Conclusion	directors Effects defining LOA		
	Male >940 mg/kg/da None, highest dose Female >940 mg/kg		
Reliability	1 – Reliable without re	estrictions	
Reliability remarks	Similar to guideline stu	udy; sufficient detail prov	ided in appendices and tables.
Key study sponsor	Yes		
Reference		eight day dermal toxicity no. Study No. ATX-90-0	v study in rats administered test 066.

Repeated Dose Toxicity

Test Substance

Category Chemical (CAS #): 64741-57-7

Test Substance (CAS #): 64741-57-7; Heavy Paraffinic Vacuum Distillate (F-128)

Test Substance Purity/Composition and Other Test Substance Comments :	No information available
Category Chemical Result Type :	Measured
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Doses No. of animals/dose Control group Method/Guideline followed	Repeated dose; 4 week dermal exposure Rat Male/Female Sprague-Dawley Dermal 28 days; 4 weeks Daily, 5 days/week for 4 weeks 0.1, 1.0, 2.5 ml/kg/day (94, 940, 2350 mg/kg/day) 10/sex/dose Yes, untreated
Year GLP Test substance Post exposure period Method/Guideline and Test Condition Remarks	Other 1992 Yes Vacuum Distillate, Heavy Paraffin (F-128) CAS 64741-57-7 None Three groups of ten male and ten female young adult albino Sprague-Dawley rats were administered F-128 dermally once daily, five days per week for four weeks, at doses of 0.1, 1.0, 2.5 ml/kg/day (94, 940, 2350 mg/kg/day). The test article was applied to previously clipped sites on the backs of the animals. The site of application was occluded for a period of approximately six hours following application of the test article. The skin was then wiped to remove residual material. One additional group of ten male and ten female rats served as an untreated control. The backs of the control group animals were clipped and the occlusive wrap was applied daily, five days per week, for four weeks.
	The animals were observed twice daily for signs of toxicity and viability. Dermal irritation at the site of application was evaluated daily just prior to the application of the test article, twenty-four hours after the fifth weekly application and just prior to necropsy. Body weights were determined three times per week during the study (Mondays, Wednesdays and Fridays) and just prior to necropsy.
	At the time of necropsy, blood was collected for hematology and clinical chemistry evaluations. Measured hematological parameters were hematocrit, hemoglobin, number of red blood cells, platelets and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, cholesterol, creatinine, glucose, total protein, triglycerides, urea nitrogen, calcium, chloride, iron, phosphorus, potassium, and sodium, globulin (calculated), NG ratio (calculated).
	All animals were then killed and necropsied. The following organs were weighed: adrenals, brain, kidneys, liver, testes, and ovaries. The following organs were preserved in 10% neutral buffered formalin for possible histological evaluation: adrenals*, aorta, cecum, cervical lymph nodes*, esophagus, femur with articular surface, ileum*, bone and marrow, brain*, eyes and optic nerve, gonads, heart*, duodenum*, jejunum*, mammary glands, colon*, kidneys*, liver*, lungs* (perfused) with trachea , pancreas*, skeletal muscle, salivary glands*, rectum*, pituitary, peripheral nerve, skin* (untreated and treated), spinal cord, spleen*, sternum with bone marrow*, testes*, ovaries*, stomach*, thymus*, thyroid*, parathyroid glands, uterus, vagina, urinary bladder*, and any gross lesions. Bone marrow smears (femur) were prepared, preserved and maintained. For the control and high dose groups, those tissues marked with (*) were stained and sectioned for examination by a qualified pathologist.

5. Toxicity	ld Heavy fuel oil Date December 7, 2012
	Clinical pathology data, terminal organ weights, and organ to body weight ratios were statistically analyzed. Statistical evaluations of equality of means were done by an appropriate one way analysis of variance and a test for ordered response in the dose groups. First, Bartlett's test was performed to determine if the dose groups have equal variance at the 1 percent level of significance. If the variances are equal, the testing were done using parametric methods, otherwise, nonparametric techniques were used.
	For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means are indicated, Dunnett's test were used to determine which treatment groups differ significantly <i>from</i> control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression was also test for linear lack of fit in the model.
	For the nonparametric procedures, the test of equality of means were performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test were used to determine which treatment groups differ significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed.
	Mean Draize irritation scores were plotted by group and time. The nonparametric procedures described above were used on this irritation data when appropriate. Sexes were analyzed separately. All ratios were transformed by the arc sine transformation and Cochran's transformation to stabilize variances. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.
NOAEL/LOAEL	Males: NOAEL = 2.5 ml/kg/day (2350 mg/kg/day) LOAEL = > 2.5 ml/kg/day (2350 mg/kg/day) Females: NOAEL = 0.1 ml/kg/day (94 mg/kg/day) LOAEL = 1.0 ml/kg/day (940 mg/kg/day)

	Mortality Body wt., termi Body wt., gain Organ weights Liver, Abs	Male No di	Males None Males No difference Males No difference	Females None Females No difference Females No difference
	Body wt., gain Organ weights	Male No di	No difference Males No difference	No difference Females
	Organ weights	No di	No difference s	
		No di		
			ifference	
		-		
		Fema	ales	
		↑ 940	0 (14%), 2350 (25%)) mg/kg
	Liver, rel BW	Male : ↑ 235	s 50 mg/kg (10%)*	
F	⁻ emales	↑ 940	0 (16%), 2350 (28%)) mg/kg
	Liver, rel Br	Fema	ifference) mg/kg
	Hematology Hb HCT Platelets		Males No difference No difference No difference	Females ↓ 2350 mg/kg (5%) ↓ 2350 mg/kg (8%) ↓ 2350 mg/kg (19%)*
	Serum chemiste Cholesterol Total Protein	ry	Males No difference No difference	Females ↑ 2350 mg/kg (51%) ↑ 2350 mg/kg (7%)*
		-relate	high dose) d systemic findings /aries – normal	
Conclusion		jically	relevant	s to be compound-related and/or
	Male (>2350 mg None – highest (ay) ested was NOAEL f	or systemic effects
	Female (940 mg ↑ Abs & Rel liver		ay)	
Reliability	1 – Reliable with	out re	strictions	
Reliability remarks	Similar to guideli	ne stu	dy; sufficient detail	provided in appendices and tables.
Key study sponsor	Yes			
			eight day dermal tox no. Study No. ATX-9	cicity study in rats administered test 90-0034

Repeated Dose Toxicity TEST SUBSTANCE Category Chemical: 64741-57-7 **Test Substance:** 64741-57-7; Heavy Vacuum Gas Oil (HVGO) Test Substance Heavy Vacuum Gas Oil (CRU No. 85244) Purity/Composition and Other Test Substance PAC (Polycyclic Aromatic Compound) Content - report no. Comments: 64348ZV (Mobil, 1991) Sample DMSO 1-ARC 2-ARC 3-ARC 4-ARC 5-ARC 6-ARC 7-A wt.%¹ $(\%)^2$ # (%) (%) (%) (%) (%) (%) 1.24 85244 6.20 0.00 0.06 2.48 0.00 1.86 0.50 1) Percent of DMSO-extractable PACs, determined by the PAC 2 method as described in API (2008). 2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings. **Category Chemical Result** Measured Type : Туре Repeated dose; 90 day (13 week) dermal exposure **Species** Rat Male/Female Sex Sprague-Dawley Strain Dermal Route of admin. Exposure period 13 weeks Frequency of treatm. Daily, 5 times/week Doses 30, 125, 500 & 2000 mg/kg/day No. of animals/dose 10/sex/dose Control group Yes. untreated Method/Guideline followed Other Year 1988 GLP No data Heavy Vacuum Gas Oil (HVGO) Sample 85244 CAS 64741-57-7 **Test substance** Post exposure period None Method/Guideline and Test Hair was clipped from the entire trunk of each animal within 24 hours prior to initial **Condition Remarks** treatment; the clipping was repeated weekly throughout the study. The test substance was applied to the back with a syringe and dosing needle: the test substance was spread evenly over the site with the side of the dosing needle. The site was left uncovered and the rats were fitted with cardboard Elizabethan collars to minimize ingestion of the test substance. Sham-exposed controls on the same procedure and schedule as the treated animals. Animals were dosed on 5 consecutive days per week. At 24 hours after the fifth dose, residual test substance was wiped off. Endpoints during the biophase included daily observation of clinical signs and body weights measured weekly. Blood samples were obtained from animals at weeks 5 and 13. Hematological parameters included hematocrit, hemoglobin, number of red blood cells, and the number of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase (glutamic puruvic transaminases), aspartate aminotransferase (glutamic oxaloacetic transaminases), cholesterol, creatinine, glucose, lactate dehydrogenase, total bilirubin, total protein, triglycerides, urea nitrogen, uric acid, calcium, chloride, phosphorus, potassium, and sodium. All animals were then killed and necropsied. The following organs were weighed: kidneys, adrenals, liver, spleen, thymus. Histological slides on 20 tissues, including

5. Toxicity	Id Heavy fuel oil	
	Date December 7, 2012	
	bone marrow, were prepared and examined microscopically by a pathologist. Sperm head morphology was also examined in the control and high dose animals	3.
	Statistical analysis: Not described.	
NOAEL/LOAEL	Authors determined: Males: NOAEL = 125 mg/kg/day LOAEL = 500 mg/kg/day Females: NOAEL = 125 mg/kg/day LOAEL = 500 mg/kg/day Reviewer determined: LOAEL = 125 mg/kg/day (male and female)	
Result	Clinical signs:2/10 males died in 2000 mg/kgSkin irritationNone	
	Body wt gain ↓ in both sexes at 2000 mg/kg (Taken from fig in report) Hematol Male Female RBC (125 mg/kg) ↓ 30% ↓ 13% (30 mg/kg) ↓ 6% ↓ 6% Hb 125 mg/kg) ↓ 29% ↓ 18% (30 mg/kg) ↓ 8% ↓ 13% HCT 125 mg/kg) ↓ 26% ↓ 13%	
	(30 mg/kg) ↓ 8% Platelets (125 mg/kg) ↓ 48% ↓ 46% (30 mg/kg) ↓ 23%	
	Serum chemistryMaleFemaleTotal bilirubinall doses $\downarrow 21-38\%^*$ $\downarrow 28-39\%^*$ Cholesterol500 mg/kg $\uparrow 53\%$ $\uparrow 47\%$ 2000 mg/kg $\uparrow 75\%$ $\uparrow 98\%$ Uric acid2000 mg/kg $\downarrow 43\%$ $\downarrow 55\%$ Glucose2000 mg/kg $\downarrow 14\%$ SDH2000 mg/kg $\uparrow 100\%$ $\uparrow 75\%$	
	500 mg/kg ↑ 63% * not dose-related • Organ weights (Rel) Male Female Kidney ↑ 22% ↑ 19% at 2000 Liver 2000 mg/kg ↑ 52% ↑ 87%	
	500 mg/kg ↑ 22% ↑ 32% Spleen 2000 mg/kg ↑ 38% ↑ 21% 500 mg/kg ↑ 31% ↑ 16% Thymus 2000 mg/kg ↓ 44% ↓ 54% 500 mg/kg ↓ 29% ↓ 21%	
	NB No Absolute weights given in report	
	Histopath:Bone marrow at 2000 mg: decreased erythropoiesis in 9/10 males and 1/10 females. fibrosis (3/10) and increased vacuoles (4/10) in males Thymus : lymphocyte depletion at 500 and 2000 mg/kg in both sexes Spleen: Reduced lymphocytes and megakaryocytes Sperm evaluation	
	NOTE: No body wt data given – shown only as diag No absolute organ weight given	
Conclusion	Authors: LOAEL = 500 mg/kg (Authors) NB Bilirubin was affected at all dose levels. Hematological parameters affected at 125 mg/kg Reviewers: LOAEL = 125 mg/kg/day	

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Reliability	2 – Reliable with restrictions.
Reliability remarks	Poorly reported study and not reported completely.
Key study sponsor	Yes
Reference	Mobil, 1988. Thirteen-week toxicity study by dermal application of Heavy Vacuum Gas Oil (HVGO) to rats. Final Report on study 61590 from Mobil Environmental and Health Science Laboratory, Princeton, NJ.
	Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in Heavy Vacuum Oil. Mobil Environmental and Health Sciences Laboratory Report no. 64348ZV
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009

Test Substance	
Category Chemical (CAS #): 64741-62-4	
Test Substance (CAS #): 64741-62-4; FCCU Clarified Oil (F-115-01)	
Test SubstancePurity/Composition and Other Test SubstanceOther Test SubstanceComments :	
Category Chemical Result Type : Measured	
TypeRepeated dose; 4 week dermal exposureSpeciesRatSexMale/FemaleStrainSprague-DawleyRoute of admin.DermalExposure period28 days; 4 weeksFrequency of treat.Daily, 5 days/week for 4 weeksDosesIn acetone0.01 (1% in acetone), 0.1 (10% in acetone), 1.0 (10% acetone), 50.0 (10% in acetone) mg/kg/dayNeat1.0, 10.0, 50.0 mg/kg/day	6 in acetone), 10.0 (10% in
No. of animals/dose Control group10/sex/dose Yes, untreated and acetone (.45 ml/kg)Method/Guideline followed	
YearOtherYear1993GLPYesTest substanceFCCU Clarified Oil (F-115-01) CAS 64741-62-4Post exposure periodNone82 / 370	

Method/Guideline and Test Condition Remarks

Ten groups of ten male and ten female young adult albino Sprague-Dawley rats were administered F-115-01 dermally once daily, five days per week for four weeks, at doses 0.01 (1% in acetone), 0.1 (10% in acetone), 1.0 (10% in acetone), 1.0 (10% in acetone), 50.0 (10% in acetone) mg/kg/day and 1.0, 10.0, 50.0 mg/kg/day, including a sham and acetone control. The test article was applied to previously clipped sites on the backs of the animals. The site of application was occluded for a period of approximately six hours following application of the test article. The skin was then wiped to remove residual material. The backs of the control group animals were clipped and the occlusive wrap was applied daily, five days per week, for four weeks.

The animals were observed twice daily for signs of toxicity and viability. Dermal irritation at the site of application was evaluated daily just prior to the application of the test article, twenty-four hours after the fifth weekly application and just prior to necropsy. Body weights were determined three times per week during the study (Mondays, Wednesdays and Fridays) and just prior to necropsy.

At the time of necropsy, blood was collected for hematology and clinical chemistry evaluations. Measured hematological parameters were hematocrit, hemoglobin, number of red blood cells, platelets and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, cholesterol, creatinine, glucose, total protein, triglycerides, urea nitrogen, calcium, chloride, iron, phosphorus, potassium, and sodium, globulin (calculated), NG ratio (calculated).

All animals were then killed and necropsied. The following organs were weighed: adrenals, brain, kidneys, liver, testes, and ovaries. The following organs were preserved in 10% neutral buffered formalin for possible histological evaluation: adrenals*, aorta, cecum, cervical lymph nodes*, esophagus, femur with articular surface, ileum*, bone and marrow, brain*, eyes and optic nerve, gonads, heart*, duodenum*, jejunum*, mammary glands, colon*, kidneys*, liver*, lungs* (perfused) with trachea, pancreas*, skeletal muscle, salivary glands*, rectum*, pituitary, peripheral nerve, skin* (untreated and treated), spinal cord, spleen*, sternum with bone marrow*, testes*, ovaries*, stomach*, thymus*, thyroid*, parathyroid glands, uterus, vagina, urinary bladder*, and any gross lesions. Bone marrow smears (femur) were prepared, preserved and maintained. For the control and high dose groups, those tissues marked with (*) were stained and sectioned for examination by a qualified pathologist.

Clinical pathology data, terminal organ weights, and organ to body weight ratios were statistically analyzed. Statistical evaluations of equality of means were done by an appropriate one way analysis of variance and a test for ordered response in the dose groups. First, Bartlett's test was performed to determine if the dose groups have equal variance at the 1 percent level of significance. If the variances are equal, the testing were done using parametric methods, otherwise, nonparametric techniques were used.

For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means are indicated, Dunnett's test were used to determine which treatment groups differ significantly *from* control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression was also test for linear lack of fit in the model.

For the nonparametric procedures, the test of equality of means were performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test were used to determine which treatment groups differ significantly from control. In addition to the Kruskal-Wallis test,

5. Toxicity				Heavy fuel oil December 7, 2012
	Jonckheere's test fo	or monotonic trend	in the dose response	was performed.
	nonparametric proc appropriate. Sexes arc sine transformat test for equal varian	edures described a were analyzed sep ion and Cochran's ce (Bartlett) was co	arately. All ratios wer transformation to stal	his irritation data when e transformed by the bilize variances. The vel of significance. All
NOAEL/LOAEL	LOAEL = Females: NOAEL	= 1 mg/kg/day* = 10 mg/kg/day = 1 mg/kg/day* = 10 mg/kg/day		
	LOAEL = Females: NOAEL	= 10 mg/kg/day* = 50 mg/kg/day = 1 mg/kg/day* = 10 mg/kg/day		
	Females: NOAEL = LOAEL = * Note: Authors inc	= 10 mg/kg/day (ac	etone group)	
Result remarks	Clinical: Skin irritation:	Slight		
	Mortality	Males None	<i>Females</i> None	
	Body wt., termina	No difference Females	3%) mg/kg/day	
	Organ weights Brain, rel bw	Males No difference Females) malla	
	Liver, Abs	↑ 50.0 (neat) (11% Males ↑ 50.0 (acetone) (2 Females	22%) mg/kg/day	
	Liver, rel bw		24%) mg/kg/day %), 50.0 (acetone) (29%), 50.0 (neat) (15%)
		mg/kg/day Females ↑ 10.0 (acetone) (14	1%), 50.0 (acetone) (355	%), 10.0 (neat) (17%), 50.0
		(neat) (25%) mg/l	xg/day	
	Liver, rel brain	Males ↑ 10.0 (acetone) (*	13%), 50.0 (acetone)	(24%) mg/kg/day
		84 / 370		

Females

 \uparrow 50.0 (acetone) (23%), 50.0 (neat) (13%) mg/kg/day

Kidney, Abs	Males
	↓ 50.0 (acetone) (12%) mg/kg/day** Females
	↓ 50.0 (neat) (13%) mg/kg/day**
Kidney, rel brain	Males ↓ 50.0 (acetone) (9%), 50.0 (neat) (11%) mg/kg/day**
	Females
Thymus, Abs	No difference Males
	↓ 50.0 (acetone) (45%), 50.0 (neat) (23%) mg/kg/day Females
	↓ 50.0 (acetone) (45%), 50.0 (neat) (33%) mg/kg/day
Thymus, rel bw	Males ↓ 50.0 (acetone) (45%) mg/kg/day
	Females
	\downarrow 50.0 (acetone) (39%), 50.0 (neat) (19%) mg/kg/day
Thymus,rel brain	
	↓ 50.0 (acetone) (43%), 50.0 (neat) (27%) mg/kg/day Females
	\downarrow 50.0 (acetone) (45%), 50.0 (neat) (30%) mg/kg/day
Ovaries, Abs	Females
	↓ 50.0 (acetone) (19%) mg/kg/day**
Ovaries, rel bw $\downarrow 1.0 \text{ (acetone)} (1)$	remaies 17%) mg/kg/day**
Ovaries, rel brair	n Females ↓ 1.0 (acetone) (15%), 50.0 (acetone) (19%) mg/kg/day**
Adrenals, rel bra	in
	Males No difference
	Females ↑ 10.0 (acetone) (20%) mg/kg/day**
Hematology RBC	Males
	↓ 10.0 (acetone) (12%), 50.0 (acetone) (12%), 50.0 (neat) (14%) mg/kg/day
	Females
Hematocrit	No difference Males
	↓ 10.0 (acetone) (13%), 50.0 (acetone) (13%), 50.0 (neat) (15%) mg/kg/day
	(1070) mg/kg/kdy
Females	
Hb	↓ 50.0 (acetone) (16%) mg/kg/day Males
	↓ 10.0 (acetone) (9%), 50.0 (acetone) (12%), 50.0 (neat) (15%)
	mg/kg/day Females
Neutrophils	↓ 50.0 (acetone) (16%) mg/kg/day Males
•	138%) mg/kg/day**

		Females
		No difference
	Platelets	Males
	- Intelete	No difference
		Females
		↓ 50.0 (neat) (16%) mg/kg/day**
		φ - · · · (· · ·) (· · · ·) δ δ · · ·)
	Serum chemistry	V
	BUN	Males
	2011	↑ 50.0 (acetone) (25%), 50.0 (neat) (28%) mg/kg/day
		Females
	SGPT	↑ 50.0 (acetone) (34%), 50.0 (neat) (17%) mg/kg/day Males
	30F I	↓ 0.1 (acetone) (17%), 10.0 (acetone) (24%), 50.0 (acetone)
		(28%) mg/kg/day** Females
		No difference
	Cholesterol	Males
		No difference
		Females
		↑ 10.0 (acetone) (32%), 50.0 (acetone) (96%), 50.0 (neat) (76%) mg/kg/day
	Potassium	Males
		No difference
	Glucose	↓ 10 (neat) (12%), 50.0 (neat) (11%) mg/kg/day** Males
	Glucose	No difference
		Females
		↑ 50.0 (acetone) (27%) mg/kg/day**
		t one controls & 50 mg/kg (10% in acetone) -related systemic findings
	Testes – norn	nal; Ovaries – normal
		nsidered by study directors to be compound-related and/or gically relevant
Conclusion	Effects defining	g LOAEL:
	Acetone Grps	
		etone) mg/kg/day
		, rel. bw & brain; ↓RBC, ↓ Hematocrit, ↓Hb
		(acetone) mg/kg/day
	↑ Liver wt	, rel. bw; ↑ cholesterol
	<u>Neat Grps</u>	
	Male 50.0 mg	/kɑ/dav
		, rel. bw; \downarrow thymus wt, abs & rel brain; \downarrow RBC, \downarrow Hematocrit, \downarrow Hb
	Female 10.0	
	↑ Liver wt	, rel. bw
Reliability	1 - Reliable with	out restrictions
Reliability remarks	Similar to guideli	ine study; sufficient detail provided in appendices and tables.
Key study sponsor	Yes	
Reference	ARCO. 1993. Tv	venty-eight day dermal toxicity study in rats administered test
		86 / 370

article F-115-01. Report no. ATX-89-0077.

Repeated Dose Toxicity									
Test Substance									
Category Chemical:	64741-62-4								
Test Substance:	64741-62-4; Clarified Slurry Oil (CSO)								
Test Substance Purity/Composition	Clarified Slurry Oil (CRU No 86001) PAC (Polycyclic Aromatic Compound) Content – Report No. 6434						10.40		
and Other Test Substance Comments:	ZA (Mobil, 1		(Polycyci	ic Aromati	c Compol	una) Cont	ent – Rep	ort no. 64	1348
	Sample #	DMSO wt.% ¹	1-ARC (%) ²	2-ARC (%)	3-ARC (%)	4-ARC (%)	5-ARC (%)	6-ARC (%)	7-Al (%)
	86001	64.20	0.00	2.57	25.68	19.26	6.42	3.21	0.64
	 Percent method as ARC is " have 1 aron with 2 aroms 	s describe aromatic i natic ring	ed in API (ring class' within the	2008) <mark>.</mark> '. "ARC 1 total sam	(%)" is the ple. "ARC	e weight p 2 (%)" is	ercent of	PACs that	:
Category Chemical Result Type :	Measured								
Type Species Sex Strain Route of admin. Exposure Period Frequency of treatm. Doses No. of animals /dose Control group Method/Guideline Followed: Year GLP Test substance Post exposure period Method	Repeated of Rat Male/Femal Sprague-Da Dermal 13 weeks Daily, 5 day 8, 30, 125, 10/sex/dose Yes, untrea Other 1985 Yes Clarified Ste None	le awley ys/week 500 & 200 e ated urry Oil (C	00 mg/kg/ SO) Sam	day ple 10298	102 (CRI	J 86001)	24 hours i	orior to ini	tial
IVIETNOQ	Hair was clipped from the entire trunk of each animal within 24 hours prior to initial treatment; the clipping was repeated weekly throughout the study. The test substance was applied to the back with a syringe and dosing needle; the test substance was spread evenly over the site with the side of the dosing needle. The site was left uncovered and the rats were fitted with cardboard Elizabethan collars to minimize ingestion of the test substance. Sham-exposed controls on the same procedure and schedule as the treated animals. Animals were dosed on 5 consecutive days per week. At 24 hours after the fifth dose, residual test substance was wiped off, but collars remained throughout the weekend, since oil could not be completely removed.								
	Endpoints d	luring the	biophase	included o	daily obse	rvation of	clinical si	gns and b	ody
		;	87 / 370						

5. Toxicity			ld Heavy fuel oil		
o. roxicity			Date December 7, 2012		
	weights measured weekly. Blood samples were obtained from animals (non- anesthetized) via the orbital venous sinus through a non-heparinized capillary tube, on study days 28, 29 or 30 and 91, 92, or 93. Hematological parameters included hematocrit, hemoglobin, number and morphology of red blood cells, and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase (glutamic puruvic transaminases), aspartate aminotransferase (glutamic oxaloacetic transaminases), cholesterol, creatinine, glucose, lactate dehydrogenase, total bilirubin, total protein, triglycerides, urea nitrogen, uric acid, calcium, chloride, phosphorus, potassium, and sodium. Urine samples were also collected for analysis of specific gravity, pH, glucose, occult blood, ketone bodies, albumin, urobilogen, and bilirubin.				
	All animals were then killed and necropsied. The following organs were weighed: lungs, kidneys, adrenals, liver, heart, spleen, thymus, testis, ovary. Histological slides were prepared from the following organs and examined microscopically by a pathologist: colon, kidney, lung, liver, lymph node, ovary, skin, small intestine, spleen, stomach, testis, urinary bladder and any gross lesions.				
	variances were homog by multiple t tests or D	eneous, data were analy	lyzed for homogeneity of variance. If vzed by analysis of variance followed ests. Categorical data were analyzed		
NOAEL/LOAEL	Males: NOAEL = < LOAEL = 8	8 mg/kg/day mg/kg/day			
	Females: NOAEL = < LOAEL = 8				
Result	Clinical signs:	2000 mg all animals dia 500 mg 85% died or kil 125 mg 5/10 males, 1/ ⁻	lled		
	Body wt gains	↓ at 30 mg (6%) and 1 8 mg no differences			
	Skin irritation	Not seen at 8, 30 or 12	5 mg		
	Hematology RBC Hb HCt	Males ↓ (46%)at 125 mg ↓ (49%) at 125 mg ↓ at 30 (53%) and 125	Females ↓ (24%) at 125 mg ↓ (30%) at 125 mg ↓ 34%) at 30 and 125		
	Serum chemistry Glucose A/G ratio Uric acid Total bilirubin Cholesterol AAT Alk phos. LDH Ca	Males ↑ (26%) 125 mg ↑ (14%) 125 mg ↓ (33%) 30 mg + ↑ (146%) 125 mg No differences ↑ (200%) 125 mg ↑ (72%) 125 mg ↓ (52%) 30 mg + ↑ (7%) 125 mg	Females No differences ↑ (18%) 125 mg No differences No differences ↑ (43%) 8 mg + No differences ↑ (58%) 30 mg + ↓ (79%) 125 mg No differences		
	Organ wts Liver (abs) Liver (rel) Thymus (abs) Thymus (rel) Spleen (rel)	Males No differences ↑ (13%) 8 mg + ↑ (43%) 30 mg + ↑ (39%) 30 mg + ↑ (25%) 30 mg	Females ↑ (21%) 8 mg + ↑ (23%) 8 mg + ↓ (67%) 125 mg ↓ (38%) 125 mg No differences		
	Histopath	0 / 070			

5. Toxicity	Id Heavy fuel oil					
	Date December 7, 2012					
	Liver: microcysts, cholangiolitis/cell degeneration, altered focus of hepatocytes at ≥ 8 mg Necrosis at higher doses Thymus: hypoplasia/atrophy at ≥ 8 mg Bone marrow: erythroid hypoplasia at ≥ 30 mg Ovaries and testes normal					
Conclusion	Effects defining LOAEL: Males: 8 mg/kg. Effects at LOAEL: Rel liver wt., histopath in thymus and liver Females: 8 mg/kg Effects at LOAEL: Cholesterol, Abs and rel liver wt, histopath in thymus and liver					
Reliability	- 1 - Reliable without restrictions					
Reliability remarks	Similar to guideline study; sufficient detail provided in appendices and tables.					
Key study sponsor	Yes					
Reference	Mobil, 1985. Thirteen-week toxicity study by dermal application of Clarified Slurry Oil (CSO) to rats. Final Report on study 20525 from Mobil Environmental and Health Science Laboratory, Princeton, NJ.					
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR.					
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009.					
Repeated Dose Toxicity						
Test Substance						
Category Chemical:	64741-62-4					
Test Substance:	64741-62-4; Clarified Slurry Oil (CSO)					
Test Substance	Clarified Slurry Oil (CRU No 86001)					
Purity/Composition and Other Test Substance Comments:	PAC (Polycyclic Aromatic Compound) Content – Report No. 64348 ZA (Mobil, 1991)					
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	86001 64.20 0.00 2.57 25.68 19.26 6.42 3.21 0.64					
	 Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008). ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings. 					

Category Chemical Result Type :	Measured
Type Species Sex Strain	Repeated dose; 2, 4, 8, 10 week dermal and oral exposure Mouse Male
Route of admin. Exposure Period Frequency of treatm.	Dermal & Oral 2, 4, 8 weeks (Oral), 10 weeks (oral and dermal) Daily, 5 days/week (total number of weeks were 2, 4.8 and 10 per protocol listed below)
Doses No. of animals /dose Control group Method/Guideline Followed: Year GLP	1000 mg/kg/day 10/dose Yes, untreated Other 1991 Yes
Test substance Post exposure period	Clarified Slurry Oil (CSO) Sample 10298102 (CRU 86001) None
Method	 Dermal Hair was clipped from the entire trunk of each animal within 24 hours prior to initial treatment; the clipping was repeated weekly throughout the study. The test substance was applied to the back with a syringe and dosing needle, and left uncovered. Sham-exposed controls on the same procedure and schedule as the treated animals. Animals were dosed on 5 consecutive days per week. The animals were 8-9 weeks of age at the initiation of dosing. Oral Each treated animal received an amount of CSO calculated from its most recent body weight, the density of the test material, and the dose for that treatment group. The test material was measured by volume in a syringe and administered to the mice by oral gavage using a syringe fitted with an 18 gauge intubation needle. Animals in the control groups were handled in the same manner as the treated animals except that no test material was administered. Animals were dosed each weekday until their scheduled sacrifice.
	 The treatment groups and time exposure periods were as follows: 1. Control (0 mg/kg/day) – 10 males, oral, 2 weeks 2. CSO (1000 mg/kg/day) – 10 males, oral, 2 weeks 3. Control (0 mg/kg/day) – 10 males, oral, 4 weeks 4. CSO (1000 mg/kg/day) – 10 males, oral, 4 weeks 5. Control (0 mg/kg/day) – 10 males, oral, 8 weeks 6. CSO (1000 mg/kg/day) – 10 males, oral, 8 weeks 7. Control (0 mg/kg/day) – 10 males, oral, 10 weeks 8. CSO (1000 mg/kg/day) – 10 males, oral, 10 weeks 9. CSO (1000 mg/kg/day) – 10 males, dermal, 10 weeks
	Endpoints during the biophase included daily observation of clinical signs and body weights measured weekly.
	Animals scheduled for sacrifice (weeks 2, 4, 8 and 10) were fasted overnight, weighed, euthanized with carbon dioxide gas, exsanguinated and necropsied. Gross findings were recorded at necropsy. From all animals sacrificed as scheduled, the liver and thymus were excised and weighed to the nearest milligram. The following tissues, when available, were saved in 10% neutral buffered formalin: bone with marrow (sternum, rib, and femur), gross lesions, liver, thymus, treated skin. Stained sections were prepared and examined microscopically by a pathologist.

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	Statistical analysis: Body and organ weight data were analyzed by parametric methods: analysis of variance (ANOVA) and associated F-test, followed by Dunnett's test or Tukey's multiple range test, provided that there was statistical significance in ANOVA. Differences between control and treated animals were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05).
NOAEL/LOAEL	Not determined in this study design.
Result	Clinical signs: Five out of ten "dermals" died during Weeks 9 &10 (Group 9). Because of this dosing for all remaining mice was terminated after 10 weeks. Incidental mortality included one control (missing from cage) and three "orals" which were sacrificed moribund. Two of the three "orals" were apparently misintubated (one had an esophageal perforation; the other had black material in the lung suggestive of the test material) and the cause of illness in the third animal could not be determined. Clinical signs of systemic toxicity were minimal to non-existent in the animals which survived until their scheduled sacrifice. In the animals which died or were sacrificed, signs of systemic toxicity were generally not apparent until a few days prior to their death/sacrifice. The "dermals" showed intense skin irritation (open sores after only one week of dosing). During week 8, four of the "dermals" developed papillomas which, for two of the animals, appeared malignant prior to their death/sacrifice.
	Body wt gains The "orals" gained weight at the same rate as the controls. The "dermals" gained approximately half as much weight as the other animals. After 10 weeks, the mean final body weight of the "dermals" was approximately 10% lower than either the orals or the 'controls'.
	Organ wts In general, the "orals" had statistically significantly (p<0.05) heavier absolute and relative liver weights and lighter absolute and relative thymus weights than their respective controls. The only exception to this was the "orals" exposed for 10 weeks. The absolute and relative liver weights of these animals were comparable to their controls and were lighter than those of the "orals" sacrificed after 2, 4 or 8 weeks of CSO exposure. For all "orals", the absolute and relative thymus weights were statistically significantly lighter than the controls. "Dermals" (evaluated only after 10 weeks) had significantly heavier relative liver weights and significantly lighter thymus weights than their respective controls (7.840g vs. 6.072g, liver; .0.042g vs. 0.091g, thymus)
	Histopath Microscopically, after 2 weeks of oral exposure to CSO, most mice showed hepatocyte hypertrophy and foci of mixed inflammatory cells. A few mice also were observed to have yellow-green pigment-bearing macrophages, a trace increase in the number of neutrophils (PMNs) along bile ducts and ductules, microfocal necrosis and occasional apparent loss of small numbers of centrilobular hepatocytes. These same findings were observed after 4 weeks and for some findings the incidence and/or severity of the effect increased. At this time period the incidence of centrilobular hepatocyte loss was tripled and was at its peak for the study. Individual cell necrosis was frequent after 4 weeks but did not peak until the following sacrifice period (after 8 weeks of exposure). After 4 weeks

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	or less discernable morphologic pathology than that which was observed after 2 weeks of oral exposure. 10 weeks of dermal exposure to CSO was associated with hepatocyte hypertrophy; greatly decreased apparent glycogen in hepatocytes, an increase in the prominence of sinusoidal Kupffer cells, a minimal-slight population of large yellow-green pigment-bearing macrophages, quite severe (in several mice) widespread multifocal coagulative necrosis (even liquifactive in some areas or animals) and significant focal or multifocal fibrosis. A majority of these animals had a minimal to slight increase in PMNs along bile ducts/ductules. Mitotic figures were exceptionally numerous in three animals. In the five mice which were found dead, it was judged that the widespread liver injury was severe enough to be a major contributor to, if not the main cause of, illness or death. At the site of administration, there was extensive chronic dermal inflammation and epidermal hyperkeratosis/hyperplasia (regenerative) and three of these mice had histologically malignant squamous cell carcinoma. Dermal administration of CSO also had a minimal effect on sternal marrow which was essentially limited to reduced megakaryocytes.
Conclusion	Based on mortality, body weights, liver weights, and liver and bone marrow pathology, CSO is more toxic to mice when it is administered subchronically by the dermal route than by the oral route. Liver weights and microscopic examination of the liver, following 2, 4 and 8 weeks of oral exposure, indicated definite liver toxicity. However, after 10 weeks of oral administration, mice exhibited only slight morphologic changes in the liver. The observed liver changes were suggestive of the healing of an earlier toxicological insult rather than of on-going toxicity. It would therefore appear that mice exposed orally to CSO developed or manifested, in fewer than 10 weeks, a form of acclimation or adaptation that was profoundly effective in repairing or protecting the liver from the hepatotoxic effects of CSO. Mice exposed dermally to CSO at a dose of 1000 mg/kg/day for 10 weeks had a mortality of 50%, severe skin irritation, slightly decreased body weights, significantly increased liver and reduced thymus weights, reduced megakaryocytes in sterna bone marrow, and severe liver necrosis and fibrosis. Based on a previous study in rats in this laboratory, it also appears that mice are less sensitive to the skin effects of CSO.
Reliability	- 2- Reliable with restrictions
Reliability remarks	Non-guideline protocol, report details not complete.
Key study sponsor	No
	92 / 370

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Reference	Mobil, 1991. Oral and Dermal Administration of Clarified Slurry Oil (CSO) to Male C3H. Final Report on study 63563 from Mobil Environmental and Health Science Laboratory, Princeton, NJ.
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA- ZR.
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009.
Repeated Dose Toxicity Test Substance	
Category Chemical (CAS #):	64741-62-4
Test Substance (CAS #):	64741-62-4; Carbon Black Oil (F-73-01)
Test Substance Purity/Composition and Other Test Substance Comments :	No information available
Category Chemical Result Type :	Measured
Type Species Sex Strain Route of admin. Exposure period	Repeated dose; 4 week dermal exposure Rat Male/Female Sprague-Dawley Dermal 4 weeks; 28 days
Frequency of treat. Doses Control group Method/Guideline followed Year GLP	Daily, 5 days/week for 4 weeks 0.5, 1.0, 2.5 ml/kg/day (542, 1084, 2710 mg/kg/day) Yes, untreated Other 1987 Yes
Test substance Post exposure period Method/Guideline and Test Condition Remarks	Carbon Black Oil (F-73-01) CAS 64741-62-4 None Three groups of ten male and ten female young adult albino Sprague-Dawley rats were administered F-73-01 dermally once daily, five days per week for four weeks, at doses of 0.5, 1.0, 2.5 ml/kg/day (542, 1084, 2710 mg/kg/day). The test article was applied to previously clipped sites on the backs of the animals. The site of application was occluded for a period of approximately six hours following application of the test article. The skin was then wiped to remove residual material. One additional group of ten male and ten female rats served as controls (untreated). The backs of the control group animals were clipped and the occlusive wrap was applied daily, five days per week, for four weeks. The animals were observed twice daily for signs of toxicity and viability. Dermal irritation at the site of application was evaluated daily just prior to the application
	of the test article, twenty-four hours after the fifth weekly application and just prior to necropsy. Body weights were determined three times per week during the study (Mondays, Wednesdays and Fridays) and just prior to necropsy.

Date December 7, 2012 At the time of necropsy, blood was collected for hematology and clinical cherrisity evaluations. Measured hematological parameters were hematocit, hemogobin, number of ret blood colls, platelists and the number and differential court of while blood colls. The following clinical chemistry parameters were hematocitic and the subsystem and the problems. The subsystem and software	5. Toxicity	Id Heavy fuel oil
chemistry evaluations. Wessured hematological parameters were harmotorith hemoglobin, number of rate blood cells, Diteleties and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: staburn, atkaling brosphatse, potassium, and sodium, globulin (calculated). NG ratio (calculated). All animals were preserved in 10% neutral buffered formalin for possible biological evaluation: adrenals, brain, diverse, liver, tideys, liver, tests, and ovaries. The following organs were preserved in 10% neutral buffered formalin for possible biological evaluation: adrenals, brain, eccum, cervical lymph nodes', asophagus, femur with articular surface, lieum', bone and marrow, brain', eyes and optic, ivery, lungs' (perfused) with trache a pancreas', skelatal muscle, salvary gloads', recturn, pilulary, meipheral herve, skiff (untreated) and tratelod), splitad', recturn, pilulary, nepheral herve, skiff (untreated), and ny gross lesions. Bone marrow smears (fermu) were prepared, preserved and maninal and. For the control and high dose groups, those tissues marked with (*) were stained and sectioned for examinations of equality of means were done by an appropriate one way analysis of variance and a lest for ordered response in the dose groups. First, Batterits lest was parented to recent like to significance. If the variances are equal, the testing were available and undres doe groups these tissues marked with (*) were stained and sectoned for examinations of equality of means were doe by an appropriate one way analysis of variance and a lest for ordered response in the dose groups. These tissues marked with (*) were statistically analyzed. Statistical evaluations of equality of means were doe by an appropriate one way analysis of variance and a set for ordered response in the dose groups. These tissues marked with (*) were astand are transtromat		Date December 7, 2012
weighed: adrenals, brain, kicheys, liver, testes, and ovaries. The following organs were preserved in 10% neutral bufferd formalin for possible histobgical evaluation: adrenals", aorta, oecum, cervical lymph nodes", esophagus, fernur with articular surface; lieum", bone and marrow, brein", eyes and optic nerve, gonads, heart', duodenum", jebnum", mammary glands, coch-kicheys*, liver', lungs* (perfused) with trachea, pancreas*, skeletal muscle, salivary glands*, cord, spleen*, stemum with bone marrow", testes*, ovarie*, stomach*, thyroid*, parathyroid glands, uterus, vagina, urinary bladder*, and any gross lesions. Bone marrow smears (femur) were prepared, preserved and maintained. For the control and high does groups, those tissues marked with (*) were stained and sectioned for examination by a qualified pathologist. Clinical pathology data, terminal organ weights, and organ to body weight ratios were done by an appropriate one way analysis of variance and a test for ordered response in the dose groups. First, Barletts test was performed to determine if the dose groups have equal variance at the 1 percent level of significance. If the variances are equal, the testing were used. For the parametric procedures, a standard one way ANOVA using he F distribution to assess significantly from control. In addition to the ANOVA, a standard fergession analysis for linear response in the dose groups was performed. The regression was also test for linear lack of this methods, otherwise, nonparametric procedures, the test of equality of means were performed. The regression was also test for inicar lack of the intervine which treatment groups differ significant differences among the means are indicated, Dunnet's test twee used to determine which treatment groups differ significant for montol. In addition to the ANOVA, a standard regression analysis for linear lack of this inthe model. For the no		chemistry evaluations. Measured hematological parameters were hematocrit, hemoglobin, number of red blood cells, platelets and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, cholesterol, creatinine, glucose, total protein, triglycerides, urea nitrogen, calcium, chloride, iron, phosphorus, potassium, and sodium,
were statistically analyzed. Statistical evaluations of equality of means were done by an appropriate one way analysis of variance and a test for ordered response in the dose groups. First, Bartlett's test was performed to determine if the dose groups have equal variance at the 1 percent level of significance. If the variances are equal, the testing were done using parametric methods, otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means are indicated, Dunnett's test were used to determine which treatment groups differ significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. Using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test were used to determine which treatment groups differ significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. Mean Draize irritation scores were plotted by group and time. The nonparametric procedures described above were used on this irritation data when appropriate. Sexes were canalyced separately. All ratios were transformed by the arc sine transformation and Cochran's transformation to stabilize variances. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance. NOAEL/LOAEL Males: NOAEL = <542 mg/kg/day (0.5 ml/kg/day) LOAEL = 542 mg/kg/day (0.5 ml/kg/day) Emales: NOAEL = <542 mg/kg/day (0.5 ml/kg/day) Result Remarks Clinical: Skin irritititon: None Males For line		weighed: adrenals, brain, kidneys, liver, testes, and ovaries. The following organs were preserved in 10% neutral buffered formalin for possible histological evaluation: adrenals*, aorta, cecum, cervical lymph nodes*, esophagus, femur with articular surface, ileum*, bone and marrow, brain*, eyes and optic nerve, gonads, heart*, duodenum*, jejunum*, mammary glands, colon*, kidneys*, liver*, lungs* (perfused) with trachea , pancreas*, skeletal muscle, salivary glands*, rectum*, pituitary, peripheral nerve, skin* (untreated and treated), spinal cord, spleen*, sternum with bone marrow*, testes*, ovaries*, stomach*, thymus*, thyroid*, parathyroid glands, uterus, vagina, urinary bladder*, and any gross lesions. Bone marrow smears (femur) were prepared, preserved and maintained. For the control and high dose groups, those tissues marked with (*)
distribution to assess significance was used. If significant differences among the means are indicated, Dunnettis test were used to determine which treatment groups differ significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression was also test for linear lack of fit in the model. For the nonparametric procedures, the test of equality of means were performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test were used to determine which treatment groups differ significantly from control. In addition to the Navel AW and the appropriate significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. Mean Draize irritation scores were plotted by group and time. The nonparametric procedures described above were used on this irritation data when appropriate. Seves were analyzed separately. All ratios were transformed by the arc sine transformation and Cochran's transformation to stabilize variance. All other tests were conducted at the 5% and 1% level of significance. NOAEL/LOAEL Males: NOAEL = <542 mg/kg/day (0.5 ml/kg/day) LOAEL = 542 mg/kg/day (0.5 ml/kg/day) LOAEL = 542 mg/kg/day (0.5 ml/kg/day) Emales: NOAEL = <542 mg/kg/day (0.5 ml/kg/day) Result Remarks Clinical: Skin irritation: None Mortality Mates None Mortality Males Females		were statistically analyzed. Statistical evaluations of equality of means were done by an appropriate one way analysis of variance and a test for ordered response in the dose groups. First, Bartlett's test was performed to determine if the dose groups have equal variance at the 1 percent level of significance. If the variances are equal, the testing were done using parametric methods,
performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test were used to determine which treatment groups differ significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. Mean Draize irritation scores were plotted by group and time. The nonparametric procedures described above were used on this irritation data when appropriate. Sexes were analyzed separately. All ratios were transformed by the arc sine transformation and Cochran's transformation to stabilize variances. The test for equal variance (Bartlett) was conducted at the 1% level of significance. NOAEL/LOAEL Males: NOAEL = <542 mg/kg/day (0.5 ml/kg/day) LOAEL = 542 mg/kg/day (0.5 ml/kg/day) Emales: NOAEL = <542 mg/kg/day (0.5 ml/kg/day) LOAEL = 542 mg/kg/day (0.5 ml/kg/day) LOAEL = 542 mg/kg/day (0.5 ml/kg/day) Result Remarks Clinical: Skin irritation: None Males: None		distribution to assess significance was used. If significant differences among the means are indicated, Dunnett's test were used to determine which treatment groups differ significantly <i>from</i> control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was
nonparametric procedures described above were used on this irritation data when appropriate. Sexes were analyzed separately. All ratios were transformed by the arc sine transformation and Cochran's transformation to stabilize variances. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.NOAEL/LOAELMales:NOAEL = <542 mg/kg/day (0.5 ml/kg/day) LOAEL = 542 mg/kg/day (0.5 ml/kg/day)Females:NOAEL = <542 mg/kg/day (0.5 ml/kg/day) LOAEL = 542 mg/kg/day (0.5 ml/kg/day)Result RemarksClinical: Skin irritation:None MalesFemales:None MortalityFemales		performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test were used to determine which treatment groups differ significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response
LOAEL = 542 mg/kg/day (0.5 ml/kg/day) Females: NOAEL = <542 mg/kg/day (0.5 ml/kg/day) LOAEL = 542 mg/kg/day (0.5 ml/kg/day) Result Remarks Clinical: Skin irritation: None Mortality Males Females		nonparametric procedures described above were used on this irritation data when appropriate. Sexes were analyzed separately. All ratios were transformed by the arc sine transformation and Cochran's transformation to stabilize variances. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of
LOAEL = 542 mg/kg/day (0.5 ml/kg/day) Result Remarks Clinical: Skin irritation: None Mortality Males Females	NOAEL/LOAEL	LOAEL = 542 mg/kg/day (0.5 ml/kg/day)
Skin irritation: None Mortality Males Females		
	Result Remarks	Skin irritation:NoneMortalityMalesFemales

	Nere	None	
Body wt., termina	None I	None	
	Males		
		· (11%), 2710 (19%) mg/kg/day	
	<pre>↓ 2710 (11%) mg/k</pre>		
Body wt., gain	Males		
	↓ 542, 1084, 2710 m	ng/kg/day	
	Females	ng kg day	
	↓ 542, 1084, 2710 m	ng/kg/day	
	↓ 542, 1064, 2710 ll	ng kg uay	
	Males No difference Females		
	↓ 1084 (6%), 2710) (5%) mg/kg/day*	
	Males ↑ 542 (10%), 1084	(10%), 2710 (22%) mg/kg/day*	
Females			
	No difference		
	Males ↑ 542(28%), 1084 Females	(33%), 2710 (29%) mg/kg/day	
		· (42%), 2710 (32%) mg/kg/day	
	Males ↑ 542 (44%), 1084 Females	(47%), 2710 (59%) mg/kg/day	
Liver, rel brain	Males	(47%), 2710 (47%) mg/kg/day	
	Females	· (38%), 2710 (33%) mg/kg/day · (51%), 2710 (39%) mg/kg/day	
Spleen, Abs	Males No difference		
	Females		
	↓ 2710 (20%) mg/k Males	<g day*<="" td=""><td></td></g>	
	No difference		
	Females ↓ 2710 (12%) mg/k	<g day*<="" td=""><td></td></g>	
Spleen, rel brain	Males		
	No difference Females		
	↓ 2710 (16%) mg/k Males	<g day*<="" td=""><td></td></g>	
	↓ 1084 (8%), 2710 Females	(15%) mg/kg/day	
	↓ 1084 (10%), 271	0 (15%) mg/kg/day	
	Males ↑ 2710 (7%) mg/kg Females	g/day	
	No difference		
Kidney, rel brain	Males No difference		
	95 / 370		
	33/370		

5. Toxicity

Conclusion

	Females
Testes, rel BW	
Ovaries, Abs	↑ 542 (20%), 1084 (20%), 2710 (30%) mg/kg/day* Females
Ovaries rel Brair	↓ 1084 (22%), 2710 (28%) mg/kg/day
Ovaries fei brai	\downarrow 2710 (23%) mg/kg/day
Hematology	
Eosinophils	Males ↓ 542 (70%), 1084 (100%), 2710 (100%) mg/kg/day*
	Females ↓ 542 (79%), 1084 (100%), 2710 (100%) mg/kg/day*
Hb	Males ↓ 542 (8%), 1084 (11%), 2710 (7%) mg/kg/day*
	Females 542 (6%) mg/kg/day*
HCT	Males ↓ 542 (7%), 1084 (9%), 2710 (5%) mg/kg/day*
	Females
	↓ 542 (5%) mg/kg/day*
Serum chemistry	
SGPT	Males
	↓ 542 (28%), 1084 (21%), 2710 (23%) mg/kg/day*
Females	
Alk. Phos.	↓ 542 (24%) mg/kg/day* Males
	No difference Females
BUN	↑ 1084 (80%), 2710 (78%) mg/kg/day* Males
DON	↑ 2710 (21%) mg/kg/day*
	Females No difference
Glucose	Males ↑ 542 (35%) mg/kg/day*
	Females ↑ 542 (45%), 1084 (31%) mg/kg/day*
Total Protein	Males No difference
	Females
	↓ 1084 (8%), 2710 (7%) mg/kg/day*
No test article-re	control oil controls & high dose) elated systemic findings ; Ovaries – normal
	idered compound-related and/or biologically relevant by
study di Effects defining LC	
Male (542 mg/kg/c Hb, HCT, Liver wts	lay) s (abs, rel bw, rel brain), BW, BW gain
Female (542 mg/k Liver wts (abs, rel	g/day) bw, rel brain), BW gain

96 / 370

5. Toxicity								Heavy Decem	fuel oil ber 7, 20)12
Reliability	- 1 - Reliat	ole witho	ut restrie	ctions						
Reliability remarks	- Similar to	- Similar to guideline study; sufficient detail provided in appendices and tables.								
Key study sponsor	Yes									
Reference	ARCO. 1987. Twenty-eight day dermal toxicity study in rats administered test article F-73-01. Report no. ATX-86-0007.									
Repeated Dose Toxicity		-	-	-	-	-	-		-	
Test Substance										
Category Chemical:	64741-81-	7								
Test Substance:	64741-81-	7; Heavy	/ coker	gas oil (H	ICGO)					
Test Substance Purity/Composition and Other Test Substance Comments:	Heavy coker gas oil (CRU No. 86181) PAC (Polycyclic Aromatic Compound) Content – report no. 64348 Z (Mobil, 1991)				48 ZO					
	Sample #	DMS O wt.%	1- ARC (%) ²	2- ARC (%)	3- ARC (%)	4- ARC (%)	5- ARC (%)	6- ARC (%)	7- ARC (%)	
	86181 1) Percer described 2) ARC is have 1 aro with 2 aro	in API (2 aroma omatic ri	2008). tic ring c ng withir	lass". "A the tota	RC 1 (% I sample)" is the . "ARC :	weight p 2 (%)" is	ercent c	of PACs t	that
Category Chemical Result Type :	Measured									
Type : Type : Species Sex Strain Route of admin. Exposure period Frequency of treatm. Doses Control group Method/Guideline followed Year GLP Test substance Post exposure period	Repeated Rat Male/Ferr Sprague- Dermal 13 weeks Daily, 5 d 8, 30, 125 Yes, untre Other 1994 Yes Joliet Hea None	ale Dawley ays/wee 5 mg/kg/o eated	k day							
Method	Hair was o treatment; substance substance site was le to minimiz	the clipp was app was spr ft uncov	bing was plied to t ead eve ered and	s repeate the back nly over d the rats	d weekly with a sy the site s were fit	 through ringe and with the tted with 	hout the nd dosing side of th cardboa	study. T g needle he dosin ard Elizal	he test ; the tes g needle bethan c	t e. The collars

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	procedure and schedule as the treated animals. Animals were dosed on 5 consecutive days per week. At 24 hours after the fifth dose, residual test substance was wiped off as thoroughly as possible.
	Endpoints during the biophase included twice daily observation of clinical signs (once over the weekends) and body weights measured weekly. Blood samples were obtained from animals (non-anesthetized) via the orbital venous sinus through a non-heparinized capillary tube, during weeks 5 and 13. Hematological parameters included hematocrit, hemoglobin, number and morphology of red blood cells, and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase (glutamic puruvic transaminases), aspartate aminotransferase (glutamic oxaloacetic transaminases), cholesterol, creatinine, glucose, lactate dehydrogenase, total bilirubin, total protein, triglycerides, urea nitrogen, uric acid, calcium, chloride, phosphorus, potassium, and sodium. Urine samples were also collected for analysis of specific gravity, pH, glucose, occult blood, ketone bodies, albumin, urobilogen, and bilirubin.
	All animals were then killed and necropsied. The following organs were weighed: kidneys, adrenals, liver, heart, spleen, thymus, testes, prostate, epididymides, thyroid, ovaries, uterus, and brain.
	The following tissues (when present) from each animal were preserved in 10% neutral buffered formalin:
	Adrenals*, esophagus, head (entire), kidneys*, liver *(part of median and right, lateral lobes), pituitary, skeletal muscle*, spleen*, thymus*, tongue and larynx, bone with marrow *(rib sternum, femur), heart* and aorta lachrymal glands, lungs* and bronchi, lymph nodes, cervical mammary gland (with skin), prostate and seminal vesicles*, stomach* (glandular and squamous), uterus* (cervix, corpus, and horns), brain*, eyes* and optic nerve intestine, large* (cecum, colon and rectum), lymph nodes, mesenteric lymph nodes, draining ovaries* and oviducts, salivary glands* (major), spinal cord (cervical, thoracic), thyroid* and parathyroids, trachea, epididymides*, Harderian glands, intestine, small *(duodenum, ileum, jejunum) gross lesions*, pancreas*, sciatic nerve, skin (treated)*, testes*, urinary bladder*, vagina.
	NOTE: From all animals, a sample of the right kidney and of the median lobe of the liver were fixed in a formaldehyde-glutaraldehyde mixture (4% and 1%, respectively, in an aqueous buffer).
	Tissues marked with an (*) were processed for microscopic examination from all animals in the control group and highest dose group (125 mg/kg). In addition, the skin and thymus from the 30 mg/kg and skin from the 8 mg/kg group were processed. Sections for examination were stained with hematoxylin and eosin, or any special stain deemed necessary. Microscopic examinations were performed by a pathologist.
	The left epididymis and testis from the control and 125mg/kg/day male rats were examined. Prior to sample preparation of the testis for examination, the tunica albuginea and corresponding blood vessel were removed and discarded The resulting testicular parenchyma and the cauda epididymis were individually weighed (nearest 0.001 gram) and the weight recorded. Testes were prepared for spermatid count and epididymides were prepared for spermatozoa count and morphology.
	Statistical analysis: Quantitative data (body weight), serum chemistry, hematology, and organ weight data) were analyzed by parametric methods: analysis of variance (ANOVA) and associated F-test, followed by Dunnett's test (body weights) and Tukey's Multiple Comparison Test (serum chemistry, hematology and organ weight data), provided that there was statistical significance in ANOVA. Differences between control and treated groups were

5. Toxicity			Id Heavy fuel oil Date December 7, 2012			
	considered statistically due to chance was les	5	probability of the differences being			
NOAEL/ LOAEL	Males: NOAEL = 8 LOAEL = 30					
	Females: NOAEL = 8 LOAEL = 30					
Result	Clinical: Skin irritation: Modera Body wt. gains, 125 mg	Males	s Females No differences			
	Organ weights Epididymes 30 mg/ Liver (A) 125 mg (R) 125 mg 30 mg Thymus (A)) 125 mg	g/kg ↑ 24% g/kg ↑ 36% g/kg ↑ 16%	Females ↑ 32% ↑ 35% ↑ 9% ↓ 52%			
	Thymus (A)) 125 m((R) 125 m(Heart (R) 125 m(g/kg ↓ 53%	↓ 52% ↓ 51%			
	Hematology RBC Hb Ht Platelets MCV MCH MCHC	Males ↓12% at 125 mg/kg ↓16% at 125 mg/kg ↓5% at 30 mg/kg ↓31% at 125 mg/kg ↓4% at 125 mg/kg ↓4% at 30 mg/kg	Females ↓12% at 125 mg/kg ↓15% at 125 mg/kg ↓13% at 125 mg/kg 30% at 125 mg/kg - ↓4% at 125 mg/kg ↓2% at 125 mg/kg			
	Serum chemistry BUN Calcium SDH Glucose Creatinine Cholesterol Triglycerides Potassium	Males ↑ at 30 mg/kg ↓ at 30 mg/kg ↑ at 125 mg/kg	<pre>Females ↑ at 125 mg/kg ↑ at 125 mg/kg ↑ at 125 mg/kg ↑ at 125 mg/kg ↓ at 125 mg/kg ↓ at 125 mg/kg</pre>			
	Histopath Decrease lymphoid tiss	sue in thymus male and	d female at 125 mg/kg			
Conclusion	Drivers of LOAEL: (30 Male Epididymis wt ↓, Ht ↓,					
	Female Rel liver wt ↑					
Reliability	1 - Reliable without restrictions					
Reliability remarks	Similar to guideline stu	udy; sufficient detail pro	ovided in appendices and tables.			
Key study sponsor	Yes					
Reference	Joliet heavy coker gas	Mobil, 1994. Thirteen-Week Dermal Administration of Joliet heavy coker gas oil. Final Report on Study 64165 from Mobil Environmental and Health Science Laboratory, Princeton, NJ.				

5. Toxicity	Id Heavy fuel oil Date December 7, 2012						
	Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in Heavy Coker Gas Oil. Mobil Environmental and Health Sciences Laboratory Report no. 64348ZO.						
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009.						
Repeated Dose Toxicity							
Test Substance							
Category Chemical:	64741-81-7						
Test Substance:	64741-81-7; Heavy Coker Gas Oil (HCGO); Heavy Thermal Cracked Distillate						
Test Substance Purity/Composition	Heavy Coker Gas Oil (CRU No. 83366)						
and Other Test Substance Comments:	PAC (Polycyclic Aromatic Compound) Content – report no. 64348 ZQ (Mobil, 1991)						
	Sample DMSO 1-ARC 2-ARC 3-ARC 4-ARC 5-ARC 6-ARC 7-AR						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	83366 12.7 0.1 2.5 5.1 2.5 1.3 0.9 0.1 1) Percent of DMSO-extractable PACs, determined by the PAC 2 method as describer in API (2008). 2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2						
Category Chemical Result	aromatic rings, and so forth to 7 aromatic rings.						
Type :	Measured						
Type Species	Repeated dose; 13 week dermal exposure						
Sex	Rat Male/Female						
Strain	Sprague-Dawley						
Route of admin. Exposure period	Dermal 13 weeks						
Frequency of treatm.	Daily, 5 times/week for 13 weeks						
Doses	30, 125, 500 and 2000 mg/kg/day						
Control group Method/Guideline followed	Yes, untreated Other						
Year	1994						
GLP							
Test substance Post exposure period	Heavy Coker Gas Oil (Paulsboro), Sample 83366, CAS 64741-81-7 None						
Method/Guideline and Test Condition Remarks	Hair was clipped from the entire trunk of each animal within 24 hours prior to initial treatment; the clipping was repeated weekly throughout the study. The test substance was applied to the back with a syringe and dosing needle; the test substance was spread evenly over the site with the side of the dosing needle. The site was left uncovered and the rats were fitted with cardboard Elizabethan collars to minimize ingestion of the test substance. Sham-exposed controls on the same procedure and schedule as the treated animals. Animals were dosed on 5 consecutive days per week. At 24 hours after the fifth dose, residual test substance was wiped off as thoroughly as possible.						
	100 / 370						

Endpoints during the biophase included twice daily observation of clinical signs (once over the weekends) and body weights measured weekly. Blood samples were obtained from animals (non-anesthetized) via the orbital venous sinus through a nonheparinized capillary tube, during weeks 5 and 13. Hematological parameters included hematocrit, hemoglobin, number and morphology of red blood cells, and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase (glutamic puruvic transaminases), aspartate aminotransferase (glutamic oxaloacetic transaminases), cholesterol, creatinine, glucose, lactate dehydrogenase, total bilirubin, total protein, triglycerides, urea nitrogen, uric acid, calcium, chloride, phosphorus, potassium, and sodium. Urine samples were also collected for analysis of specific gravity, pH, glucose, occult blood, ketone bodies, albumin, urobilogen, and bilirubin.

All animals were then killed and necropsied. The following organs were weighed: kidneys, adrenals, liver, heart, spleen, thymus, testes, prostate, epididymides, thyroid, ovaries, uterus, and brain.

The following tissues (when present) from each animal were preserved in 10% neutral buffered formalin:

Adrenals*, esophagus, head (entire), kidneys*, liver *(part of median and right, lateral lobes), pituitary, skeletal muscle*, spleen*, thymus*, tongue and larynx, bone with marrow *(rib sternum, femur), heart* and aorta lachrymal glands, lungs* and bronchi, lymph nodes, cervical mammary gland (with skin), prostate and seminal vesicles*, stomach* (glandular and squamous), uterus* (cervix, corpus, and horns), brain*, eyes* and optic nerve intestine, large* (cecum, colon and rectum), lymph nodes, mesenteric lymph nodes, draining ovaries* and oviducts, salivary glands* (major), spinal cord (cervical, thoracic), thyroid* and parathyroids, trachea, epididymides*, Harderian glands, intestine, small *(duodenum, ileum, jejunum) gross lesions*, pancreas*, sciatic nerve, skin (treated)*, testes*, urinary bladder*, vagina.

NOTE: From all animals, a sample of the right kidney and of the median lobe of the liver were fixed in a formaldehyde-glutaraldehyde mixture (4% and 1%, respectively, in an aqueous buffer).

Tissues marked with an (*) were processed for microscopic examination from all animals in the control group and highest dose group (125 mg/kg). In addition, the skin and thymus from the 30 mg/kg and skin from the 8 mg/kg group were processed. Sections for examination were stained with hematoxylin and eosin, or any special stain deemed necessary. Microscopic examinations were performed by a pathologist.

The left epididymis and testis from the control and 125mg/kg/day male rats were examined. Prior to sample preparation of the testis for examination, the tunica albuginea and corresponding blood vessel were removed and discarded The resulting testicular parenchyma and the cauda epididymis were individually weighed (nearest 0.001 gram) and the weight recorded. Testes were prepared for spermatid count and epididymides were prepared for spermatozoa count and morphology.

Statistical analysis: Quantitative data (body weight), serum chemistry, hematology, and organ weight data) were analyzed by parametric methods: analysis of variance (ANOVA) and associated F-test, followed by Dunnett's test (body weights) and Tukey's Multiple Comparison Test (serum chemistry, hematology and organ weight data), provided that there was statistical significance in ANOVA. Differences between control and treated groups were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05). Sperm evaluations.

5. Toxicity	Id Heavy fuel oil	
	Date December 7, 2012	
NOAEL/LOAEL	30 mg/kg/day (authors) Males: NOAEL = <30 mg/kg/day LOAEL = 30 mg/kg/day Females: NOAEL = <30 mg/kg/day LOAEL = 30 mg/kg/day	
Result	Clinical 2000 mg all animals terminated early 500 mg all animals terminated early 125 mg 1/10 male, 1/10 females died 30 mg no mortalities Skin irritation Terminal Body wt Males Females ↓ 9% at 30 mg/kg ↓ 12% at 30 mg/kg ↓ 13% at 30 mg/kg	
	HematolMalesFemalesRBC (125 mg/kg) \downarrow (9%) \downarrow (13%)Hb (125 mg/kg) \downarrow (10%) \downarrow (11%)HCT (125 mg/kg) \downarrow (10%) \downarrow (12%)Platelets (125 mg./kg) \downarrow (25%)	
	Chemistry Males Females SDH (125 mg/kg) ↓ (38%) BUN (125 mg/kg) ↑ (44%)	
	Organ wts Male Female Thymus (abs) ↓ 48% at 125 mg/kg ↓ 47% at 125 mg/kg (rel) ↓ 42% at 125 mg/kg ↓ 43% at 125 mg/kg ↓ 47% at 125 mg/kg Liver (abs) ↑ 24% at 125 mg/kg ↑ 24% at 125 mg/kg (rel) ↑ 25% at 125 mg/kg ↑ 34% at 125 mg/kg Spleen (rel) ↑ 36% at 125 mg/kg ↑ 36% at 125 mg/kg Testis ↑ 16% at 125 mg/kg ↑ 16% at 30 mg/kg	
	Histopath: Thymus, both sexes at 125 mg: lymphoid reduction 14/20) Spleen males at 125 mg: fibrous foci (6/10) Bone marrow at 125 mg/kg: focal fibrosis (1/10M, 2/10F) Sperm morphology unaffected	
Conclusion	LOAEL 30 mg/kg/day Drivers of LOAEL: (30 mg/kg/day) Male Terminal BW ↓, Rel testes wt ↑	
	Female Terminal BW ↓,	
Reliability	1 - Reliable without restrictions	
Reliability remarks	Similar to guideline study; sufficient detail provided in appendices and tables.	
Key study sponsor	Yes	
Reference	Mobil, 1994. Thirteen-Week Dermal Administration of Paulsboro Heavy Coker Gas Oil. Final Report on Study 50391 from Mobil Environmental and Health Science Laboratory, Princeton, NJ.	
	Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in Heavy Coker Gas Oil. Mobil Environmental and Health Sciences Laboratory Report no. 64348ZQ.	
	102 / 370	

API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009.

Repeated Dose Toxicity									
Test Substance									
Category Chemical:	64741-81-7	64741-81-7							
Test Substance:	64741-81-7;	64741-81-7; Heavy coker gas oil (HCGO)							
Test Substance Purity/Composition	Heavy coke	r gas oil (CRU No. 8	86272)					
and Other Test Substance Comments:	(Mobil, 1991		olycyclic A	romatic C	compound)	Content	– report n	10. 64348	ZR
	Sample	DMSQ	1-ARC	2-ARC	3-ARC	4-ARC	5-ARC	6-ARC	7-ARC
	#	wt.% ¹	$(\%)^2$	(%)	(%)	(%)	(%)	(%)	(%)
	86272	16.20	0.32	4.86	8.10	1.62	0.32	0.16	0.00
	1) Percent of		extractabl	e PACs,	determine	d by the I	PAC 2 met	thod as de	escribed
	in API (2008								
	2) ARC is "a								
	aromatic ring rings, and so				KC Z (%) I	s the per	Cent of PA	LCS WITH Z	aromatic
Category Chemical Result Type :	Measured			,gei					
Туре	Repeated d	lose [,] 90 d	lav (13 we	ek) derm	al exposur	P			
Species	Rat	1000, 00 0			a coposar	0			
Sex	Male/Femal	е							
Strain	Sprague-Da								
Route of admin.	Dermal	,							
Exposure period	13 weeks								
Frequency of treatm.	Daily, 5 day								
Doses	8, 30 and 1	0 0	/day						
No. of animals/dose	10/sex/dose								
Control group Method/Guideline	Yes, untrea Other	tea							
followed	Oulei								
Year	1995								
GLP	Yes								
Test substance	Heavy Coke	er Gas Oi	l, Sample	86272,	CAS 6474	1-81-7			
Post exposure period	None								
Method/Guideline and Test Condition Remarks:	Hair was clip treatment; th was applied evenly over the rats were substance. S animals. Ani dose, residu	te clipping to the ba the site w fitted wi Sham-exp mals wer	g was repo ck with a s ith the sid th cardboa osed con e dosed o	eated wee syringe ar le of the c ard Elizab trols on th n 5 conse	ekly throug nd dosing nee losing nee lethan colla ne same pr ecutive day	hout the needle; th dle. The ars to mir rocedure /s per we	study. The ne test sub site was le nimize inge and scheo ek. At 24 l	e test subs ostance wa ft uncover estion of the dule as the nours afte	stance as spread red and ne test e treated

Endpoints during the biophase included twice daily observation of clinical signs (once over the weekends) and body weights measured weekly. Blood samples were obtained from animals (non-anesthetized) via the orbital venous sinus through a non-heparinized capillary tube, during weeks 5 and 13. Hematological parameters included hematocrit, hemoglobin, number and morphology of red blood cells, and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase (glutamic puruvic transaminases), aspartate aminotransferase (glutamic oxaloacetic transaminases), cholesterol, creatinine, glucose, lactate dehydrogenase, total bilirubin, total protein, triglycerides, urea nitrogen, uric acid, calcium, chloride, phosphorus, potassium, and sodium. Urine samples were also collected for analysis of specific gravity, pH, glucose, occult blood, ketone bodies, albumin, urobilogen, and bilirubin.

All animals were then killed and necropsied. The following organs were weighed: kidneys, adrenals, liver, heart, spleen, thymus, testes, prostate, epididymides, thyroid, ovaries, uterus, and brain.

The following tissues (when present) from each animal were preserved in 10% neutral buffered formalin:

Adrenals*, esophagus, head (entire), kidneys*, liver *(part of median and right, lateral lobes), pituitary, skeletal muscle*, spleen*, thymus*, tongue and larynx, bone with marrow *(rib sternum, femur), heart* and aorta lachrymal glands, lungs* and bronchi, lymph nodes, cervical mammary gland (with skin), prostate and seminal vesicles*, stomach* (glandular and squamous), uterus* (cervix, corpus, and horns), brain*, eyes* and optic nerve intestine, large* (cecum, colon and rectum), lymph nodes, mesenteric lymph nodes, draining ovaries* and oviducts, salivary glands* (major), spinal cord (cervical, thoracic), thyroid* and parathyroids, trachea, epididymides*, Harderian glands, intestine, small *(duodenum, ileum, jejunum) gross lesions*, pancreas*, sciatic nerve, skin (treated)*, testes*, urinary bladder*, vagina.

NOTE: From all animals, a sample of the right kidney and of the median lobe of the liver were fixed in a formaldehyde-glutaraldehyde mixture (4% and 1%, respectively, in an aqueous buffer).

Tissues marked with an (*) were processed for microscopic examination from all animals in the control group and highest dose group (125 mg/kg). In addition, the skin and thymus from the 30 mg/kg and skin from the 8 mg/kg group were processed. Sections for examination were stained with hematoxylin and eosin, or any special stain deemed necessary. Microscopic examinations were performed by a pathologist.

The left epididymis and testis from the control and 125mg/kg/day male rats were examined. Prior to sample preparation of the testis for examination, the tunica albuginea and corresponding blood vessel were removed and discarded The resulting testicular parenchyma and the cauda epididymis were individually weighed (nearest 0.001 gram) and the weight recorded. Testes were prepared for spermatid count and epididymides were prepared for spermatozoa count and morphology.

For sperm motion analyses, the left vas deferens was immediately excised from each male and the sperm contents were removed and placed into a buffered solution and incubated. Following incubation, an aliquot of the prepared sample was placed on a siliconized slide and allowed to equilibrate. A minimum of eight fields per sample were videotaped and subsequently analyzed. Characteristics of sperm motion analyzed included percent motile sperm, curvilinear velocity, and linearity.

Statistical analysis: Quantitative data (body weight), serum chemistry, hematology, and organ weight data) were analyzed by parametric methods: analysis of variance (ANOVA) and associated F-test, followed by Dunnett's test (body weights) and Tukey's Multiple Comparison Test (serum chemistry, hematology and organ weight data), provided that there was statistical significance in ANOVA. Differences between control and treated groups were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05).

5. Toxicity				Heavy fuel oil December 7, 2012		
NOAEL/LOAEL	Males: NOAEL = 30 m					
	LOAEL = 125 r	ng/kg/uay				
	Females: NOAEL = 30 r LOAEL = 125					
Result			ation in a couple of anima	s		
	Skin irritation Moderate Body wt gain Reduced		only at 125 mg/kg			
	Hematology M Effects only at 125 mg/kg	lales as follows:	Females			
		13% 11%	↓ 8%			
	•	10%	1010			
	Platelets	32%	↓ 18%			
	WBC	5270	↑ 31%			
	Seg. Neutrophils		↑ 94%			
	Lymphocytes		↓ 13%			
	5	<i>l</i> ales	Females			
	Effects only at 125 mg/kg		★ EZ0/			
	BUN ↑ K	43%	↑ 57% ↓ 13%			
	SDH		↑ 60%			
	Organ wts N Effects only at 125 mg/kg	Nales as follows:	Females			
	Liver (Abs)		↑ 18%			
		24%	↑ 26%			
	Thymus (Abs) ↓ (Rel)	35%	↓ 36% ↓ 32%			
	Histopath Thymus at 125 reduction in thymocytes Bone marrow at 125 increased granulocytes Sperm morphology OK					
	Urinalysis No effect Mobil report of study 641	ts				
Conclusion	LOAEL 125 mg/kg/day					
Reliability	- 1 - Reliable without restr	ictions				
Reliability remarks	- Similar to guideline study; sufficient detail provided in appendices and tables.					
Key study sponsor	Yes					
Reference	Mobil, 1995. Thirteen-We Torrance Heavy Coker G Environmental and Health	as Oil to Rats.	Final Report on Study 6	4184 from Mobil		
			ntitation of Polynuclear A Ith Sciences Laboratory R			
	content and selected end	points of repe	'The relationship between at-dose and developmenta oleumhpv.org/pages/pac.h	al toxicity of high-boiling		

Id Heavy fuel oilDate December 7, 2012

Repeated Dose Toxicity	
Test Substance	
Category Chemical (CAS #):	64741-81-7
Test Substance (CAS #):	64741-81-7; Heavy Coker Gas Oil (F-136)
Test Substance Purity/Composition and Other	No information available
Test Substance Comments :	
Category Chemical Result Type	
:	Measured
Туре	Repeated dose; 4 week dermal exposure
Species	Rat
Sex	Male/Female
Strain	Sprague-Dawley
Route of admin.	Dermal
Exposure period Frequency of treat.	28 days Daily, 5 days/week for 4 weeks
Doses	0.01, 0.1, 1.0 ml/kg/day (9.3, 93, 930 mg/kg/day)
Control group	Yes, untreated
Method/Guideline followed	
Year	1992
GLP	Yes Colver boowy goo oil (E 136) CAS 64741 81 7
Test substance Post exposure period	Coker, heavy gas oil (F-136) CAS 64741-81-7 None
Method/Guideline and Test	Three groups of ten male and ten female young adult albino Sprague-Dawley
Condition Remarks	rats were administered F-136 dermally once daily, five days per week for four
	weeks, at a dose of .01, 0.1, 1.0 ml/kg/day (9.3, 93, 930 mg/kg/day). The test
	article was applied to previously clipped sites on the backs of the animals. The
	site of application was occluded for a period of approximately six hours following application of the test article. The skin was then wiped to remove residual
	material. A fourth group of ten male and ten female rats served as a control. The
	backs of the control group animals were clipped and the occlusive wrap was
	applied daily, five days per week, for four weeks.
	The enimple were cheered twice daily for signs of toxisity and visbility. Dermal
	The animals were observed twice daily for signs of toxicity and viability. Dermal irritation at the site of application was evaluated daily just prior to the application
	of the test article, twenty-four hours after the fifth weekly application and just prior
	to necropsy. Body weights were determined three times per week during the
	study (Mondays, Wednesdays and Fridays) and just prior to necropsy.
	At the time of necropsy, blood was collected for hematology and clinical chemistry
	evaluations. Measured hematological parameters were hematocrit, hemoglobin,
	number of red blood cells, platelets and the number and differential count of white
	blood cells. The following clinical chemistry parameters were analyzed: albumin,
	alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase,
	cholesterol, creatinine, glucose, total protein, triglycerides, urea nitrogen, calcium,
	chloride, iron, phosphorus, potassium, and sodium, globulin (calculated), NG ratio
	(calculated).
	All animals were then killed and necropsied. The following organs were weighed:
	adrenals, brain, kidneys, liver, testes, and ovaries. The following organs were
	preserved in 10% neutral buffered formalin for possible histological evaluation:
	adrenals*, aorta, cecum, cervical lymph nodes*, esophagus, femur with articular
	surface, ileum*, bone and marrow, brain*, eyes and optic nerve, gonads, heart*,
	duodenum*, jejunum*, mammary glands, colon*, kidneys*, liver*, lungs*
	106 / 370

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	(perfused) with trachea, pancreas*, skeletal muscle, salivary glands*, rectum*, pituitary, peripheral nerve, skin* (untreated and treated), spinal cord, spleen*, sternum with bone marrow*, testes*, ovaries*, stomach*, thymus*, thyroid*, parathyroid glands, uterus, vagina, urinary bladder*, and any gross lesions. Bone marrow smears (femur) were prepared, preserved and maintained. For the control and high dose groups, those tissues marked with (*) were stained and sectioned for examination by a qualified pathologist.
	Clinical pathology data, terminal organ weights, and organ to body weight ratios were statistically analyzed. Statistical evaluations of equality of means were done by an appropriate one way analysis of variance and a test for ordered response ir the dose groups. First, Bartlett's test was performed to determine if the dose groups have equal variance at the 1 percent level of significance. If the variances are equal, the testing were done using parametric methods, otherwise, nonparametric techniques were used.
	For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means are indicated, Dunnett's test were used to determine which treatment groups differ significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression was also test for linear lack of fit in the model.
	For the nonparametric procedures, the test of equality of means were performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test were used to determine which treatment groups differ significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed.
	Mean Draize irritation scores were plotted by group and time. The nonparametric procedures described above were used on this irritation data when appropriate. Sexes were analyzed separately. All ratios were transformed by the arc sine transformation and Cochran's transformation to stabilize variances. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.
NOAEL/LOAEL	Males: NOAEL = 93 mg/kg/day (0.1 ml/kg/day)* LOAEL = 930 mg/kg/day (1.0 ml/kg/day)
	Females: NOAEL = 93 mg/kg/day (0.1 ml/kg/day)* LOAEL = 930 mg/kg/day (1.0 ml/kg/day) *Authors indicate "NOEL"
Result Remarks	Clinical: Skin irritation: Very slight – Slight, dose-related
	Mortality Males 10% 9.3 & 930 mg/kg/day** Females None
	Body wt., terminalMalesFemalesNo differenceNo difference
	Organ weights Liver, Abs Males ↑ 930 (27%) mg/kg/day Females ↑ 930 (27%) mg/kg/day
	Liver, rel brain Males
	107 / 370

5. Toxicity			Id Heavy fuel oil
			Date December 7, 2012
	Liver, rel BW	 ↑ 930 (28%) mg/kg/day Females ↑ 930 (32%) mg/kg/day Males ↑ 930 (30%) mg/kg/day Females ↑ 93 (11%)**, 930 (32%) 	mg/kg/day
	Hematology Hematocrit Hb	Males ↓ 930 (4%) mg/kg/day** No difference	Females ↓ 930 (9%) mg/kg/day** ↓ 930 (6%) mg/kg/day**
	Serum chemistry BUN	Males ↑ 9.3 (18%), 93 (21%), 93 Females	30 (19%) mg/kg/day**
	Cholesterol	No difference Males No difference	
	Females	↑ 930 (59%) mg/kg/day	
	Histopath (sham	controls & high dose)	
	Males No test article-	related systemic findings	
	Females No test article-	elated systemic findings	
	Testes – norma	al; Ovaries – normal	
		nsidered by study directors cally relevant	to be compound-related and/or
Conclusion	Effects defining L	OAEL:	
	Male (930 mg/kg, Liver wts; Hemato		
	Female (930 mg/ Liver wts; Hemato	kg/day) ocrit, Hb; Cholesterol	
Reliability	1 – Reliable wi	thout restrictions	
Reliability remarks	Similar to guide tables.	eline study; sufficient detail	provided in appendices and
Key study sponsor	Yes		
Reference		enty-eight day dermal toxici port no. Study No. ATX-900	ty study in rats administered test 0098.

Repeated Dose Toxicity	
Test Substance	
Category Chemical:	64741-81-7
	108 / 370

5. Toxicity						D		avy fuel cember 3		
Test Substance: Test Substance Purity/Composition and Other Test Substance Comments:	64741-81-7; Visbreaker Gas Oil (VGO); V.B. Mittelol Visbreaker Gas Oil (CRU No. 86193) PAC(Polycyclic Aromatic Compound) Content – report no. 64348 ZT (Mobil, 1991)									
	Sample #	DMS O wt.%	1- ARC (%) ²	2- ARC (%)	3- ARC (%)	4- ARC (%)	5- ARC (%)	6- ARC (%)	7- ARC (%)	
Category Chemical Result Type :	86193 1) Percer described 2) ARC is that have PACs with Measured	in API (: s "aroma 1 aroma i 2 aroma	2008) <mark>.</mark> tic ring c tic ring v	lass". "A vithin the	RC 1 (% total sa	o)" is the mple. "A	weight p NRC 2 (%	percent o 6)" is the	of PACs	
Unable to Measure or Estimate Justification : Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Doses No. of animals/dose Control group Method/Guideline followed Year GLP Test substance Post exposure period	Repeated Rat Male/Fem Sprague-I Dermal 13 weeks Daily, 5 d 0, 8, 30, 1 10/sex/do Yes, untre Other 1992 Yes Visbreake None	dose; 9 ale Dawley ays/weel 25 mg/k se eated	k g/day							
Method/Guideline and Test Condition Remarks	Hair was of initial treat test substa test substa needle. The Elizabetha controls or were dose residual te Endpoints (once over were obtai through a Hematolog morpholog blood cells albumin, a transamina transamina bilirubin, to phosphoru analysis of urobilogen	ment; the ince was ince was ince was ince was ince was not collars of the sar d on 5 c st substand during the the wee ned from non-hep- ical para y of red s. The foc lkaline p ases), ch otal prote s, potas f specific	e clippin s applied s spread as left ur s to minir ne proce onsecuti ance was he bioph ekends) s n animals arinized ameters blood ce blowing of spartate nolestero ein, trigly sium, ar c gravity,	g was re to the b evenly o ncovered nize ingo adure an ve days s wiped ase inclu- ase inclu- ase included s (non-a capillary included ells, and clinical c ase, alar aminotra l, creatir cerides, id sodiur	peated with over the I and the estion of d schedu per wee off as the uded twice y weights nesthetize tube, du I hemato the num hemistry nine ami unsferase nine, gluce urea nitr n. Urine	weekly the a syring site with a rats we the test ule as the k. At 24 broughly ce daily ce daily ce daily ce daily ce daily s measu auring we crit, hen ber and parame notransfi e (glutan cose, lac rogen, u samples	nroughou ge and d the side re fitted substance treated hours af as poss observat red weel the orbit eks 5 an noglobin, different sters wer erase (g nic oxalo state deh ric acid, were al	ut the stu- losing ne e of the c with care ce. Shar d animals fter the fi sible. ion of cl kly. Bloo al venou nd 13. number tial count re analyz plutamic p pacetic nydrogen calcium, lso colled	inical sig add sample s sinus and tof white ced: ouruvic ase, tota chloride cted for	ed ls ns es

5. Toxicity	Id Heavy fuel oil
0. TOXIONY	Date December 7, 2012
	All animals were then killed and necropsied. For the control and high dose groups, the following organs were weighed: kidneys, adrenals, liver, heart, spleen, thymus, testes, prostate, epididymides, thyroid, ovaries, uterus, brain.
	The following tissues (when present) from the 0, and 125 mg/kg/day group were processed for microscopic examination:prostate seminal vesicles, epididymis), adrenals, lymph nodes, femur with brain (cerebellum, cerebrum, medulla pons), eye (left) and optic nerve (left), heart, duodenum, colon, kidneys, liver, lung (left lobe), pancreas, skeletal muscle, salivary glands, pituitary, peripheral nerve, skin* (treated), spinal cord, spleen, sternum with bone marrow, testis (right), ovaries, stomach, thymus, thyroid, uterus, urinary bladder, and any gross lesions. Bone marrow smears (femur) were prepared, preserved and maintained. Those tissues marked with (*) were also processed and examined by a qualified pathologist for animals in the 8 and 30 mg/kg/day group.
	The left epididymis and testis from the control and 125 mg/kg/day male rats were examined. Prior to sample preparation of the testis for examination, the tunica albuginea and corresponding blood vessel were removed and discarded The resulting testicular parenchyma and the cauda epididymis were individually weighed (nearest 0.001 gram) and the weight recorded. Testes were prepared for spermatid count and epididymides were prepared for spermatozoa count and morphology.
	Statistical analysis: Quantitative data were analyzed for homogeneity of variance (ANOVA), and associated f-test followed by Dunnett's Test (body weights) or Tukey's multiple comparison test (organ weights and hematolology). Differences between control and treated lroups were considered statistically significant only if the probability of the differences being due to chance is less than 5% (p<0.05).
NOAEL/LOAEL	NOAEL = 125 mg/kg LOAEL =>125 mg/kg
Result	ClinicalNo findingsSkin irritationSlight in all treated groupsBody wt gainNo effectsHematologyNo effectsChemistryNo dose-related findingsOrgan wtsNo dose-related findingsHistopathSkin only findings and non-specific reactive hyperplasia in lymph nodes in most instances No effects on sperm morphology
Conclusion	LOAEL > 125 mg/kg/day
Reliability Reliability remarks	 1 - Reliable without restrictions Similar to guideline study; sufficient detail provided in appendices and tables.
Key study sponsor	Yes
Reference	Mobil, 1992. Thirteen-Week Dermal Administration of Visbreaker Gas Oil to Rats. Final Report on Study 63237 from Mobil Environmental and Health Science Laboratory, Princeton, NJ
	Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in Visbreaker Gas Oil. Mobil Environmental and Health Sciences Laboratory Report no. 64348 ZT.
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances."
	110 / 370

-

http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009

Departed Dees Terrisity	
Repeated Dose Toxicity	
Test Substance	
Category Chemical (CAS #):	68476-33-5
Test Substance (CAS #):	68476-33-5; Heavy Fuel Oil (F-92-01)
Test Substance Purity/Composition and Other Test Substance Comments:	No information available
Category Chemical Result Type :	Measured
Type Species Sex Strain Route of admin. Exposure period Frequency of treat. Doses No. of animals/dose Control group Method/Guideline followed Year GLP Test substance Post exposure period	Repeated dose; 4 week dermal exposure Rat Male/Female Sprague-Dawley Dermal 28 days/4 weeks Daily, 5 days/week for 4 weeks 0.5, 1.0, 2.0 ml/kg/day (480, 960, 1920 mg/kg/day) 10/sex/dose Yes, untreated Other 1988 Yes Heavy Fuel Oil (F-92-01) CAS 68476-33-5 None
Method/Guideline and Test Condition Remarks	Three groups of ten male and ten female young adult albino Sprague-Dawley rats were administered F-92-01 dermally once daily, five days per week for four weeks, at a dose of 0.5, 1.0, 2.0 ml/kg/day (480, 960, 1920 mg/kg/day). The test article was applied to previously clipped sites on the backs of the animals. The site of application was occluded for a period of approximately six hours following application of the test article. The skin was then wiped to remove residual material. A fourth group of ten male and ten female rats served as a control. The backs of the control group animals were clipped and the occlusive wrap was applied daily, five days per week, for four weeks.

5. Toxicity				Heavy fuel oil
			Date	December 7, 2012
	alkaline phosphatase, a cholesterol, creatinine,	ng clinical chemistry para alanine aminotransferase, glucose, total protein, trig rus, potassium, and sodiu	, aspartate a glycerides, u	aminotransferase, rea nitrogen, calcium,
	adrenals, brain, kidneys preserved in 10% neutr adrenals*, aorta, cecun surface, ileum*, bone a duodenum*, jejunum*, with trachea, pancreas peripheral nerve, skin* bone marrow*, testes*, uterus, vagina, urinary (femur) were prepared,	illed and necropsied. The s, liver, testes, and ovarie al buffered formalin for p n, cervical lymph nodes*, nd marrow, brain*, eyes a mammary glands, colon* *, skeletal muscle, salival (untreated and treated), ovaries*, stomach*, thym bladder*, and any gross I preserved and maintaine harked with (*) were stain	es. The follow ossible histo esophagus, and optic ner , kidneys*, liv ry glands*, r spinal cord, nus*, thyroid esions. Bone ed. For the c	ving organs were blogical evaluation: femur with articular rve, gonads, heart*, ver*, lungs* (perfused) rectum*, pituitary, spleen*, sternum with *, parathyroid glands, e marrow smears
	were statistically analyz an appropriate one way dose groups. First, Bar have equal variance at	terminal organ weights, ed. Statistical evaluations analysis of variance and tlett's test was performed the 1 percent level of sig using parametric methods	s of equality d a test for or to determine nificance. If	of means were done by rdered response in the e if the dose groups the variances are equal,
	distribution to assess si among the means are i treatment groups differ standard regression an	edures, a standard one ward one ward one ward one ward one ward on the second one ward on the significantly from control alysis for linear response o test for linear lack of fit	significant di were used to In addition in the dose	fferences determine which to the ANOVA, a groups was performed.
	performed using the Kr were indicated, Dunn's groups differ significant	procedures, the test of ecuskal-Wallis test. If signific Summed Rank test were dy from control. In addition onotonic trend in the dos	icant differer used to deto n to the Krus	nces among the means ermine which treatment skal-Wallis test,
	nonparametric procedu appropriate. Sexes wer sine transformation and equal variance (Bartlett	cores were plotted by gro res described above were e analyzed separately. A l Cochran's transformatio) was conducted at the 1 t the 5% and 1% level of	e used on th Il ratios were n to stabilize % level of si	is irritation data when transformed by the arc variances. The test for gnificance. All other
NOAEL/LOAEL	LOAEL = 48 Females: NOAEL <480) mg/kg/day (0.5 ml/kg/da 0 mg/kg/day (0.5 ml/kg/da) mg/kg/day (0.5 ml/kg/da 0 mg/kg/day (0.5 ml/kg/da	ay) ay)	
Result remarks	Clinical: Skin irritation:	Mild 1920 mg/kg/day		
	Mortality	<i>Males</i> None	Fen None	nales
	Body wt., terminal		Females	ce
	1'	12 / 370		

Organ weights Liver, Abs	Males ↑ 480 (12%), 1920 (16%) mg/kg/day Females 480 (21%), 960 (38%), 1920 (21%) mg/kg/day
Liver, rel bw	Males ↑ 480 (12%), 960 (15%), 1920 (24%) mg/kg/day Females ↑ 480 (19%), 960 (28%), 1920 (25%) mg/kg/day
Liver, rel brain	Males ↑ 480 (15%), 960 (14%), 1920 (17%) mg/kg/day Females
Kidney, Abs	↑ 480 (20%), 960 (29%), 1920 (22%) mg/kg/day Males ↓ 1920 (8%) mg/kg/day** Females
Spleen, Abs	No difference Males ↑ 480 (22%), 960 (22%), 1920 (21%) mg/kg/day Females
Spleen, rel bw	↑ 960 (21%) mg/kg/day Males ↑ 480 (22%), 960 (28%), 1920 (28%) mg/kg/day Females
Spleen, rel brain	 ↑ 960 (24%), 1920 (19%) mg/kg/day Males ↑ 480 (25%), 960 (25%), 1920 (22%) mg/kg/day Females ↑ 480 (21%), 960 (27%) mg/kg/day
Hematology RBC	Males ↓ 960 (12%), 1920 (8%) mg/kg/day Females ↓ 480 (8%), 960 (8%), 1920 (7%) mg/kg/day
Hematocrit	Males ↓ 480 (6%), 960 (11%), 1920 (8%) mg/kg/day
Females	
Hb	↓ 480 (8%), 960 (8%), 1920 (7%) mg/kg/day Males ↓ 480 (6%), 960 (11%), 1920 (8%) mg/kg/day Females
Eosinophils	↓ 480 (11%), 960 (10%), 1920 (9%) mg/kg/day Males No difference Females ↓ 960 (91%) mg/kg/day**
Serum chemistry BUN	Males ↑ 960 (27%), 1920 (18%) mg/kg/day** Females
Glucose	↑ 1920 (19%) mg/kg/day** Males No difference Females
SGPT	↑ 1920 (12%) mg/kg/day** Males ↓ 1920 (18%) mg/kg/day**
	113 / 370

Id Heavy fuel oil

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	Females No difference
	Histopath (sham controls & high dose)
	Males
	No test article-related systemic findings
	Females No test article-related systemic findings
	Testes – normal; Ovaries – normal
Conclusion	Note: ** not considered by study directors to be compound-related and/or biologically relevant Effects defining LOAEL:
	Male 480 mg/kg/day (0.5 ml/kg/day) Liver wts; Spleen wts; Hematocrit; Hb
	Female 480 mg/kg/day (0.5 ml/kg/day) Liver wts; Spleen wt (rel brain); RBC; Hematocrit; Hb
Reliability	- 1 - Reliable without restrictions
Reliability remarks	Similar to guideline study; sufficient detail provided in appendices and tables.
Key study sponsor	Yes
Reference	ARCO. 1986. Twenty-eight day dermal toxicity study in rats administered test article F-92-01. Report no. ATX-86-0090.
Repeated Dose Toxicity	
Test Substance	
Category Chemical (CAS #):	64741-62-4
Test Substance (CAS #):	64741-62-4; Clarified Slurry Oil (CSO): Petrobase

Clarified Slurry Oil; (F-179)

		PAG	C Conter	nt – repo	rt no. 65	726-ZA-2	ZR (Mob	il, 1994)		
Test Substance	Sample #	DMS O wt.%	1- ARC (%) ²	2- ARC (%)	3- ARC (%)	4- ARC (%)	5- ARC (%)	6- ARC (%)	7- ARC (%)	
Purity/Composition and Other Test Substance Comments :	091645 (F-179)		0.00	0.70	10.0	30.00	20.00	6.00	0.00	
	 Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008). 									
	 ARC is have 1 are PACs with 	omatic ri	ng within	the tota	I sample	. "ARC 2	2 (%)" is	the perc	of PACs that ent of	
Category Chemical Result Type :	Measured									

5. Toxicity

Туре **Species** Sex Strain Route of admin. Exposure period Frequency of treat. Doses No. of animals/dose Control group Method/Guideline Followed Year GLP Test substance Post exposure period Method/Guideline and Test **Condition Remarks**

Repeated dose; 90 day (13 week) dermal exposure Rat Male/Female Sprague-Dawley Dermal 90 days/13 weeks Daily. 5 days/week 0.001, 0.01, 0.05, 0.1, 0.5 ml/kg/day (1.06, 10.6, 53, 106, 530 mg/kg/day) 20 animals/sex/group Yes, untreated Other 1993 Yes Cat. Cracked Slurry Oil (F-179) CAS 684741-62-4 None Five groups of twenty male and twenty female young adult albino Sprague-

Dawley rats were administered F-179 dermally once daily, five days per week for 13 weeks, at doses of 0.001, 0.01, 0.05, 0.1, 0.5 ml/kg/day (1.06, 10.6, 53, 106, 530 mg/kg/day). The test article was applied to previously clipped sites on the backs of the animals. The site of application was occluded for a period of approximately six hours following application of the test article. The skin was then wiped to remove residual material. One additional group of twenty male and twenty female rats served as controls (untreated). The backs of the control group animals were clipped and the occlusive wrap was applied daily, five days per week, for four weeks.

Animals were observed twice daily for viability and daily for signs of toxicity. Dermal irritation at the site of application was evaluated daily just prior to the application of the test article, twenty-four hours after the fifth weekly application and just prior to necropsy. Body weights were determined weekly during the study and just prior to necropsy. Feed consumption was determined weekly beginning at week 6.

At the time of necropsy, blood was collected for hematology and clinical chemistry evaluations. Measured hematological parameters were hematocrit, hemoglobin, number of red blood cells, platelets and the number and differential count of white blood cells, and mean corpuscular volume (MCV). The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, cholesterol, creatinine, glucose, total protein, triglycerides, urea nitrogen, calcium, chloride, iron, phosphorus, potassium, and sodium, globulin (calculated), A/G ratio (calculated).

All animals were then killed and necropsied. The following organs were weighed: adrenals, brain, heart, kidneys, liver, lungs, spleen, thymus, testes, and ovaries. Paired tissues were weighed together to obtain a total weight. The following organs were preserved in 10% neutral buffered formalin for possible histological evaluation: accessory genital organs (prostate seminal vesicles, epididymis), adrenals*, aorta, cecum, cervical lymph nodes*, esophagus, femur with articular surface, ileum*, bone and marrow, brain (cerebellum, cerebrum, medulla pons)*, eyes and optic nerve, gonads, heart*, duodenum*, jejunum*, mammary glands, colon*, kidneys*, liver*, lungs* (perfused) with trachea, pancreas*, skeletal muscle, salivary glands*, rectum*, pituitary, peripheral nerve, skin* (untreated and treated), spinal cord, spleen*, sternum with bone marrow*, testes*, ovaries*, stomach*, thymus*, thyroid*, parathyroid glands, uterus, vagina, urinary bladder*, and any gross lesions. Bone marrow smears (femur) were prepared, preserved and maintained. For the control and high dose groups, those tissues marked with (*) were stained and sectioned for examination by a qualified pathologist

Clinical pathology data, terminal organ weights, and organ to body weight ratios were statistically analyzed. Statistical evaluations of equality of means were

5. Toxicity			Heavy fuel oil
		Date	December 7, 2012
	response in the dose the dose groups have the variances are equ	te one way analysis of variance a groups. First, Bartlett's test was p equal variance at the 1 percent k al, the testing were done using pa etric techniques were used.	erformed to determine if evel of significance. If
	distribution to assess among the means are treatment groups diffe standard regression a	ocedures, a standard one way AN significance was used. If significa e indicated, Dunnett's test were us er significantly <i>from</i> control. In add analysis for linear response in the ssion was also test for linear lack	ant differences ed to determine which lition to the ANOVA, a dose groups was
	performed using the k means were indicated which treatment group	c procedures, the test of equality of Kruskal-Wallis test. If significant di d, Dunn's Summed Rank test were os differ significantly from control. onckheere's test for monotonic tre	fferences among the e used to determine In addition to the
	transformation and Co equal variance (Bartle	separately. All ratios were transformation to stabilize ochran's transformation to stabilize ett) was conducted at the 1% level at the 5% and 1% level of signific	e variances. The test for of significance. All other
NOAEL/LOAEL		l.06 mg/kg/day (0.001 ml/kg/day)* 0.6 mg/kg/day (0.01 ml/kg/day)	
		1.06 mg/kg/day (0.001 ml/kg/day) _ = 10.6 mg/kg/day (0.01 ml/kg/da	
	*Authors indicate		<i>,</i>
Result Remarks	Clinical: Skin irritation:	None	
	Mortality	<i>Males</i> ↑ 530 (35%) mg/kg/day	<i>Females</i> ↑ 530 (10%) mg/kg/day
	Body wt., terminal	Males Female ↓ 530 (12%) mg/kg/day No diff	
	· ↓	lales 530 (7%) mg/kg/day** emales	
	Liver, Abs M ↑ F	lo difference lales 53 (19%), 106 (31%), 530 (21%) emales	
	Liver, rel bw	53 (23%), 106 (26%), 530 (45%) lales (24%), 106 (35%), 530 (37%) mg/	
		emales (23%), 106 (29%), 530 (53%) mg/	kg/day
	,	lales 53 (25%), 106 (36%), 530 (29%)	mg/kg/day
	116 /	370	

5. Toxicity

	Females ↑ 53 (24%), 106 (25%), 530 (49%) mg/kg/day
Kidney, Abs	Males ↓ 530 (14%) mg/kg/day** Females
Kidney, rel brain	No difference Males ↑ 106 (13%) mg/kg/day** Females
Spleen, Abs	No difference Males ↑ 53 (21%), 106 (39%) mg/kg/day**
Spleen, rel bw	Females No difference Males ↑ 53 (22%), 106 (39%) mg/kg/day**
Spleen, rel brain	Females No difference Males
Thymus, Abs	 ↑ 53 (26%), 106 (45%) mg/kg/day** Females ↑ 53 (16%) mg/kg/day** Males
mymus, Abs	↓ 530 (43%) mg/kg/day Females ↓ 530 (56%) mg/kg/day
Thymus, rel bw	
Thymus,rel brair	↓ 530 (50%) mg/kg/day 1 Males ↓ 530 (40%), mg/kg/day
Lungs, Abs	Females ↓ 530 (55%) mg/kg/day Males ↑ 53 (15%), 106 (14%) mg/kg/day
Lungs, rel bw	Females ↑ 53 (12%), 106 (14%), 530 (16%) mg/kg/day Males ↑ 53 (21%), 106 (19%), 530 (19%) mg/kg/day
↑ 10.6 (9%), 53	Females (13%), 106 (18%) 530 (23%) mg/kg/day
Lungs, rel brain	Males ↑ 53 (19%), 106 (18%), 530 (14%) mg/kg/day Females ↑ 53 (14%), 106 (14%), 530 (19%) mg/kg/day
Heart, Abs	Males ↑ 106 (16%) mg/kg/day** Females
Heart, rel bw	No difference Males ↑ 53 (17%), 106 (20%), 530 (17%) mg/kg/day** Females
Heart, rel brain	↑ 530 (11%) mg/kg/day** Males ↑ 53 (15%), 106 (20%), mg/kg/day** Females No difference
Hematology	

117 / 370

·····		Date December 7, 2012
	RBC	Males ↓ 53 (9%), 106 (18%), 530 (30%) mg/kg/day Females
	Hematocrit	↓ 106 (10%), 530 (22%) mg/kg/day Males ↓ 53 (9%), 106 (18%), 530 (36%) mg/kg/day
F	emales	
	Hb	↓ 53 (7%), 106 (13%), 530 (25%) mg/kg/day Males
		↓ 53 (9%), 106 (16%), 530 (28%) mg/kg/day Females
	Platelets	↓ 53 (6%), 106 (11%), 530 (22%) mg/kg/day Males
		53 (26%), 106 (34%), 530 (43%) mg/kg/day
		Females
	Total WBC	↓ 106 (29%), 530 (55%) mg/kg/day Males
		No difference
		Females ↑ 10.6 (29%), 53 (45%) mg/kg/day**
s	Serum chemistry	
	BUN	Males ↑ 53 (61%), 106 (85%), 530 (80%) mg/kg/day Females
	Creatinine	↑ 106 (31%), 530 (31%) mg/kg/day Males ↑ 530 (14%) mg/kg/day Females
	Albumin	↑ 53 (8%), 106 (12%), 530 (9%) mg/kg/day Males
	Albumin	↓ 106 (11%) mg/kg/day** Females No difference
	SGOT	Males
		↑ 530 (111%) mg/kg/day Females • 1.00 (0%) (111%) mg/kg/day
	Cholesterol	↑ 1.06 (9%)**, 530 (29%) mg/kg/day Males
		↑ 53 (71%), 106 (84%), 530 (61%) mg/kg/day Females
	Triglycerides	↑ 53 (61%), 106 (87%), 530 (103%) mg/kg/day Males
		↑ 53 (66%), 106 (130%) mg/kg/day** Females
	Sodium	↑ 10.6 (26%) mg/kg/day** Males
		↑ 106 (8%), mg/kg/day** Females
	Phosphorous	↑ 10.6 (6%), 53 (7%), 106 (7%), 530 (7%) mg/kg/day** Males ↑ 106 (14%) mg/kg/day**
		Females No difference
	Total Protein	Males No difference
		Females
	11	8 / 370

		, ,
	Alk. Phos.	↑ 106 (7%) mg/kg/day** Males No difference Females
	Glucose	↑ 530 (93%) mg/kg/day Males No difference Females ↑ 106 (14%), 530 (14%) mg/kg/day**
	Adrenal glands, b	a controls & high dose) bone, bone marrow, thyroid glands, treated skin, liver, lungs, d gross lesions were examined from rats in the 1.06, 10.6, 53, roups
		cellular depletion Males ↑ 106 (10%), 530 (40%) mg/kg/day Females ↑ 106 (5%), 530 (25%) mg/kg/day on/necrosis/vacuolar change
	Males	
	Thymus; atroph	↑ 53 (10%),106 (20%), 530 (45%) mg/kg/day Females ↑ 53 (5%), 106 (5%), 530 (15%) mg/kg/day ny
	Males ↑ 10.6 (5%), 5	3 (26%), 106 (25%) 530 (63%) mg/kg/day
	Thyroid, chroni	Females ↑ 106 (30%), 530 (94%) mg/kg/day c inflammation (lymphocytic thyroiditis)
	Males	↑ 53 (22%), 106 (11%), 530 (38%) mg/kg/day Females ↑ 53 (18%), 106 (11%), 530 (15%) mg/kg/day
	Testes – norma	al; Ovaries – normal
		sidered by study directors to be compound-related and/or cally relevant
Conclusion	Effects defining	LOAEL:
		/day (0.01 ml/kg/day) r; ↓ platelets, ↑ thymic atrophy
	Female 10.6 mg/ ↑ Lung wt, rel. bw	kg/day (0.01 ml/kg/day) r, Liver wt rel bw
Reliability	- 1 - Reliable witho	ut restrictions
Reliability remarks	- Similar to guidelir	e study; sufficient detail provided in appendices and tables.
Key study sponsor	Yes	

5. Toxicity								leavy fu Decembe	el oil er 7, 2012
Reference	ARCO. 1993. Ninety day (90) dermal toxicity study in rats administered test article F-179. Report no. ATX-910012.								
				ation and h Sciend					matics. Mol -ZA-ZR
	ring clas toxicity o	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009							
Repeated Dose Toxicity									
Test Substance									
Category Chemical:	64741-62-	4							
Test Substance:	64741-62-4								
Test Substance Purity/Composition and Other Test Substance Comments:	Clarified oils (petroleum), catalytic cracked (CRU No. 86484). The test mate synonym used in the study report is Syntower Bottoms PAC (Polycyclic Aromatic Compound) Content – Report No 64348 ZM (Mobil, 1991)								
	Sample #	DMS O wt.%	1- ARC (%) ²	2- ARC (%)	3- ARC (%)	4- ARC (%)	5- ARC (%)	6- ARC (%)	7- ARC (%)
	8648448.800.000.989.7619.529.764.880.981) Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008).2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings.								
Category Chemical Result Type	Measured								
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Doses No. of animals/dose Control group Method/Guideline followed Year GLP Test substance	Measured Repeated dose; 90 day (13 week) dermal exposure Rat Male/Female Sprague-Dawley Dermal 13 weeks Daily, 5 days/week 8, 30, 125, 500 10/sex/dose Yes two untreated control groups of 10 males and 10 females each Other 1988 Yes CAS 64741-62-4 Clarified oils (petroleum), catalytic cracked (CRU No. 86484).								
	The test m								

Condition Remarks initial treatment; the clipping was repeated weekly throughout the study. The substance was spried on the back with a syringe and dosing needle; the test substance was spried evenly over the site with the side of the dosing needle; the test substance was spried evenly over the site with the side of the dosing needle; the test substance was used to other tas were fitted with cardboard Elizabeth colars to minimize ingestion of the test substance. Sham-exposed controls consecutive days per week. At 24 hours after the fifth dose, residual test substance was wiped off as thoroughly as possible. Endpoints during the biophase included twice daily observation of clinical sig (once over the weekends) and body weights measured weekly. Blood samplivere obtained from animals (non-anesthetized) via the obtain verous sinus through a non-heparinized capilary tube, during weeks 5 and 13. Hematolog parameters included hematocrit, hemoglobin, number and informalese), asparate aninotransferase (glutamic ovalicacetic transaminases), asparate aninotransferase (glutamic ovalicacetic transaminases), asparate aninotransferase (glutamic ovalicacetic transaminases), obtesterr creatinine, glucose, tactut biod, veries alouted for analysis of specific grant, triglycerides, uree nitrogen, uric acid, calcium, chloride, phosphorus, potassi and sodium. Unite samples were also collected for analysis, or specific grant, yeid, ovares, uterus, trans, phene, thymus, testes, prostate, epiddymide throughout je and birubin. All animals were then killed and necropsied. The following organs were weigk kidneys, adrenals, itver, heart, spleen, thymus, testes, prostate, epiddymide throughout, cerebrum, medulia p eye (left) and optic nerve (left), heart, docdenum, cerebrum, cells (appl) ovaries, stormach, thymus, thyroid, uterus, urinary biadder, and any gross bescome anis vee many scelest and with the substate, spleid througho	5. Toxicity	ld Heavy fuel oil Date December 7, 2012
Condition Remarks initial treatment: the clipping was repeated weekly throughout the study. The substance was spread evenly over the site with the side of the dosing needle; the test substance was spread evenly over the site with the side of the dosing needle; the test substance was spread evenly over the site substance. Sham-exposed controls came procedure and schedule as the treated animals. Animals were dosed of consecutive days per week. At 24 hours after the fifth dose, residual test substance was wiped off as thoroughly as possible. Endpoints during the biophase included twice daily observation of clinical sig (once over the weekends) and body weights measured weekly. Blood samplive were obtained from animals (non-anesthetized) via the orbital verous sinus through a non-heparinzed capillary tube, during weeks 5 and 13. Hematolog parameters included hematocrit, hemoglobin, number and influences is and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatese, alarine eminotransferase (glutamic ovalabcetic transaminases), cholesterc creatinine, glucose, lactate dehydrogenase, total bilirubin, total protein, triglycenides, urea nitrogen, unic acid, calcium, chloride, phosphorus, potassi and sodium. Une samples were also collected for analysis of specific gravity pH, glucose, occut blood, ketone bodies, albumin, urobingen, and bilirubin. All animals were then kiled and necropsied. The following organs were weigl kidneys, adrenals, iver, heart, spleen, thymus, testes, prostate, epiddymide thyroid, varies, withen and the rate solution, creating, medula peye (eff) and opic nerve (left), heart, dudenum, cetor, kingers', liver', luce), left end end and regraved, preserved and maintained. The tissues marked with (') were also processed and examined by a qualified pathologist for animalis in the 125 and s000 mg/kg/day group.	Post exposure period	None
(once over the weekends) and body weights measured weekly. Blood sampling were obtained from animals (non-anesthetized) via the orbital venous sinus through a non-heparinized capillary tube, during weeks 5 and 13. Hernatolog parameters included hernatocrit, hemoglobin, number and morphology of reblood cells, and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: alburnin, alkaline phosphatase, alanine aminortransferase (glutamic purvice transaminases), cholesterd creatinine, glucose, lactate dehydrogenase, total bilirubin, total protein, triglycerides, urea nitrogen, urica cid, calcium, chloride, phosphorus, potassi and sodium. Urine samples were also collected for analysis of specific gravity pH, glucose, occult blood, ketone bodies, alburnin, urobilogen, and bilirubin. All animals were then killed and necropsied. The following organs were weig kidneys, adrenals, liver, heart, spleen, thyrmus, testes, prostate, epididymides thyroid, ovaries, uterus, brain. The following tissues (when present) from the 0, 8 and 30 mg/kg/day group v processed for microscopic examination; roots tate seminal vesicles, epididymides thyroid, bard, whyroid, uterus, urinary bladder, and any gross less found in thissues marked with (*) were also processed and examined by a qualified pathologist for animals in the 125 and 500 mg/kg/day group. NOAEL/LOAEL Males NOAEL = 8 mg/kg/day LOAEL = 8 mg/kg/day L		
kidneys, adrenals, liver, heart, spleen, thymus, testes, prostate, epididymides thyroid, ovaries, uterus, brain. The following tissues (when present) from the 0, 8 and 30 mg/kg/day group v processed for microscopic examination:prostate seminal vesicles, epididymis adrenals*, lymph nodes*, femur with brain (cerebellum, cerebrum, medulla p eye (left) and optic nerve (left), , heart*, duodenum, colon, kidneys*, liver*, lut lut (left lobe) , pancreas, skeletal muscle, salivary glands, pituitary, peripheral ne skin* (treated), spinal cord, spleen, sternum with bone marrow*, testis (right) ovaries, stomach, thymus, thyroid, uterus, urinary bladder, and any gross lee Bone marrow smears (femur) were prepared, preserved and maintained. The tissues marked with (*) were also processed and examined by a qualified pathologist for animals in the 125 and 500 mg/kg/day group. Statistical analysis: Quantitative data were analyzed for homogeneity of varia (ANOVA), and associated f-test followed by Dunnett's Test (body weights) or Tukey's multiple comparison test (organ weights and hematolology). Differer between control and treated troups were considered statistically significant o the probability of the differences being due to chance is less than 5% (p<0.02		through a non-heparinized capillary tube, during weeks 5 and 13. Hematological parameters included hematocrit, hemoglobin, number and morphology of red blood cells, and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase (glutamic puruvic transaminases), aspartate aminotransferase (glutamic oxaloacetic transaminases), cholesterol, creatinine, glucose, lactate dehydrogenase, total bilirubin, total protein, triglycerides, urea nitrogen, uric acid, calcium, chloride, phosphorus, potassium, and sodium. Urine samples were also collected for analysis of specific gravity,
processed for microscopic examination:prostate seminal vesicles, epididymis adrenals*, lymph nodes*, femur with brain (cerebellum, cerebrum, medulla p eye (left) and optic nerve (left), heart*, duodenum, colon, kidneys*, liver*, lu (left lobe), pancreas, skeletal muscle, salivary glands, pituitary, peripheral ne skin* (treated), spinal cord, spleen, sternum with bone marrow*, testis (right) ovaries, stomach, thymus, thyroid, uterus, urinary bladder, and any gross les Bone marrow smears (femur) were prepared, preserved and maintained. The tissues marked with (*) were also processed and examined by a qualified pathologist for animals in the 125 and 500 mg/kg/day group. Statistical analysis: Quantitative data were analyzed for homogeneity of varia (ANOVA), and associated f-test followed by Dunnett's Test (body weights) or Tukey's multiple comparison test (organ weights and hematolology). Differer between control and treated Iroups were considered statistically significant o the probability of the differences being due to chance is less than 5% (p<0.08		All animals were then killed and necropsied. The following organs were weighed: kidneys, adrenals, liver, heart, spleen, thymus, testes, prostate, epididymides, thyroid, ovaries, uterus, brain.
(ANOVA), and associated f-test followed by Dunnett's Test (body weights) on Tukey's multiple comparison test (organ weights and hematolology). Differer between control and treated lroups were considered statistically significant o the probability of the differences being due to chance is less than 5% (p<0.05		
NOAEL = <8 mg/kg/day		Statistical analysis: Quantitative data were analyzed for homogeneity of variance (ANOVA), and associated f-test followed by Dunnett's Test (body weights) or Tukey's multiple comparison test (organ weights and hematolology). Differences between control and treated lroups were considered statistically significant only if the probability of the differences being due to chance is less than 5% (p<0.05).
were sacrificed prior to the scheduled necropsy. In addition, eight of the 125 mg/kg/day females and two of the 30 mg/kg/day males died or were sacrifice prior to the scheduled necropsy. All of the remaining STB-exposed animals survived until the terminal sacrifice. The Group 2 (untreated control) animal v	NOAEL/LOAEL	NOAEL = <8 mg/kg/day LOAEL = 8 mg/kg/day <u>Females</u> NOAEL = 8 mg/kg/day
sacrificed. prior to the scheduled necropsy. along with the treated animals for comparison.	Result	mg/kg/day females and two of the 30 mg/kg/day males died or were sacrificed prior to the scheduled necropsy. All of the remaining STB-exposed animals survived until the terminal sacrifice. The Group 2 (untreated control) animal were sacrificed. prior to the scheduled necropsy. along with the treated animals for

5. Toxicity					Id Heavy fuel oil	
-				E	Date December 7, 2012	
	animals they a follows that the	are baseo ese data	d on small num	nbers because of ted with caution.	given for the 125 mg/kg f early termination/death, it Organ weight data for	
	Clinical signs	s ↓ food	consumption,	↓ motor activity,	dyspnea, pallor, petichiae,	
	Mortality	10/10 10/10	males, 8/10 fe	nales died/killed a males died/killed nales died /killed	at 125 mg	
	Body wt gain		ng significantly /kg: 8.8% less	less wt gain. but not statistic	ally significant	
	Hematol at 30) ma/ka	Males	Fema	ales	
		ung/kg	30 mg/kg	30 mg/kg	125 mg/kg	
	RBC		↓ 24%	-	↓ 56%	
	Hb		↓ 26%	-	↓ 58%	
	HCT		↓ 25%	-	↓ 57%	
	MCH		-	-	↓ 4 %	
	MCHC		-	-	↓ 2%	
	Platelets		-	⊥ 40%	↓ <u>90%</u>	
				•	↓ 20% at 8 mg/kg	
	Serum chem.		Males	Fema	ales	
			30 mg/kg	30 mg/kg	125 mg/kg	
	BUN		↑ 134%		↑ 296%	
	Creatinine		↑ 26%		↑ 19%	
	Albumin		↓ 10%			
	Cholesterol		↑ 45%			
	AST		-		↑ 132%	
	ALT				↑ 68%	
	Alk phos.				↑ 72%	
	Triglycerides				↑ 236%	
	Bilirubin				↑ 75%	
	Cholesterol			↑ 61%	↑ 88%	
	Glucose			↑ 41%	↑ 30%	
				NOTE: Also	↑ 24% at 8 mg/kg	
	Potassium				↓ 20%	
	CI SDH		↑ 3%		↑ 1075%	
				_		
	Organ wts		Males 30 mg/kg	Fema 30 mg/kg	ales 125 mg/kg	
	Thymus	(abs)	↓ 42%	↓ 43%		
	-	(rel)	j́ 39%	↓ 40%		
	Liver	(abs) (rel)	↑ 27%	↑ 26% ↑ 32%		
	Heart	(rel)	↑ 26%			
	Histopath			petichae) in varic pone marrow, live	ous tissues er, lungs at ≥30 mg	
Conclusion	values in fem less than 8 m Although ser available. the it follows that	ales - de g/kg. um chem ey are ba these da	itermined to be histry and orga ased on small r	e test material rel n wt data for the numbers becaus eated with cautio	and increased glucose lated. Therefore, NOAEL is 125 mg/kg animals are e of early termination/death, on. Organ wt data for these	

122 / 370

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
Reliability	1 - Reliable without restrictions
Reliability remarks	Similar to guideline study; sufficient detail provided in appendices and tables.
Key study sponsor	Yes
Reference	Mobil, 1988. Thirteen-Week Dermal Administration of Syntower Bottoms to Rats. Final Report on Study 62710 from Mobil Environmental and Health Science Laboratory, Princeton, NJ.
	Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in Syntower Bottoms. Mobil Environmental and Health Sciences Laboratory Report No. 64348 ZM.
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances."
	http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009.
Repeated Dose Toxicity	
Test Substance	
Category Chemical (CAS #):	64741-80-6
Test Substance (CAS #):	64741-80-6; Visbreaker Residue (86192)
Test Substance Purity/Composition and Other Test Substance Comments :	No information available
Category Chemical Result Type	Measured
Type Species Sex Strain Route of admin. Exposure period	Repeated dose; 13 week dermal exposure Rat Male/Female Sprague-Dawley Dermal 13 weeks
Frequency of treatm. Doses Control group Method/Guideline followed Year GLP	Daily, 5 days/week for 13 weeks 67% Mix of Visbreaker residue in Stock 141 at 60, 250 and 1000 mg/kg Two: Untreated (Sham) and vehicle (Stock 141) Other 1992
Test substance Post exposure period	Yes Visbreaker residue Sample 86192 CAS 64741-80-6 Administered as 67% concentration in Stock 141 (Highest concentration that could be delivered from a syringe. None
Method/Guideline and Test Conditions Remarks	Hair was clipped from the entire trunk of each animal within 24 hours prior to initial treatment; the clipping was repeated weekly throughout the study. The test substance was applied to the back with a syringe and dosing needle; the test substance was spread evenly over the site with the side of the dosing needle. The site was left uncovered and the rats were fitted with cardboard Elizabethan collars to minimize ingestion of the test substance. Sham-exposed controls on the same procedure and schedule as the treated animals. Animals were dosed on 5 consecutive days per week. At 24 hours after the fifth dose, residual test $123/370$

substance was wiped off as thoroughly as possible.

Endpoints during the biophase included twice daily observation of clinical signs (once over the weekends) and body weights measured weekly. Blood samples were obtained from animals (non-anesthetized) via the orbital venous sinus through a non-heparinized capillary tube, during weeks 5 and 13. Hematological parameters included hematocrit, hemoglobin, number and morphology of red blood cells, and the number and differential count of white blood cells. The following clinical chemistry parameters were analyzed: albumin, alkaline phosphatase, alanine aminotransferase (glutamic puruvic transaminases), aspartate aminotransferase (glutamic oxaloacetic transaminases), cholesterol, creatinine, glucose, lactate dehydrogenase, total bilirubin, total protein, triglycerides, urea nitrogen, uric acid, calcium, chloride, phosphorus, potassium, and sodium. Urine samples were also collected for analysis of specific gravity, pH, glucose, occult blood, ketone bodies, albumin, urobilogen, and bilirubin.

All animals were then killed and necropsied. The following organs were weighed: kidneys, adrenals, liver, heart, spleen, thymus, testes, prostate, epididymides, ovaries, uterus, and brain.

The following tissues (when present) from each animal were preserved in 10% neutral buffered formalin:

Adrenals*, esophagus, head (entire), kidneys*, liver *(part of median and right, lateral lobes), pituitary, skeletal muscle*, spleen*, thymus*, tongue and larynx, bone with marrow *(rib sternum, femur), heart* and aorta lachrymal glands, lungs* and bronchi, lymph nodes, cervical mammary gland (with skin), prostate and seminal vesicles*, stomach* (glandular and squamous), uterus* (cervix, corpus, and horns), brain*, eyes* and optic nerve intestine, large* (cecum, colon and rectum), lymph nodes, mesenteric lymph nodes, draining ovaries* and oviducts, salivary glands* (major), spinal cord (cervical, thoracic), thyroid* and parathyroids, trachea, epididymides*, Harderian glands, intestine, small *(duodenum, ileum, jejunum) gross lesions*, pancreas*, sciatic nerve, skin (treated)*, testes*, urinary bladder*, vagina.

NOTE: From all animals, a sample of the right kidney and of the median lobe of the liver were fixed in a formaldehyde-glutaraldehyde mixture (4% and 1%, respectively, in an aqueous buffer).

Tissues marked with an (*) were processed for microscopic examination from all animals in the control group and highest dose group (125 mg/kg). In addition, the skin and thymus from the 30 mg/kg and skin from the 8 mg/kg group were processed. Sections for examination were stained with hematoxylin and eosin, or any special stain deemed necessary. Microscopic examinations were performed by a pathologist.

The left epididymis and testis from the control and 125mg/kg/day male rats were examined. Prior to sample preparation of the testis for examination, the tunica albuginea and corresponding blood vessel were removed and discarded The resulting testicular parenchyma and the cauda epididymis were individually weighed (nearest 0.001 gram) and the weight recorded. Testes were prepared for spermatid count and epididymides were prepared for spermatozoa count and morphology.

Statistical analysis: Quantitative data (body weight), serum chemistry, hematology, and organ weight data) were analyzed by parametric methods: analysis of variance (ANOVA) and associated F-test, followed by Dunnett's test (body weights) and Tukey's Multiple Comparison Test (serum chemistry, hematology and organ weight data), provided that there was statistical significance in ANOVA. Differences between control and treated groups were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05).

5. Toxicity				Id Heavy fuel oil Date December 7, 2012
	Sperm morpho	logy and count	also performed	
NOAEL/LOAEL	Determined by Males: NOEL	reviewer:	AEL of 250 mg/k ned (<60 mg/kg) ay	-
		EL = not deterr EL = 60 mg/kg/	nined (<60 mg/kg day	3)
Result remarks	Clinical signs Skin irritation Body weight g Hematology	jain ↓ 17%	related to compo 6 in males at 100	
			mg/kg	
	Serum chemis	try	Males	Females
	BUN	1000 mg/kg	↓ 29%	↑ 27%
	SDH	1000 mg/kg	↑ 102%	↑ 158% ↑ 143%
	ALT	250 mg/kg 1000 mg/kg	_	↑ 143%
		250 mg/kg	↓ 10%	
		60 mg/kg	↓ 12%	
	Total protein	1000 mg/kg	↓ 7%	
	Albumin	1000 mg/kg	↓ 10%	
	CI	1000 mg/kg	↓ 3%	
	Cholesterol	250 mg/kg 1000 mg/kg	↓ 3%	↑ 54%
	Organ weights	5	Males	Females
	Liver (abs)	1000 mg/kg 250 mg/kg 60 mg/kg	↑ 23% ↑ 22% ↑ 16%	↑ 27%
	Liver (rel)	1000 mg/kg 250 mg/kg	↑ 35% ↑ 22%	↑ 30% ↑ 5%
	Spleen (rel) Adrenals (abs)	60 mg/kg 1000 mg/kg 1000 mg/kg 250 mg/kg 60 mg/kg	↑ 12% ↑ 23% ↑ 24% ↑ 19% ↑ 26%	↓2%%
	Adrenals (rel)	1000 mg/kg	↑ 33%	
	Kidneys (rel)	1000 MG/KG		
	Histopath Sperm evaluat		ndings in either se fects	ЭX
Conclusion	seen at 1000 m effects on the f were judged no	ng/kg/day, incl ollowing were a ot to be signific	uding a decrease seen at doses as ant due to lack of	r based on a variety of changes e in male body weight. However, low as 60 mg/kg, but the results ⁺ histopathology: adrenal weight ↑,
Reliability	- 1 - Reliable wi	thout restriction	าร	
Reliability remarks	- Similar to guid	eline study; su	fficient detail prov	vided in appendices and tables.
Key study sponsor	es			
Reference			Dermal Administra Final Report on s	ation of tudy 64002 from Mobil

5. Toxicity	ld Heavy fuel oil Date December 7, 2012
	Environmental and Health Science Laboratory, Princeton, NJ.
Туре	: Sub-chronic
Remark	: Dermal studies of up to 13 weeks duration have been reported for streams in this category and all are listed below. Only one study for each subcategory has been summarized in full and where several studies are available only those of longest duration have been summarized. Studies that have been summarized are indicated * in the following listing.
	Atmospheric residues CAS RN 64741-45-3 28 day study on F-132, Atmospheric tower bottoms * (Ref. ATX-90-0066)
	Atmospheric distillates 13 week study on Heavy Atmospheric Gas Oil * (Ref. Mobil 63456) Gas Oil Category CAS RN 68915-97-9 Compositionally similar to Heavy Fuel CAS RN 68783-08-4
	Vacuum Residues No data
	Vacuum Distillates CAS RN 64741-57-7 13 week study on Heavy Vacuum Gas Oil * (Ref. Mobil 61590)
	Cracked residues CAS RN 64741-62-4 13 week study on Clarified Slurry oil * (Ref. Mobil 20525) 13 week study on API sample 81-15 (Ref. API 32-32753) 13 week study on Syntower bottoms (Ref. Mobil 62710) 28 day study on API sample 81-15 in rats (Ref. API 33-30442) 28 day dermal study on API sample 81-15 in rabbits (Ref. API 30-32854) Cracked distillates CAS RN 64741-81-7
	 13 week study on visbreaker gas oil * (Ref. Mobil 63237) 13 week study on Joliet Heavy coker gas oil (Ref. Mobil 64165) 13 week study on Torrance Heavy coker gas oil
	(Ref. Mobil 64184) 13 week study on Paulsboro Heavy coker gas oil (Ref. Mobil 50391)
	Reformer residues No data
	Residual heavy fuel oil CAS RN 68476-33-5 10 day study on API sample 78-6* (Ref. API 27-32814) 10 day study on API sample 78-7 (Ref. API 27-32774) 10 day study on API sample 78-8 (Ref. API 27-32816) 10 day study on API sample 79-2 (Ref. API 27-32813) 28-day study on F-74-01 (Ref. UBTL, 1987) (3) (4) (5) (6) (8) (16) (17) (46) (61) (62) (72) (73) (76) (78) (79) (107)
Type Species Sex Strain Route of admin.	 Sub-chronic Rat Male/female Sprague-Dawley Dermal 126 / 370

. Toxicity	ld Heavy fuel oil Date December 7, 2012
Exposure period Frequency of treatm. Doses Year GLP Tost substance	 28 days Once daily, 5 days each week for 4 weeks 0.01 (9 mg/kg), 0.25 (231 mg/kg) & 1.0 (927.9 mg/kg) ml/kg 1990 Yes CAS PN 64741 45 3 sample E 132
Test substance Method	 CAS RN 64741-45-3 sample F-132 Three groups of ten male and ten female young adult Sprague Dawley rats were administered F-132 dermally once daily, five days each week for four weeks, at doses of 0.01, 0.25 or 1.0 ml/kg/day. A repeat of the high dose was later conducted due to a possible under-dosing. The test material was applied to the shorn dorsal skin of the animals. The site of application was occluded for a period of at least six hours following dosing. Two groups of ten male and ten female rats served as controls, one group each for the initial and repeat high dose groups. The animals were observed twice daily for signs of toxicity and viability. Dermal irritation at the application site was evaluated daily just prior to the application of test material. Body weights were recorded three times each week during the study. At necropsy, blood was collected for the following hematological and clinical determinations. Hematology: erythrocyte count, total and differential leucocyte count, hemoglobin, hematocrit and platelet count. Clinical chemistry: sodium, potassium, chloride, calcium, phosphorus, blood urea nitrogen, glucose, creatinine, cholesterol, triglyceride, total protein, albumin, globulin (calculated), A/G ratio (calculated), alkaline phoenbatce.
Result	 phosphatase, aspartate aminotransferase and alanine aminotransferase. The following organs were weighed: Adrenal glands, brain, kidneys, liver and testes/ovaries. A wide range of tissues were saved and the following were processed for subsequent histopathological examination. adrenal glands, brain (cerebrum, cerebellum, medulla pons), cervical lymp nodes, gastrointestinal tract (stomach, duodenum, jejunum, ileum, colon, rectum) gross lesions, heart, kidneys (2), liver, lungs, pancreas, salivary glands, skin (treated and untreated), spleen, sternum and bone marrow, testes/ovaries (2), thyroid, thymus, urinary bladder. No animals died or were sacrificed during the study. There wee no clinical observations considered to be treatment-related. No dermal irritation was noted in any of the treatment groups. The only treatment-related finding at gross necropsy was a dark staining o the treated skin site.
	There were no hematological changes that were considered to be treatment-related. Although some differences were recorded for some of the clinical chemistr parameters, none were considered to be treatment-related. There were no treatment-related differences in body weights or organ weights or organ/body weight ratios.
	The only treatment-related histopathological findings occurred in the skin and these consisted of trace to mild acanthosis and trace to moderate hyperkeratosis in the high dose animals. The authors concluded that there were no systemic effects at the highest
Reliability	dose level tested. : (1) valid without restriction (11)
Туре	: Sub-chronic

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Sex Strain Route of admin. Exposure period Frequency of treatm. Doses Control group NOAEL Year GLP Test substance	 Male/female Sprague-Dawley Dermal 13 weeks Daily 30, 125 & 500 mg/kg/day Yes = 30 mg/kg bw 1992 No data CAS RN 68915-97-9 Gas Oil Category Heavy Atmospheric Gas Oil Compositionally similar to Heavy Fuel CAS RN 68783-08-4 ,
Method	 Test material was applied to the shorn skin of groups of 10 male and 10 female rats (approximately 40 days old) at dose levels of 30, 125 and 500 mg/kg. In addition, the test material was applied at a dose level of 500 mg/kg to satellite groups of 10 males for the assessment of male reproductive health. There was a control group of 10 rats of each sex and an additional 10 males that served as controls for the assessment of male reproductive health. The test material was applied each day, 5 days each week for 13 weeks. All rats were fitted with Elizabethan collars to prevent ingestion of test material. The collars were removed at the end of each week and any residual test material removed from the skin by wiping. Collars were replaced on Mondays before commencement of dosing for the next week. Body weights were recorded before application of the first dose of test material and weekly thereafter. There were daily observations for clinical signs of toxicity and an assessment and scoring of the treated skin site was made once each week according to the standard Draize scale. Urine samples were collected during weeks 5 and 13 for urinalysis (pH, specific gravity, bilirubin, urobilinogen, blood, protein, glucose and ketone). Blood samples were taken at the end of the study for the determination of the following clinical chemical and hematological parameters. Hematology Red cell count Hemoglobin Hematocrit White cell count Platelet count
	Clinical chemistrySorbitol dehydrogenaseCholesterolAlanine aminotransferaseUrea nitrogenAspartate aminotransferaseTotal proteinAlkaline phosphatasealbumin (A)BilirubinTriglyceridesInorganic phosphorusCreatinineGlucoseUric acidSodiumPotassiumChlorideCalciumGlobulin(G) and A/G ratios were calculatedAll animals surviving to the end of the study were sacrificed andnecropsied. The following organs were weighed:AdrenalsHeartSpleenBrainKidneysIverOvariesUterusProstateEpididymidesThe following tissues/organs were removed from control group and highdose group animals and were fixed for subsequent histopathological
	Sodium ChloridePotassium CalciumGlobulin(G) and A/G ratios were calculatedAll animals surviving to the end of the study were sacrificed and necropsied. The following organs were weighed: AdrenalsAdrenalsHeartBrainKidneysThymus LiverOvariesUterus ProstateEpididymides

examination.

	Adrenals (both) Bone and marrow (ster Brain (3 sections) Eye (left & optic nerve) Heart Colon Duodenum Kidneys (both) Liver (2 lobes) Lung (left lobe) Skeletal muscle (thigh) Peripheral nerve (sciat)	Pancre Salivary Skin (tr Spleen Stomac Thymus Thyroid Urinary	reated 2 ch (squa s (both l d (both k bladder (body &	(submaxillary) sections) imous & glandular) obes) obes)
	microscopically from th Adrenals Sternum Kidneys (both) Liver (2 Lung Skin (2 Thymus Gross k At the end of the study the control and 125 mg Prior to sample prepara corresponding blood ver remaining testicular par Testes were prepared	ne mid a m (bone 2 lobes) 2 section esions. the epic g/kg grou ation for essels w arenchyr for sper and a n	nd low of and ma is plus a didymide ups were testis e vere rem na and of matid co	lose ani rrow) any gross as and te remove xaminati noved ar cauda ep punt and	s lesions) estes from the male rats in
Result :	analyzed by parametric test, followed by Tukey hematology and organ comparison test (serun significance in the anal Differences between co statistically significant of chance was less than & Two animals became r One of the animals was to be treatment-related. were considered to be There were few clinical related to the effects of was slight in the treated Body weight gains were	c method 's multip weight n chemi- lysis of v ontrol ar only if th 5% (P<0 moribund s a high . The o incident I finding- f the Eliz d groups re similar	ds: analy ble comp data) or stry), pro- variance e proba 0.05). d and we dose m ther was ral. s during zabethar s. r to that	ysis of v parison to Student ovided the ed group bility of the ere sacr ale and a a low of the stude of the collars	-Newman-Keuls multiple hat there was statistical he were considered the differences being due to
	the test material but so in the mid and high dos	ome para se group table tog I values.	ameters os. The gether w Where	were ac affected <i>i</i> th the 9	unaffected by exposure to dversely affected in the rats l parameters at 13 weeks are % increase (+) or decrease res are included no
	Parameter	Male 125	500	Female	9 500
	Glucose	-	-	-	-
	BUN 129 / 3	- 370	+31%	+27%	+30%
	129/0	510			

AST	-	-	-	-
ALT	-	-23%	-	-
Alk. Phos.	-	-	-	-
Creatinine	-	-	-	-
Cholesterol	-	-	+39%	+117%
Triglycerides	-	-	-	-
Total protein	-	-	-	+11%
Bilirubin	-	-	-	-
Albumin	-	-	-	-
A/G ratio	-	-	-	-20%
Globulin	-	-	-	+27%
Uric acid	-	-	-	-
Sodium	-	-	-	-
Potassium	+9%	-	-	-
Phosphorus	-	-	-	-
Calcium	-5%	-	-	-
SDH	-	+124%	+68%	+106%
Chloride	-	-	-	-

Hematological parameters were unaffected in the 30 mg/kg group compared to controls. There were however, some differences between the controls and those of the 125 and 500 mg/kg groups. The differences at 13 weeks are shown in the following table with and indication of the magnitude of the difference (%), higher (+) or lower (-). Where no figures are included no significant differences were found.

Parameter	Male		Female	
	125	500	125	500
RBC Count	-8%	-30%	-	-11%
Hemoglobin	-9%	-31%	-	-13%
Hematocrit	-8%	-30%	-	-12%
MCV	-	-	+3%	-
MCH	-	-	-	-
MCHC	-	-	-	-
Platelets	-	-48%	-	-23%
WBC Count	-	-	-	-

Differential white cell counts were unaffected by exposure to the test material.

At necropsy, the macroscopic findings in both sexes that seemed to be treatment-related were: increased liver size, decreased thymus size, thickening of the limiting ridge between the non-glandular and glandular sections of the stomach and enlarged and reddened lymph nodes. There were some absolute and some relative organ weight (organ/body weight) differences in the 125 and 500 mg/kg groups but none in the 30 mg/kg group. The differences are shown in the following table as % of control values. (A = absolute weight, R = relative wt). The table lists all the organs that were weighed at necropsy.

Organ		Male		Fema	le
		125	500	125	500
Adrenal	s (A)	-	-	-	-
	(R)	-	125%	-	-
Brain	(A)	-	-	-	-
	(R)	-	-	-	-
Epididy	mis (A)	-	-		
	(R)	-	-		
Heart	(A)	-	-	-	112%
	(R)	-	117%	-	115%
Kidneys	s (A)	-	-	-	-
		130 / 370			

fined to action i ompart observe ation. ecrosi of circ numbe als. eatmen cular s includ dymis, rmatids ns d in the ribed f		- 117% - - - - - - - - - - - - - - - - - - -	110% 150% 156% 118% 121% 59% 61% - - - - - - - - - - - - - - - - - - -	ppatholo kg group oone ma increas ver hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th	se)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	149% 77.5% - 126% - 39% 45% hanges ol o animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym nt-related ted effec spermatid ed:	116% - 117% - - - - - - - - - - - - - - - - - - -	150% 156% 118% 121% 59% 61% - - t at histo 500 mg/l in the b es. The ble to liv increas cell deat /tes were es in the athologic ny of the	ppatholo kg grou oone ma increas ver hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	149% 77.5% - 126% - 39% 45% hanges ol o animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym nt-related ted effec spermatid ed:	116% - 117% - - - - - - - - - - - - - - - - - - -	156% 118% 121% 59% 61% - - t at histo 500 mg/l in the b es. The ble to liv increas cell deat /tes were es in the athologic ny of the	ppatholo kg grou oone ma increas ver hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	77.5% - 126% - 39% 45% hanges ol o animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym ht-related ted effec spermatid ed:	- 117% - - - - - - - - - - - - - - - - - - -	118% 121% 59% 61% - - d at histo 500 mg/l in the b es. The ble to liv increas cell deat /tes were es in the athologic ny of the	ppatholo kg grou oone ma increas /er hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	- 126% - 39% 45% hanges of o animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym nt-related ted effec spermatid ed:	- 117% - - - bserved in the s poiesis 0 female attributal re were lividual o mphocyte histopa	59% 61% - - 500 mg/l in the b bes. The ble to liv increas cell deat /tes were es in the athologic ny of the	ppatholo kg group oone ma increas ver hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	- 126% - 39% 45% hanges ol o animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym ht-related ted effec spermatid ed:	- bserved in the sopoiesis ofemale attributal re were lividual of mphocy ophocyte histopa	59% 61% - - 500 mg/l in the b bes. The ble to liv increas cell deat /tes were es in the athologic ny of the	ppatholo kg group oone ma increas ver hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	- 39% 45% hanges of p animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym nt-related ted effec spermatid ed:	- bserved in the sopoiesis ofemale attributal re were lividual of mphocy ophocyte histopa	59% 61% - - 500 mg/l in the b bes. The ble to liv increas cell deat /tes were es in the athologic ny of the	ppatholo kg group oone ma increas ver hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	- 39% 45% hanges of p animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym nt-related ted effec spermatid ed:	- bserved in the sopoiesis ofemale attributal re were lividual of mphocy ophocyte histopa	59% 61% - - 500 mg/l in the b bes. The ble to liv increas cell deat /tes were es in the athologic ny of the	opatholog kg group oone ma increas ver hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	45% hanges of o animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym ht-related ted effec spermatid ed:	in the spoiesis of female attributation re were lividual of mphocyte histopa cts on an	61% - - 500 mg/l in the b es. The ble to liv increas cell deat /tes were es in the athologic ny of the	kg grou increas /er hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	45% hanges of o animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym ht-related ted effec spermatid ed:	in the spoiesis of female attributation re were lividual of mphocyte histopa cts on an	61% - - 500 mg/l in the b es. The ble to liv increas cell deat /tes were es in the athologic ny of the	kg grou increas /er hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	hanges of o animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym nt-related ted effec spermatid ed:	in the spoiesis of female attributation re were lividual of mphocyte histopa cts on an	- d at histo 500 mg/l in the b es. The ble to liv increas cell deat /tes were es in the athologic ny of the	kg grou increas /er hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	o animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym nt-related ted effec spermatid ed:	in the spoiesis of female attributation re were lividual of mphocyte histopa cts on an	500 mg/l in the b es. The ble to liv increas cell deat /tes were es in the athologic ny of the	kg grou increas /er hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	o animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym nt-related ted effec spermatid ed:	in the spoiesis of female attributation re were lividual of mphocyte histopa cts on an	500 mg/l in the b es. The ble to liv increas cell deat /tes were es in the athologic ny of the	kg grou increas /er hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
fined to action i omparto bbserve ation. ecrosi of circ numbe als. eatment-rela cular s includ dymis, rmatids ns d in the ribed f	o animals n hemato ed to 2/10 ed were a Also ther s and indi culating lyn ers of lym nt-related ted effec spermatid ed:	in the spoiesis of female attributation re were lividual of mphocyte histopa cts on an	500 mg/l in the b es. The ble to liv increas cell deat /tes were es in the athologic ny of the	kg grou increas /er hype ed area h in this e not af thymus	ps. Thes arrow; 10 ses in live ertrophy is of s dose gr ffected, th)/10 er and roup. here
city of	e report the ully and is	and No	cauda, N b. sperm study wa	e epididy at were lo. of sp /testis. as cond	ymal spe measure perm/cau lucted to	ed. uda,
city of						
ng/kg/c	plan and this subg					
ng/kg/c						
ıg/kg/c						
ıg/kg/c						
ıg/kg/c						
ıg/kg/c						
ng/kg/c						
ng/kg/c						
	ay					
	100	and c'l				
ieavy	Vacuum (yas oli				
o the s The m etween ed 5 c preven	s oil was a horn skin	of grou	ups of ter etween 2 at the s	n male a 220 and tart of th	and ten f l 230 g a he study. Collars we	female and ere
etwee ed 5 preve	m		en 160 and 170 g	en 160 and 170 g at the s days each week for 13 we	en 160 and 170 g at the start of t days each week for 13 weeks. C ent oral ingestion.	males weighed between 220 and 230 g a en 160 and 170 g at the start of the study days each week for 13 weeks. Collars w ent oral ingestion. d weekly throughout the study and clinica

5. Toxicity		Id Heavy fuel oil Date December 7, 2012
		 7. Skin irritation was assessed weekly. At 5 were taken for measurement of the following emical parameters:
	<u>Hematology</u> Red blood cell count Hematocrit Differential WBC count	Hemoglobin White blood cell count MCV, MCH & MCHC caclulated
	<u>Clinical chemistry</u> Glucose Uric acid Albumin Albumin/Globulin ratio Alkaline phosphatase Aspartate aminotransferase Sorbitol dehydrogenase Cholesterol Total Bilirubin Phosphorus Potassium	Urea nitrogen Total protein Globulin (calculated) Calcium Alanine aminotransferase Lactate dehydrogenase Creatinine Triglycerides Calcium Sodium Chloride
		eeks) all surviving animals were sacrificed and was performed. The following organs were Spleen Testes Thymus Uterus
	The following tissues in the h microscopically: Adrenals (both) Bone & marrow (sternum) Brain (3 sections) Eye & optic nerve Heart Colon Stomach Testes (both) Thymus (both lobes) Thyroid (both lobes) Urinary bladder Gross lesions	igh dose group animals were examined Ovaries (both) Pancreas (head) Salivary gland (submaxillary) Skin (treated, 2 sections) Duodenum Kidneys (both) Liver (2 lobes) Lung (left lobe) Muscle (skeletal, thigh) Peripheral nerve (sciatic)
Result	 sternum for the 500 mg/kg/da mg/kg/day animals. Two males and one female in The male deaths were considered incider Growth rates of males and fe compared to controls. At 13 y females 15% less than control At 2000 mg/kg/day males and 	males in the highest dose group were reduced weeks the males weighed 20% less and the
	Clinical chemical changes in consisted of: twofold increase in so twofold increase in ch 50% reduction in uric 132 / 370	olesterol

5. Toxicity	Id Heavy fuel oil
of Foxforty	Date December 7, 2012
	In addition in females at 500 mg/kg/day, glucose was reduced and in the 500 mg/kg males cholesterol was increased.
	At gross necropsy, relative thymus weights were reduced in the 500 (by 25%) and 2000 mg/kg/day (by 50%) animals of both sexes. Relative liver weights were also increased at 500 and 2000 mg/kg/day for both sexes.
	Histological examination revealed decreased erythropoeisis and fibrosis of the bone marrow in the 2000 mg/kg/day males. There was a reduction in thymic lymphocytes in the 2000 mg/kg/day groups (marked for males and moderate for females) and a slight reduction in the 500 mg/kg/day groups for both sexes.
	No effects were found on either sperm morphology or in the results of the urinalysis.
Test substance	The NOEL for both males and females was found to be 125 mg/kg/day.The sample of Heavy vacuum gas oil was produced by the vacuum distillation of crude oil.
	It was a dark amber liquid with a boiling range of approximately 657 to
	1038 °F. The sample originated from the Beaumont crude unit B (CRU #85244) and contained:
	54% paraffins 35% polycyclic aromatic hydrocarbons
	2% nitrogen-containing polycyclic aromatic hydrocarbons
Reliability	9% residuals. : (1) valid without restriction
. Concentry	(72)
Туре	: Sub-chronic
Species	: Rat
Sex	: Male/female
Strain	: Sprague-Dawley
Route of admin.	: Dermal
Exposure period	: 13 weeks
Frequency of treatm.	: Daily, 5 days each week for 13 weeks
Doses Control group	: 8, 30, 125 & 500 mg/kg/day : yes, concurrent no treatment
NOAEL	< 8 mg/kg bw
Year	: 1986
GLP	: No data
Test substance	: CAS RN 64741-62-4 Clarified slurry oil
Method	 Groups of ten male and ten female, 5-6 week old Sprague-Dawley rats were used in this study. Undiluted test material was applied to the shorn skin of the animals at dose levels of 8, 30, 125, 500 and 2000 mg/kg/day. Applications were made once each day, five days each week for 13 weeks. Ten males and ten females were used as controls and these animals did not receive any test
	material. The test sites remained uncovered and to prevent ingestion all animals were fitted with collars.
	Animals were weighed weekly and were monitored once daily for reaction and twice daily for moribundity and mortality.
	Blood samples were collected during weeks 5 and 13 and hematological determinations were made of: red blood cell count, hematocrit, hemoglobin content, white blood cell count and differential white cell count. The serum was analyzed for glucose, urea nitrogen, uric acid, total protein, albumin, albumin/globulin ratio, alkaline phosphatase, alanine aminotransferase,
	aspartate aminotransferase, lactate dehydrogenase, cholesterol, triglycerides, total and direct bilirubin, calcium, phosphorus, sodium, potassium and chloride.
	133 / 370

5. Toxicity	ld Heavy fuel oil Date December 7, 2012
	During weeks 5 and 13, freshly voided urine was examined for color and clarity and pH, presence of occult blood, glucose, protein, ketones, bilirubi and bilirubinogen were determined using reagent strips. Specific gravity of the urine was measured using a protometer. Following 13 weeks of treatment, the animals were starved overnight and then euthaized with carbon dioxide. All animals underwent a complete necropsy. Heart, liver, spleen, thymus, adrenals, gonads and kidneys wer weighed. The following tissues were taken, processed for histology and examined microscopically: gonads, small intestine, kidneys, liver, treated skin, spleen, stomach, thymus, urinary bladder, prostate and seminal vesicles, uterus, bone marrow and all gross lesions. Although statistical analyses were carried out, the techniques used are not described in the published paper.
Remark	This study report is available both as a laboratory report and as a publication in the open literature (Cruzan et al, 1986). The laboratory report was used to prepare the robust summary. The publication referenc is given for completeness.
Result	 All rats in the highest dose group (2000 mg/kg/day) died or were killed in a moribund condition during the second week of the experiment. Survival was as follows:
	MaleFemaleControl101008 mg/kg/day1010030 mg/kg/day910125 mg/kg/day3**6****500 mg/kg/day21*2000 mg/kg/day00No of * indicate number of ratsdying shortly after blood samples weretaken.Some treated rats in dose groups125 mg/kg/day and greater werelethargic and/or having thin appearance.This was usually a prelude todying.Body weights were affected by treatment.The body weights at the end ofthe study, expressed as a percentage of the corresponding controls arelisted below.Dose groupMaleFemale8 mg/kg/day96%96%30 mg/kg/day94%93%
	125 mg/kg/day 74% 78% 500 mg/kg/day 47% 67% Skin irritation was not seen in rats in the 8, 30 or 125 mg/kg/day dose
	groups. Barely perceptible erythema was observed in 1 rat and thickened slightly leathery skin in 4 rats on day 8 of the 500 mg/kg/day group.
	Recorded differences in hematological parameters after 13 weeks exposure to test material are tabulated below. Values given are percentage increases (+) or decreases (-) compared to control.
	Dose group (mg/kg/day) Males Females
	Parameter3012550030125500Hematocrit-15%-53%-21%-14%-34%-25%Hemoglobin-49%-30%-30%lymphocyte-35%-24%Mature neutrophils+88%
	The serum chemistry data revealed that the liver was the primary target organ. Percentage of control values shown as Increases (+) or decreases (-) are shown in the following table.

5. Toxicity

	Dose group (mg/kg/day) Males Females					
	30	125	500	30	125	<u>500</u>
glucose			-25			
Total protein			-12			
A/G ratio		+14	+12		+18	+13
Urea N				+31	+46	
Uric acid	-33	-40	-47	-29	-53	-12
Bilirubin						
(total)					+80	+400
(direct)					+400	+400
Triglycerides			+560			+300
Aspartate						
amino						
transferase		+200	+53			+302
Alanine						
aminotransferase			+265			+230
Alk. phos.		+72	+241	+58	+127	+250
Lactate						
dehydrogenase	-52	-70	-79		+79	+70
Ca		+7	+6			+11

At 13 weeks there was an increased frequency of elevated glucose levels (100 mg/l) in the urine of rats dosed at 30 mg/kg/day or greater.

	Male	Female
Control	0/10	0/10
8 mg/kg	0/10	0/10
30 mg/kg	1/9	2/10
125 mg/kg	4/6	2/10
500 mg/kg	1/2	2/2

Liver weights of males and females were increased at all dose levels compared to controls. The liver to body weight ratios expressed as a percentage of controls were as follows

	Male	Female
8 mg/kg	13%	23%
30 mg/kg	23%	34%
125 mg/kg	54%	41%

There were insufficient number of rats at 500 mg/kg to allow meaningful comparison.

There was also a dose related decrease in thymus weights. Male thymus weights were decreased in the males by 43 and 89% in the 30 and 125 mg/kg/day groups respectively. In the females at 125 mg/kg/day thymus weights were 50% less than the controls.

Pathology

Treated skin site

Effects were slight and consisted of slight epidermal hyperplasia and trace to slight chronic inflammation in the superficial dermis.

Liver

Several animals had livers that were yellow-green color, friable texture and cobblestone appearance, indicating possible pathological effects. Microscopic examination of the liver indicated that panlobular hepatocellular degeneration was probably the major cause of death in the 200 mg/kg/day animals. In rats dosed at 125 and 500 mg/kg/day, there were prominent centrilobular and midzonal changes (hepatocyte degeneration, necrosis and fibrosis). In some of the 500 mg/kg/day animals these changes extended to post necrotic cirrhosis with separation of liver lobules into nodules. The hepatic architecture was further distorted by the presence of extensive

135 / 370

5. Toxicity			ld	Heavy fuel oil
			Date	December 7, 2012
	numerous microcysts, and bile duct hyperplas Overlying these diverse mg/kg/day had conside of apparent bile duct a of central veins and pri- cells. Most animals at levels of cholangiolitis/	acute an sia. e change erable wid nd portal obable m 8 and 12 cell dege mmarizes	of multinucleated large h d/or chronic active chola es, most animals dosed a despread lobular disarra tract loss and areas cha narked reduction of blood 25 mg/kg/day had minima enaration/disarray and m s the major findings and	angitis/cholangiolitis at 125 and 500 ay, scattered areas aracterized by loss d supply to the liver al but discernible icrocysts.
	Major lesion observe		Lowest dose level affected (mg/kg/day)	
	Hepatocellular degene Hypertrophy of hepato Multinucleated large he Vacuolation, fine Necrosis, submassive/I Fibrosis, zonal/bridging Microcysts (extra vasc Cholangiolitis/cell dege disarray Altered focus of hepato	cytes epatocyte bridging J ular spac eneration	125 30 30 ses) 8	
	microscopically showe	d hypopla	e thymus was grossly sr asia/atrophy. The sever es at 8 mg/kg/day were	ity of size reduction
	125 mg/kg/day and gre	eater. Sli ases, the	l in the bone marrow of a ght changes were found re was also hypoplasia o	d in3/20 rats at 30
Test substance :	An analysis of the test	material	not established in this s provided the following ir ge of six determinations.	nformation. The
	Chemical class	Weight		k
	Paraffins	(%) 13.8	<u>components</u> C10-C30 alkane branched and c	
	Diaromatics	10.5	C1-C8 alkylnapł C1-C5 alkylbiph	
	3-ring PAH	26.5	C1-C7 alkylated fluorene, phena anthracene	
	4-ring PAH	20.7		uorenes, chrysene, ene, naphthacene,
	5-ring PAH	10.6	C1-C4 alkylated benzofluoranthe benzopyrenes a benzoanthrylene	nes, perylene, and
	136 / 3	370		

Toxicity			Id Heavy fuel oil Date December 7, 2012			
			,			
	Residue	22.2	Carbazole and C1-C6 alkylcarbazoles, benzocarbazoles and C1-C4 alkylbenzcarbazoles			
Reliability	: (1) valid without	restriction	(39) (6			
Туре	: Sub-chronic					
Species	: Rat					
Sex	: Male/female					
Strain	: Sprague-Dawley	,				
Route of admin.	: Dermal					
Exposure period	: 13 Weeks					
Frequency of treatm.	: Daily, five times		3 weeks			
Doses	: 8, 30 & 125 mg/	kg/day				
Control group	: Yes					
NOAEL	: > 125 mg/kg bw					
Year	: 1992					
GLP	: Yes					
Test substance	: CAS RN 68471-	81-7 Visbreaker	gas oil			
Method	Method : Undiluted visbreaker gas oil was applied at doses of 0, 8, 30 and mg/kg/day to the shorn skin of groups of ten male and ten female Dawley rats. The animals were approximately 48 days old at the					
	the study.					
	5	s applied 5 days	each week for 13 weeks. Collars were			
		hals to prevent or				
	Body weights we	ere recorded wee	ekly throughout the study and clinical			
			Skin irritation was assessed weekly. At 5			
			ere taken for measurement of the following			
		nd clinical chemic				
	Hematology					
	Red blood cell c		lemoglobin			
	Hematocrit Platelet count		Vhite blood cell count ICV, MCH & MCHC caclulated			
	OH I I I I I I I I I I					
	Clinical chemistr		atal protoin			
	Urea nitrogen		otal protein			
	Albumin Albumin/Globulir		Slobulin (calculated)			
			Ikaline phosphatase			
	Alanine aminotra		spartate aminotransferase			
	Sorbitol dehydro Cholesterol	0	reatinine			
	Total Bilirubin		riglycerides otassium			
	Chloride		odassium			
	Also at weeks 5		mples were collected for the following , protein, specific gravity, blood, ketone,			
	determinations:		, protein, specific gravity, blood, ketone,			
	determinations: pH and urobilinc	gen.				
	determinations: pH and urobilino At the end of the a gross necrops	gen. e study (13 weeks	s) all surviving animals were sacrificed an as performed. The following organs were			
	determinations: pH and urobilino At the end of the a gross necrops weighed:	gen. e study (13 weeks y examination wa	s) all surviving animals were sacrificed an as performed. The following organs were			
	determinations: pH and urobilino At the end of the a gross necrops weighed: Adrenals ł	gen. e study (13 weeks y examination wa Kidneys S	s) all surviving animals were sacrificed an as performed. The following organs were			
	determinations: pH and urobiling At the end of the a gross necrops weighed: Adrenals H Brain L	gen. e study (13 weeks y examination wa Kidneys S Liver T	s) all surviving animals were sacrificed an as performed. The following organs were opleen estes			
	determinations: pH and urobilino At the end of the a gross necrops weighed: Adrenals H Brain L Epididymes (gen. e study (13 weeks y examination wa Kidneys S Liver T Dvaries T	s) all surviving animals were sacrificed an as performed. The following organs were			
	determinations: pH and urobilino At the end of the a gross necrops weighed: Adrenals H Brain L Epididymes O Heart F	gen. e study (13 weeks y examination wa kidneys S iver T Dvaries T Prostate U	s) all surviving animals were sacrificed an as performed. The following organs were pleen estes hymus			

Result	microscopically: Adrenals (both) Brain (3 sections) Bone & marrow (sternum) Eye (left) Heart Intestine, large (colon) Kidneys (both) Intestine, small (duodenum) Liver (2 lobes) Lung (left lobe) Ovaries (both) Muscle, skeletal (thigh) Optic nerve (left) Pancreas (head) Nerve, pepripipheral (sciatic) Prostate Seminal vesicles Salivary gland (submaxillary) Skin, treated Spleen Stomach (squamous & glandular) Testis (right) Thyroid gland Urinary bladder Epididymis (right) Gross lesions The skin was examined at all dose levels. The left epididymis and testis from nine control males and ten 125 mg/kg/day males were used for spermatozoa/spermatid evaluations. The tunica albuginea and corresponding blood vessels were removed from the testes and the resulting testicular parenchyma and cauda epididymis were individually weighed. Testes were prepared for spermatid counts and epididymes were prepared for spermatozoa counts and morphological examination. : There were no deaths during the study and, with the exception of the occurrence of skin irritation, no clinical signs of toxicity were observed. There were no compound-related effects on: body weight, urinalysis, hematology or clinical chemistry. At necropsy					
				•		
			Erythema	Edema	CDS*	
	Males	range	0.4 0-1	0.1 0-1	1.8 1-5	
	30	range	0.7 0-1	0.3 0-1	2.4 1-5	3.4 1-7
	125	range	0.8 0-2	0.4 0-2	4.1 2-5	5.3 2-9
	Female 8	es range	0.3 0-1	0.1 0-1	1.5 1-5	1.9 1-6
	30	range	0.9 0-2	0.6 0-2	2.5 1-5	4.0 1-9

1.5

range 0-2

125

1.3

0-2

4.1

2-5

6.9

2-9

5. Toxicity	ld Heavy fuel oil Date December 7, 2012
	* CDS = Chronic deterioration of the skin
Test substance Reliability	 Microscopic examination of the skin revealed thickened epidermis with parakeratosis, chronic inflammation in the subcutis, ulcers and increased mitosis in the epidermal basal cells. The skin changes were more severe in females than the males. Lymph nodes were enlarged predominantly in the high dose animals and microscopic examination revealed non-specific reactive hyperplasia in most instances. The test material was described as V. B. Mittelol (Visbreaker gas oil). Identification: CRU No. 86193 A sample of Visbreaker gas oil (believed to be the same as this sample) was reported to contain 0.38% 3-7 ring PACs (Feuston et al, 1994) (1) valid without restriction
	(46) (76)
Test substance	: Reformer residues
Remark	: No data
Type Species Sex Strain Route of admin. Exposure period Frequency of treatm. Doses Control group Year GLP Test substance Method	 Sub-chronic Rat Male/female Sprague-Dawley Dermal 28 days Daily, 5 days/week 0.5 (496 mg/kg), 1.0 (992 mg/kg), 2.5 (2480 mg/kg) ml/kg Yes 1987 Yes CAS RN 68476-33-5 Residual fuel oil Three groups of ten male and ten female young adult Sprague Dawley rats were administered heavy fuel oil (CAS no. 68476-33-5) dermally once daily, five days each week for four weeks, at doses of 0.5, 1.0 or 2.5 ml/kgbw/day. The test material was applied to the shorn dorsal skin of the animals. The site of application was occluded for a period of at least six hours following dosing. A group of ten male and ten female rats served as a sham-treated control group. The animals were observed twice daily for signs of toxicity and viability. Dermal irritation at the application site was evaluated daily just prior to the application of test material. Body weights were recorded three times each week during the study.
	 At necropsy, blood was collected for the following hematological and clinical determinations. Hematology: erythrocyte count, total and differential leucocyte count, hemoglobin, and hematocrit. Clinical chemistry: glucose, blood urea nitrogen, alkaline phosphatase, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), total protein The following organs were weighed: liver, kidneys, testes/ovaries, brain, and spleen. A wide range of tissues were preserved in formalin and the following were processed for subsequent histopathological examination. spleen, liver, kidneys (2), testes/ovaries (2), brain (cerebrum, cerebellum, pons), skin (treated and untreated), bone marrow, and gross lesions. Microscopic examination was performed of tissues from the control and

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	high dose animals.
Result	 Body weights, clinical pathology, terminal body weights, and absolute and relative organ body weight and organ to brain weight data of the control groups were statistically compared to the treated group data of the same sex, using the Dunnett's t Test at the 5% probability level. The test material produced minimal reversible dermal irritation at all dose levels. Daily observations of the animals found no compound-related effects.
	There were no other compound-related findings at necropsy other than staining of the skin at the exposure site by the test article.
	Eosinophil counts were significantly lower for the mid-dose and high-dose males. SGPT levels were significantly lower for the low- and high-dose females and the high-dose males. Glucose levels were significantly higher for the mid- and high-dose females and high-dose males. Total protein levels were significantly lower for the low-dose males. Hemoglobin levels were significantly lower for the high-dose males. Upon comparison and review of historic data, the study directors concluded the significant values obtained from the hematology or clinical chemistry assays were within normal limits and did not exhibit any clear dose-related trends.
	Relative liver weights were significantly higher for the females in all dose groups and in the high-dose males. With the exception of the liver/brain weight ratios in the low-dose males, liver/body weight and liver/brain weight ratios were significantly higher for both sexes in all dose groups. Spleen/body weight ratios were significantly higher for the low and mid- dose females and the high-dose males. The spleen/brain weight ratios were significantly higher for the low-dose females and the high-dose males. The changes in relative spleen weights were not thought to be dose-related by the study directors.
Test substance	 Histopathology findings observed in the non-dermal tissues included eosinophilic casts in the kidneys of both control and high-dose rats. This finding was considered to be a spontaneous lesion expected in Sprague Dawley rats. Pulmonary inflammation was observed in two control males and hepatic inflammation was observed in a high-dose male. Hyperkeratosis (minimal severity) at the test compound application site was seen in the high-dose rats. The dermal lesion at the skin application site occurred only in treated rats and was considered to be related to the dermal application of the test material. Residual fuel oil
Reliability	: (1) valid without restriction (107)

Repeated Dose Toxicity

TEST SUBSTANCE

Category Chemical:	64741-62-4	64741-62-4								
Test Substance:	64741-62-4;	64741-62-4; Catalytic Cracked Clarified Oil or Clarified Slurry Oil [CSO]								
Test Substance Purity/Compos ition	Catalytic Cra	Catalytic Cracked Clarified Oil (CRU No. 010929) PAC (Polycyclic Aromatic Compound) Content								
and Other Test Substance Comments:	Sample #	Sample #DMSO wt. $\%^{-1}$ 1-ARC (%)^22-ARC (%)3-ARC (%)4-ARC (%)5-ARC (%)6-ARC (%)7-ARC (%)								
	010929 1) Percent o	52.0 f DMSO-е	0.0 xtractable	1.0 PACs, dete	15.6 crmined by	15.6 the PAC 2	10.4 method as	5.2 described	2.6 in API (20)08).

	2) ARC is within the t	"aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring otal sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7
	aromatic rin	
Category Chemical Result Type :	Measured	
Type Species Sex Strain		: Subchronic : Rat : Male/Female : Sprague-Dawley Charles River Laboratories, Portage MI
Route of a Exposure Frequency treatm.	period	Dermal
Doses No. of animals/do Control gr		 0, 5, 25, 50 mg/kg/day 10 animals/sex/dose Yes, untreated [10M, 10F]; Vehicle - Acetone, min 99.0% pure [10M, 10F]
Method/Gu followed Year		 1.5mL/kg OPPTS Guideline 870.3250, 40 CFR 798.2250 OECD Guideline 411 2012
GLP Test subst Post expos		Yes Catalytic Cracked Clarified Oil, CRU No. 010929 None
period Method/Guideline and Test Condition Remarks:		Prior to the initiation of dose administration, and throughout the study as necessary, the hair was clipped from the back (down each side to the ventral surface) and flanks of each animal using an electric clipper; a different set of clippers was used for the sham control group, the vehicle control group, and the test substance-treated groups to avoid potential cross-contamination. Animals were assigned to study groups using a computerized randomization procedure based on body weight stratification in a block design. Doses were based on a 14 day preliminary range finding study at dosage levels of 5, 25, and 100 mg/kg/day which were well tolerated. Dosage levels were selected to cover a range extending from a minimal dosage level to a dosage level which was likely to show signs o toxicity. Vehicle or test substance was applied evenly to the clipped, unabraded area of skin and spread evenly using a glass rod (to ensure contact with an area of approximately 10% of the body surface area) once daily at doses of 0 [Groups 1, 2], 5, 25 50 mg/kg/day [Groups 3-5] 5 days/week for a minimum 90-day treatment period. No vehicle was applied to the sham control group. All animals wore Elizabethan collars during each 5-day dosing
		period. At the end of each dosing day, after an approximate 6-hour exposure period, all animals were gently wiped with a paper towel to remove unabsorbed test substance. At the end of each 5 day dosing period, residual test substance was gently removed (as much as possible without inducing irritation of the skin) from all animals using a warm water and mild soap solution (1% Ivory liquid soap in tap water) followed by a deionized water rinse and drying of the animals with a clean paper towel. Following each wash procedure all animals were transferred to clean cages and the collars removed for a 2-day nondosing period. The mean area of coverage was 10% for males and females in the test substance- treated groups.
		All animals were checked twice daily for general condition. Detailed physical examinations, body weight and food consumption measurements were done on a weekly basis. The sites of dose application were examined for dermal effects which were scored following the method of Draize (Draize, 1965) using the 4-step grading system
		Samples for clinical pathology (hematology, coagulation and serum chemistry) were taken from all surviving animals. The animals were fasted overnight prior to blood collection. The animals were euthanized by inhalation of isoflurane, and the blood samples were taken from the vena cava as part of the gross necropsy. Parameters evaluated for hematology and coagulation included: total leukocyte count (WBC), erythrocyte count 141 / 370

5. Toxicity		Heavy fuel oil December 7, 2012
	(RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular very corpuscular hemoglobin (MCH), mean corpuscular hemoglobin com- platelet count, prothrombin time, activated partial thromboplastin tir (percent, absolute, differential leukocyte count (percent and absolute lymphocyte, monocyte, eosinophil, basophil, large unstained cell), re width, hemoglobin distribution width, platelet estimate and red blood The serum chemistry measurements included: albumin, total protein calculation], albumin/globulin ratio, total bilirubin, urea nitrogen, cr- phosphatase, alanine aminotransferase, aspartate aminotransferase, g glutamyltransferase, glucose, total cholesterol, calcium, chloride, ph sodium, triglycerides and sorbitol dehydrogenase.	centration (MCHC), ne, reticulocyte count :: neutrophil, ed cell distribution d cell morphology. , globulin [by eatinine, alkaline gamma
	A complete necropsy was conducted on all animals from scheduled during the study. Animals were anesthetized by isoflurane inhalatio exsanguination. Nine animals [50mg/kg 5M, 3F and 25mg/kg 1F] v sacrificed <i>in extremis</i> during the study After sacrifice, organs were and/or histological measurements included: adrenals, aorta, bone wit joint, bone marrow smear (sternum), brain (3 sections), cervix, epidi optic nerve, gastrointestinal tract (esophagus, stomach, duodenum, je colon, rectum), heart, kidneys, lacrimal gland, liver (sections of 2 lob bronchi), lymph nodes (axillary, mandibular, mesenteric), ovaries wiperipheral nerve (sciatic), pituitary, prostate, salivary glands, semina muscle, skin (with mammary gland), skin (treated and untreated skir application), spinal cord (cervical, thoracic, lumbar), spleen, testes, the parathyroid), trachea, urinary bladder, uterus, vagina, and gross lesion taken for the following organs: adrenals, brain, epididymides, heart, with oviducts, pituitary, prostate, spleen, testes, thymus, thyroid with uterus. Slides were prepared from protocol specified tissue and stair eosin for microscopic examination.	n and euthanized by were found dead or taken for weight h marrow, femur with dymides, eyes with ejunum, ileum, cecum, bes), lungs (including ith oviducts, pancreas, l vesicles, skeletal n from areas of dose hymus, thyroid (with ons. Weights were kidneys, liver, ovaries n parathyroid, and
NOAEL/LOAEL	NOAEL [No observed effect level] = 5mg/kg/day both sexes LOAEL [Lowest observed effect level] = 25mg/kg/day both sexes.	
Result remarks	Dosing formulation: The analyzed dosing formulations were found 107% of the test substance which was within the WIL Research SOF concentrations for suspensions (85% to 115%) and were homogeneous superside the substance within the substanc	range of target
	<u>Mortality</u> : Nine rats died or were sacrificed in a moribund condition sacrifice and deaths were considered treatment related. Of these 8 (5 were from the 50 mg/kg/day group and one 25mg/kg/day female Al depression and centrilobular hepatocellular atrophy and 5 had throm renal tubular necrosis.	5 males and 3 females) I 9 had bone marrow
	<u>Body weights</u> : There was also evidence of reduced body weight gain weights of males in the 50 mg/kg/day group were approximately 189 values ($p < 0.01$). The body weights of males in the 25 mg/kg/day g approximately 7% below control values but the difference was not st Terminal body weights of females from the 25 and 50 mg/kg/day gro below control values, but in both groups the differences were statistic There was little evidence of dermal effects.	% below control roup were atistically significant. pups were about 5%
	<u>Clinical Observations</u> : Test substance-related clinical observations i animals in the 25 and/or50 mg/kg/day group included pale extremiti swollen ears, and decreased defecation.	
	<u>Hematology</u> : Test substance-related alterations included lower abso counts, hemoglobin, hematocrit, absolute and relative eosinophil cou counts, and higher absolute and relative reticulocyte counts, hemogl (HDW), and red blood cell distribution width (RDW) in all test subs Lower mean corpuscular volume (MCV) and mean corpuscular hem noted at 25 and/or 50 mg/kg/day group females. Lower mean red blo hematocrit, mean hemoglobin, mean platelet counts, and higher mea reticulocyte counts, higher RDW and higher HDW were noted in all	Ints, and platelet obin distribution width tance-treated groups. oglobin (MCH) were ood cell counts, mean n absolute and relative
	142 / 370	

male and female groups. The changes were considered to be test substance-related because the changes showed a dose-response in the 5, 25, and 50 mg/kg/day group males and females, and were statistically significant for the 25 and 50 mg/kg/day group males and females when compared with the vehicle control group with the exception of higher mean absolute and relative reticulocyte counts in the 25 mg/kg/day group females. A lower MCH value was noted in the 50 mg/kg/day group females and lower MCV was noted in the 25 and 50 mg/kg/day group females; these changes were statistically significant compared to the vehicle control group. The relationship of these changes to administration of the test substance was uncertain because all individual animal values were within the historical control data reference range. However, the changes were possibly test substance-related given the presence of other test substance-related changes in erythrocyte parameters. Lower mean absolute eosinophil counts were noted in all test substance-treated groups. The change had a dose-response and was statistically significant in all test substance-treated groups when compared with the vehicle control group. Lower mean absolute basophil counts in the 25 and 50 mg/kg/day group males were statistically significantly different compared to the vehicle controls. However the relationship of the change to administration of the test substance was uncertain because all individual animal values were within the historical control data reference range. In the authors opinion the change was considered to be possibly test substance-related given the presence of other test substance-related hematology and bone marrow changes.

However, the reviewer considered that as the white blood cell changes at 5mg/kg were small, generally within historical control ranges, and showed inconsistencies in response between genders, were less likely to have been due to treatment than the effects on red blood cells and not definitive for establishing a NOAEL..

<u>Serum Chemistry</u>: There were higher urea nitrogen levels in all test substance treated groups with statistical significance achieved in the 50 mg/kg/day males. However, as the serum creatinine levels were within normal limits, the higher urea nitrogen levels were considered to have been an indication of dehydration. Other statistically significant findings included higher GGT levels in the 50 mg/kg/day males; higher mean cholesterol levels in the 50 mg/kg/day males and 25 and 50 mg/kg/day females, and lower triglyceride levels in the 50 mg/kg/day females.

<u>Organ weights</u>: Thymus weights, absolute and relative to body weight or brain weight were significantly reduced in both sexes in 25 and 50 mg/kg/day groups. Liver weights, absolute and relative were increased and were significantly different in the 25 and 50 mg/kg/day males and females. Spleen weights were significantly higher in 25 and 50 mg/g group females but the relationship to test article administration was uncertain because there was no correlating histologic changes and no consistent change in males in either group. Significant reductions in absolute brain weights in the 50 mg/kg/day males and absolute kidney weights in the 50 mg/kg/day females was reported, but the differences in kidney weights may have been due to the significant reductions in body weight gains in these groups as the differences were not significant when compared on a "relative to body weight" basis. Other organ weight differences were statistically significant when compared to the vehicle control group but were considered to be a result of a test substance-related effect on final body weight. These included: mean brain, testis, and thyroids and parathyroids weights relative to final body weight in test substance-treated males.

<u>Histopathology</u>: Test substance-related microscopic findings were noted in the bone marrow, liver, kidney, heart, spleen, lymph nodes, thymus, and Peyer's patch as lymphoid depletion, pituitary gland, adrenal cortex, exorbital lacrimal gland, testis, epididymis, ovary, and uterus of the 25 and/or 50 mg/kg/day groups.

In the bone marrow, there was multifocal to coalescing, minimal to severe depletion of hematopoietic cells characterized by decreased cellularity in all erythrocyte, leukocyte, and megakaryocyte cell lines, and increased prominence of bone marrow stromal cells. The bone marrow depletion was often associated with histologic changes in the liver including mild to moderate centrilobular hepatocellular atrophy characterized by loss of centrilobular hepatocytes, lobular collapse, occasional necrosis of scattered individual hepatocytes, and minimal inflammation. These liver changes were consistent with ischemic injury secondary to bone marrow depletion and anemia. One 50mg/kg/day male had atrophy and evidence of active injury, with centrilobular hepatocellular necrosis

5. Toxicity	Id Heavy fuel oil	
	Date December 7, 201	
	characterized by small clusters of necrotic hepatocytes with hemorrhage. Vacuolation of hepatocytes in random areas was also noted in test substance-treated animals. Acute tubular necrosis, most predominantly in proximal renal tubules, was noted in the 50 mg/kg/day group males and females. This change was also consistent with ischemic damage secondary to bone marrow depletion and anemia. Increased amount of intracytoplasmic brown pigment was also observed in proximal renal tubules in test substance-treated males and females. Two males and 3 females in the 25 or 50 mg/kg/day groups had thrombi in the right atrium or ventricle of the heart. Lymphoid depletion was noted in the thymus, spleen, and/or mesenteric, axillary, and/or mandibular lymph nodes i the 25 and 50 mg/kg/day group animals, a change characterized by smaller lymphoid follicles of decreased prominence and scattered necrotic/apoptotic lymphocytes. Lympho depletion was also noted in the Peyer's patches in 2 of the 50 mg/kg/day group females. Increased severity of vacuolation of pars distalis in pituitary gland was noted in the 25 and 50 mg/kg/day group males. The vacuolated cells were arranged in individual to small clusters in these animals, compared to the more individualized and scattered population o vacuolated cells in the pituitary gland of the vehicle control group animals. Vacuolation adrenal cortical cells often associated with hemorrhage was noted in 1 male and 2 females in the 50 mg/kg/day group. Minimal to mild, diffuse bilateral atrophy of exorbital lacrimal glands was noted in 4 males and 2 females in the 50 mg/kg/day group. Higher incidence of sinus erythrocytosis was noted in the mesenteric lymph nodes in the5 mg/kg/day group males. The ewere also lesions in the male and female reproductive system including increased incidence of seminiferous tubular degeneration in the testis and hypospermia and luminal cellular debris in the epididymis of 3/10 males in the 50 mg/kg/day group. Scattered individual to small numbers of seminiferious tub	
Conclusion	NOAEL [No observed effect level] = 5mg/kg/day both sexes LOAEL [Lowest observed effect level] = 25mg/kg/day both sexes. Based on increased liver weights, reduced thymus weights and hematologic changes at 2 and 50 mg/kg/day	
Reliability	: 1 – Reliable without restrictions	
Reliability remarks	: Conforms to standard US and OECD guidelines and GLPs. Sufficient detail provided in appendices and tables.	
Key study sponsor	: Yes	
Reference	: WIL Laboratories 2012. A 90-Day Repeat-Dose Dermal Toxicity Study Utilizing Clarified Oils, Catalytic Cracked in Sprague Dawley Rats. WIL Study # 402023. WIL Research Laboratories, LLC. 1407 George Road, Ashland, OH 44805-8946	
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic rir class content and selected endpoints of repeat-dose and developmental toxicity high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html	

5.5 GENETIC	TOXICITY 'IN VITRO'
High Produce Genetic Toxicity in vite	ction Volume Information System (HPVIS)
TEST SUBSTANCE	
Category Chemical:	Heavy Fuel Oil Category
Test Substance:	Various Heavy Fuel Oils
Test Substance Purity/Composition and Other Test Substance Comments:	The Heavy Fuel oils tested had total % DMSO extractable PAC contents ranging from approximately 2% in Atmospheric Residuals to 65% in Catalytic cracked stocks.
Category Chemical Result Type:	Measured
Unable to Measure or Estimate Justification:	
METHOD	
Type of Study:	Optimized Ames Assay
System of testing	Salmonella typhimurium TA 98 with metabolic activation
Concentrations:	Various
Year Study Performed:	Various
Method/Guideline Followed:	Optimized Ames assay a modification of the Ames Assay
GLP:	Yes
Positive, Negative and Solvent Control Substance(s):	Various
	The method differed from the standard pre-incubation Ames assay in the following respects.
	A DMSO extract of the test materials was tested in the assay.
Method/Guideline	The S9 fraction was obtained from Aroclor-induced hamsters.
and Test Condition Remarks:	An eightfold concentration of S-9 was used in the assays.
	Twofold concentration of cofactor NADP was used.
	The DMSO extracts were tested over a range of concentrations that permitted the construction of a dose-response curve.
	145 / 270

The mutagenicity index (MI) is calculated from the slope of the initial portion of the dose response curve expressed in units of revertants per microliter. The mutagenicity index has been demonstrated to be highly correlated with dermal carcinogenic potential, suggesting that oils with MI values < 1 were unlikely to be mutagenic or dermally carcinogenic, oils with MI values \geq 1 but < 2 are mutagenic but indeterminate for dermal carcinogenesis, and oils with MI values \geq 2 are mutagenic and would likely produce skin tumors if tested in mice. The test method was refined to provide the greatest predictive value of gene mutagenicity and potential carcinogenicity for the widest range of high boiling PAC-containing streams [final boiling point approximately \geq 650⁰F, (\geq 343⁰C]and thus provides a more sensitive general *Salmonella* protocol for this class of petroleum substances. In 1995, the optimized Ames test was standardized as an ASTM method [ASTM E1687-95].

An assay was judged to be positive if the Mutagenicity Index was equal to or greater than 1.0

TEST RESULTS

CAS RN	CRU Number	1-Ring Weight %	2-Ring Weight %	3-Ring Weight %	4-Ring Weight %	5-Ring Weight %	6-Ring Weight %	7-Ring Weight %	Optimize d Ames MI
64741-57-7	86281	0.0	0.6	3.6	2.7	1.8	0.7	0.1	11.2
64741-57-7	86010	0.0	0.1	1.3	1.9	1.9	1.3	0.0	7.8
64741-57-7	86179	0.0	0.5	1.0	3.1	2.1	1.0	2.1	7.0
64741-57-7	85244	0.0	0.1	2.5	1.9	1.2	0.5	0.0	5.6
64741-57-7	86176	0.0	0.6	0.9	2.6	1.7	0.9	1.7	5.3
64741-57-7	86189	0.0	0.1	0.2	0.6	1.2	2.5	1.2	3.2
64741-62-4	86196	0.0	1.5	22.5	30.0	15.0	7.5	1.5	860.9
64741-62-4	86185	0.0	1.9	25.5	19.1	12.7	5.1	0.6	774.8
64741-62-4	86001	0.0	2.6	25.7	19.3	6.4	3.2	0.6	739.0
64741-62-4	86002	0.0	1.9	12.3	24.7	12.3	6.2	1.2	726.2
64741-62-4	86180	0.0	1.3	12.7	25.4	12.7	6.4	1.3	688.1
64741-62-4	86066	0.0	0.5	10.5	21.0	10.5	5.3	1.6	555.4
64741-62-4	86015	0.0	0.3	6.2	12.5	9.4	6.2	1.2	466.4
64741-62-4	86484	0.0	1.0	9.8	19.5	9.8	4.9	1.0	437.8
64741-62-4	87279	0.0	0.8	6.1	6.1	4.0	2.0	0.6	168.7
64741-62-4	87278	0.0	0.9	9.1	9.1	6.1	3.0	0.9	167.7
64741-62-4	87277	0.0	0.4	3.8	5.7	5.7	3.8	0.8	141.8
64741-62-4	86123	0.1	4.0	4.0	2.7	2.7	1.2	0.3	33.7
64741-81-7	86181	0.2	2.5	12.4	7.4	2.5	0.5	0.0	142.7
64741-81-7	86161	0.0	0.7	6.0	4.5	3.0	1.5	0.3	122.6
64741-81-7	86272	0.3	4.9	8.1	1.6	0.3	0.2	0.0	111.7
64741-81-7	83366	0.1	2.5	5.1	2.5	1.3	0.9	0.1	89.1
64741-81-7	86194	0.0	0.5	3.2	4.8	4.8	1.6	0.5	76.2
64741-81-7	87213	0.1	4.2	6.3	0.3	0.0	0.0	0.0	13.3
64741-81-7	86230	0.3	2.0	2.7	1.4	0.4	0.1	0.0	3.5

Optimized Ames Test results and 1-7 ring PAC Distribution

68476-33-5	086104	0.0	1.5	7.3	2.9	1.3	0.6	0.1	84.8
68476-33-5	086108	0.3	2.7	2.7	0.9	0.9	0.7	0.3	21.9
68476-33-5	086119	0.0	2.6	2.6	1.8	0.9	0.6	0.2	8.0
68553-00-4	091674	0.1	2.6	5.2	1.3	1.3	1.3	0.9	23.1
68553-00-4	091675	0.3	6.1	4.6	1.5	0.8	1.5	0.9	17.5

These data indicate that streams in the Heavy Fuel Oil category are generally mutagenic with the level of activity related to the PAC content and ring distribution profile. Test samples having the same CAS RN may have different mutagenic activity resulting from difference in the composition of starting crude oil and the type and severity of processing. Of this data set only 2 samples of CAS RN 64741-81-7 are not mutagenic [#86193 MI 0.7; #86198 MI 0.0]. Streams derived from Catalytically cracked stock which are higher in biologically PAC [e.g 64741-62-4, 64741-81-7] tend to show greater mutagenic activity.

Conclusion Remarks: Heavy Fuel Oils are considered gene mutations in the Optimized Ames assay

RELIABILITY/DATA QUALITY

Results Remarks:

Reliability Remarks: This assay is a modification of the Ames Salmonella Assay which has been verified by ASTM E1687-95

Key Study Sponsor Indicator:

Key

REFERENCE

Individual studies can be identified using the CRU number and requested from American Petroleum Institute

Reference:Original method publications are:
Blackburn, G.R. Deitch, R.A., Schreiner, C.A. and Mackerer, C.R. 1986. Predicting
tumorigenicity of petroleum distillation fractions using a modified Salmonella mutagenicity
assay. Cell Biol. Toxicol 2: 63-84
Blackburn, G.R. Deitch, R.A., Schreiner, C.A. Mehlman, M., and Mackerer, C.R. 1984.
Estimation of the dermal carcinogenic activity of petroleum fractions using a modified Ames
assay. Cell Biol. Toxicol 1: 67-80
Roy, T.A., Johnson, S.W., Blackburn, G.R., and Mackerer, C.R. 1988. Correlation of

mutagenic and dermal carcinogenic activities of mineral oils with polycyclic aromatic compound content. Fund. Appl. Toxicol. 10: 466-376.

 Type
 : Various

 Remark
 : Several in-vitro genetic toxicity studies have been reported for heavy fuel oil streams. They are listed below together with an indication of the results of the studies. Summaries of each of the studies are included in the following section.

 Test
 Result

 Heavy vacuum gas oil CAS RN 64741-57-7

 147 / 370

5. Toxicity	ld Heavy fuel oil Date December 7, 2012
	Modified Ames assay Cytogenetics assay with Chinese Hamster Ovary cells Negative with activation
	Clarified slurry oil CAS RN 64741-62-4
	Modified Ames assay Positive with or without activation Mouse lymphoma assay Positive with or without activation Sister chromatid Positive with or without activation exchange assay
	Cell transformation assay Negative without activation Positive with activation Unscheduled DNA
	synthesis Positive Bacterial forward mutation assay Negative with or without activation
	Residual fuel oil Inappropriate test method Data considered unreliableAmes assayNegative with or without activationBacterial forwardNegativemutation assayNegative
Type System of testing Test concentration Metabolic activation Result Year GLP Test substance	 Ames assay (modified) Salmonella typhimurium TA 98 5, 7, 10, 15, 20, 30, 40 & 50 µl/plate With Positive 1985 No data CAS RN 64741-57-7 Heavy vacuum gas oil
Method	 DMSO extraction was performed on a solution of heavy vacuum gas oil dissolved in cyclohexane Petroleum crude oil (positive control) Stock 642-100 (positive control) Refrigerator oil (negative control) The extracts were prepared by mixing 2 ml of test material with 3 ml cyclohexane to homogeneity. 10 ml DMSO was added and mixed for 30 minutes. After 30 minutes, the mixture was centrifuged at 1000 rpm and 22°C for 5 minutes. The DMSO layer was removed and stored in amber bottles at 4 °C until required for the mutagenicity assay.
	For the mutagenicity asay, the extracts were tested in strain TA98 according to the following regimens. The DMSO extracts of heavy vacuum gas oil and NBS1582 were delivered at doses of 50 μ l, 40 μ l, 30 μ l, 20 μ l, 15 μ l, 10 μ l, 7 μ l and 5 μ l/50 μ l. The DMSO extracts of refrigerator oil and stock 642-100° CNN were delivered at a volume of 50 μ l. The metabolic activation mixture contained eightfold higher concentration of hamster liver homogenate (S-9) and a twofold higher level of NADP than used in the standard assay.
	Positive control chemicals were 2.0 μg 2-aminoanthracene, 5.0 μg benzo(a)pyrene and 25.0 μg 2-nitrofluorene, in 50 μl DMSO per bacterial

. Toxicity	Id Heavy fuel oil
,	Date December 7, 2012
	The S-9 fraction was prepared from livers of 6-8 week old Syrian-Golden male hamsters induced with Aroclor 1254.
	The appropriate dilution of the test material was incubated for 20 minutes at 37 °C with phosphate buffer for tubes not requiring activation or S-9 mix for tubes requiring activation and 0.1 ml Salmonella broth culture. Agar was added after preincubation and this mix was overlayed on medium in Petri dishes. The plates were incubated for 48 hours at 37 °C. After incubation the number of revertant colonies was counted.
	Analysis of data The mean number of revertants/plate for each dose was calculated. If a dose-related doubling of revertants relative to the mean solvent control was not reached, the mutagenicity index was considered to be zero. If a doubling was reached, the triplicate revertant values at all doses (including solvent control) was plotted versus dose on an arithmetic scale. The slope of the dose response curve was taken as the mutagenicity index.
Result Reliability	 The mutagenicity index for heavy vacuum gas oil was reported to be 5.6 No data are provided for the other oils tested. (4) not assignable
i tendonity	Few data are provided in the report. (60)
Type System of testing Test concentration Metabolic activation Result Year GLP	 Cytogenetic assay Chinese hamster ovary cells 5, 8, 10, 12 & 15 µl/ml With and without Negative 1987 No data
Test substance Result	 CAS RN 64741-57-7 Heavy vacuum gas oil Metaphase analysis was performed at the highest concentration of test material as well as the controls. This concentration did not demonstrate a significant elevation of aberrant cells compared to the solvent control with
Reliability	 or without metabolic activation whereas the positive control has a significant proportion of aberrant cells (33%). : (4) not assignable This information is taken from a compilation of available data. No details of
	the study are provided. (67)
Type System of testing Metabolic activation Result Year GLP Test substance	 Modified Ames assay Salmonella typhimurium TA98 With and without Positive 1986 Yes CAS RN 64741-62-4 Clarified slurry oil
Method	 Four trials were conducted. Two trials employed the use of rat liver homogenate at the standard concentration (10%) whilst the other two used the rat liver homogenate at an eightfold concentration (80%) in the assay. In the assays using a higher concentration of S-9 mix, the concentration of NADP was also increased threefold. In all other respects the method used was the standard Ames assay. The test material (API 81-15) was tested as a solution in DMSO. Concentrations of material tested were 1000, 5000, 10,000, 25,000 and 50,000µg/plate.
	A positive response was recorded if there was a two-fold or greater 149 / 370

. Toxicity	Id Heavy fuel oil Date December 7, 201
	Date December 7, 201
Remark Result	 increase in revertants per plate. This study was carried out as part of a method development program. It was designed to optimize the conditions for testing petroleum streams. The study included several petroleum streams, including clarified slurry oi (API 81-15), as test materials. The detailed results are provided in the report but only the summarized result for API 81-15 is shown below.
	Maximum-fold increases in TA98
	revertants/plate 10% S-9 mix 80% S-9 mix
	Trial 1 Trial 2 Trial 1 Trial 2 API 81-15 13.1 27.8* 44.0 46.3*
	* In trial 2, the sample was tested over a lower dose range (33-3333 µg/plate) in order to demonstrate a dose response.
Reliability	Although the study was conducted to determine the effect of altering the S 9 concentration on the assay outcome, it also clearly demonstrated that API 81-15 was mutagenic in both the standard and modified Ames assays : (1) valid without restriction
,	(1)
Type System of testing Metabolic activation Result Year GLP Test substance	 Mouse lymphoma assay Mouse lymphoma L5178Y cell line With and without Positive 1985 Yes CAS RN 64741-62-4 Catalytically cracked clarified oil (API 81-15)
Method	 Non-Activation assay Cultures of mouse lymphoma cells were exposed to the test material for four hours at doses that were selected during a cytotoxicity study that had been carried out previously. Following exposure, the cells were washed and placed in growth medium for two or three days to allow recovery, growth and expression of the induced TK-/- phenotype. Cell counts were made daily and appropriate dilutions were made to allow optimal growth rates. At the end of the expression period, 3 x 10⁶ cells for each dose were seeded in soft agar plates with selection medium and resistant (mutant) colonies were counted after 10 days incubation. To determine the actual number of cells capable of forming colonies, a portion of the cell suspension was also cloned in normal (non-selective) medium. The ratio of resistant colonies to total viable cell number is the mutant frequency. Activation Assay The activation assay was run concurrently with the non-activation assay. The only difference was the addition of the S9 fraction of rat liver homogenate and necessary co factors during the four hour treatment period. The final concentrations of the activation system components in the cell suspension were: 2.4 mg NADP/ml; 4.5 mg isocitric acid/ml; 50 µl S9/ml. S9 homogenate was obtained from Araclor-induced rat liver.
Result	 Evaluation criteria The minimum condition considered necessary to demonstrate mutagenesi for any given treatment is a mutant frequency that exceeds 150% of the concurrent background frequency by at least 10 x 10⁻⁶ The test material was immiscible with water, DMSO and ethanol at 100 150 / 370

 $\mu\text{l/ml}$ but formed an opaque brown liquid with acetone at the same concentration.

Stocks were prepared by performing serial dilutions in acetone just prior to each assay. The mutation assays were then initiated by performing final dilutions of the stocks into the assay medium containing the lymphoma cells. The test material appeared miscible in the assay medium without activation from 0.061 nl/ml to 31.3 nl/ml but a brown

precipitate was noted at the top of the treatments from 62.5 to 1000 nl/ml.

The results of the assay are summarized below.

The results of the assay are summarized below.						
Rel	Total	Total	Rel	Rel	Mutant	
Susp.		t viable	cloning		frequency	
growth	colonie	es	eff.	(%)	10E ⁻⁶ units	
(% of						
control)						
Non activation assay						
Solvent control (acetor	ne)					
100	73	289	100	100	25.3	
100	53	262	100	100	20.2	
Untreated control						
242.2	51	208	75.5	182.9	24.5	
EMS (µl/ml)						
0.5 64.2	710	90	32.7	21	788.9	
API 81-15 (nl/ml)	22	450		1110	01.0	
7,8100 206.6	33	153	55.6	114.9	21.6	
15,6000 144.7	43	161	58.5	84.6	26.7	
31,3000 114.9	41	174	63.2	72.6	23.6	
62,5000 92.7	57	175	63.5	58.9	32.6	
125,000 101.8	73	154	55.9	56.9	47.4	
Activation assay						
Solvent control (acetor	ne)					
100	89	299	100	100	29.8	
100	85	195	100	100	43.6	
Untreated control						
69.5	96	266	107.7	74.9	36.1	
DMN (µl/ml)						
0.3 57.5	243	63	25.5	14.7	385.7	
API 81-15 (nl/ml)						
9770 49.9	132	260	105.2	52.5	50.8	
1,9500 38.9	162	204	82.5	32.1	79.4	
3,9100 35.5	194	181	73.2	26	107.2	
7,8100 14.2	188	106	42.9	6.1	177.4	
15,6000 3.4	115	58	35.2	1.2	198.3	
31,3000 6.5	196	123	39.3	2.6	159.3	
- ,0000 010						

Interpretation of results

Under non-activation conditions, the minimum criterion for mutagenesis is 40.8×10^{-6} . The highest concentration assayed induced a mutant frequency that just exceeded the minimum criterion, suggesting weak mutagenic activity.

In the presence of metabolic activation, the minimum criterion mutant frequency is 64.8×10^{-6} . A dose-dependent increase in the mutant frequency was induced at concentrations above 0.977 nl/ml. Increases in the total mutant clones were also induced, even at treatments that were excessively toxic. The test material was, therefore, positive in this assay.

Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	The negative control mutant frequencies were all within normal background and the positive control materials yielded mutant frequencies greatly in excess of background.
Reliability	: (1) valid without restriction
	(14
Туре	: Sister chromatid exchange assay
System of testing Test concentration	 Chinese Hamster Ovary cells (CHO) 5 to 100 µg/ml without activation; 100 to 5000 µg/ml with activation
Metabolic activation	: With and without
Year	: 1985
GLP Test substance	: Yes
	: CAS RN 64741-62-4 Clarified slurry oil
Result	 SCEs were not increased in the absence of S-9 but were increased in the presence of S-9.
	(15
Turne	
Type System of testing	Cell transformation assay BALB/3T3 Mouse embryo cells
Test concentration	: $1, 3, 6 \& 9 \mu g/ml$ (without activation). 10, 30, 100 & 300 $\mu g/ml$ (with
	activation)
Cytotoxic concentr.	: Mith and without
Metabolic activation Year	: With and without : 1986
GLP	: Yes
Test substance	: CAS RN 64741-62-4 Clarified slurry oil
Method	: The test material was tested as a solution in acetone. The positive control substance used in the non activation study was N-Methyl N'-nitro-N-nitrosoguanidine (MNNG). For the study with metabolic activation, benzo(a)pyrene was used as the positive control substance. The S-9 was prepared from Araclor-induced male rat liver.
	 Exponentially growing 3T3 clone A31-1 cells were seeded for each treatment condition at 25 cells/dish in triplicate for determination of cytotoxicity and at 1 x 10⁴ cells/dish in 15 replicates for determination of phenotypic transformation. Time of initiation was designated day 0. Dilutions of test material and control substances to suitable concentrations for testing were prepared immediately prior to use.
	Treatment was accomplished by adding two concentrations of test substance, solvent or positive control to an equal volume of Eagle's minimum essential medium in a dish. Cells were exposed to four concentrations of test material as well as solvent and positive controls for 3 days in the non-activated assay and 4 hours in the activated assay. Following the exposure period, all treatment materials were withdrawn, the
	cells were washed once with Hank's balanced salt solution and re-fed with 5ml complete growth medium. After 70-10 days incubation, the concurrent toxicity dishes were fixed with methanol, stained with 10% Giemsa and scored for colony formation. After 4-6 weeks incubation with twice weekly medium changes, the transformation dishes were fixed, stained and scored for morphologically transformed Type II and Type III foci according to Reznikoff's criteria.
	Dose levels for the transformation assay were selected following a preliminary toxicity screen. It was found that the test material was insoluble in treatment medium at final concentrations of 300 and 1000 µg/ml and was partially soluble at 100 µg/ml. Concentrations below 100 µg/ml were soluble. Survival ranged from 0 to 99%.
	Solubility was similar in the presence of activation.
	152 / 370

5. Toxicity	Id Heavy fuel oil Date December 7, 2012							
	Survival ranged from 31 to 100% in the presence of 100 μ l S-9/ml and from 5 to 98% in the presence of 20 μ l S-9/ml. Based on these findings dose levels of 1, 3, 6 and 9 μ g/ml in the absence of S-9 and 10, 20, 30, 100 and 300 μ g/ml in the presence of 100 μ l S-9/ml were selected for the assay.							
	to the solvent cont The transformation as the number of t which no Type III f expressed as less The number of Typ recorded. The transforming p	ts cts of each treatment c rol (relative cloning eff frequency for each tre ransformed foci per su oci were observed, tra than the frequency ob than the frequency ob to II and Type iii foci per potential of each treatm control using a special	ciency). eatment condition v rviving cell. For tes nsformation freque ained with one Typer total dishes scor ent condition was	was expressed st conditions in ncies were be III focus. red are also compared to				
Result	: The results are tab RCE(a)	oulated below. Dishes with foci per total dishes	Total Foci per total di	Total Foci per total dishes				
		Type II Type III	Type II Typ	e III TF(b)				
	Treatment Without metabolic	activation						
	Acetone (2µl/ml) 100	1/15 1/15	2/15 1/	15 0.14				
	API 81-15 (µg/ml 1 96	0/14 2/14	0/14 2/	14 0.32				
	3 91	1/15 0/15		15 <0.16				
	6 85	0/15 2/15		15 0.33				
	9 66	0/14 0/14	0/14 0/	14 <0.23				
	MNNG (0.5 μg/ml) 6	9/15 9/15	18/15 15	5/15 33.33**				
	With metabolic act	ivation						
	Acetone (2µl/ml) 100	1/14 0/14	1/14 0/	14 <0.18				
	API 81-15 (µg/ml							
	10 69	4/15 1/15		15 0.25				
	30 38 100 21	1/14 1/14 2/14 3/14		14 0.48 14 2.68*3				
	300 18	3/12 0/12		12 <0.19				
	BaP (12.5 µg/ml)							
	10	6/14 7/14	6/14 8/	14 14.29**				
		oning efficiency tion frequency (x 10 -4	!)					
	negative without m	e data shown it is conc netabolic activation, but						
Reliability	: (1) valid without re	striction		(18)				
Type System of testing Result	: Unscheduled DNA: Primary rat hepato: Positive	-						
	15	3 / 370						

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Year GLP Test substance	: 1985 : Yes : CAS RN 64741-62-4 Clarified slurry oil
Method	 Preparation of hepatocyte cultures Primary rat liver cell cultures were derived from the livers of two adult male F-344 rats. Each rat was anesthetized and the hepatocytes were isolated by liver perfusion with a collagenase solution and inoculated into culture dishes containing coverslips in supplemented Williams' medium. After 1.5 to 2 hours incubation, the non-viable cells (those not attached to the coverslips) were washed out of the cultures and the viable cells were used immediately for the UDS assay.
	The test material and controls were diluted in DMSO. The final concentration of DMSO was maintained at 1% when diluted in the culture medium. Three controls were used in the study: a negative solvent control, an untreated medium control and a positive control (2-acetylaminofluorene)
	For the preliminary UDS assay, three cultures were used for each of 10 dilutions of 81-15, for the positive control and both negative controls. The maximum concentration of 81-15 tested was 1000 μ g/ml. Cultures were exposed simultaneously to the test material and to 10 μ Ci/ml 3H-thymidine for 20 hours. After exposure all cultures were washed with medium, swelled in hypotonic solution, fixed and washed with water. The coverslips were mounted on slides, dipped in Kodak NTB-2 emulsion and exposed at -20°C for 7 days prior to development. Cells were stained in methyl green Pyronin Y. After determining the appropriate concentrations based on cytotoxicity and positive responses, a replicate experiment was performed to ensure reproducibility. The UDSassay was repeated at six non-cytotoxic concentrations of 81-15.
	Measurement of UDS Quantitative autoradiographic grain counting was accomplished using colony counters. 50 morphologically unaltered cells on a randomly selected area of the slide were counted. The highest count from two nuclear size areas areas over the most heavily labeled cytoplasmic areas adjacent to the nucleus was subtracted from the nuclear count to give the net grans/nucleus (NG). The percentage of cells in repair was calculated as the percentage of cells with at least +5NG. 150 cells were scored for each concentration reported for each experiment.
	Criteria for interpretation Positive A test material is considered positive if UDS is markedly elevated above that in the solvent control. Negative
Remark Result	 A material is considered negative if testing has been performed to the limits of solubility or cytotoxicity, or at 5000 µg/ml and if UDS is not significantly elevated above that of the solvent control. This study included three test materials, one of which was API 81-15. Only the information relating to the 81-15 is included in this summary. Cytotoxicity was observed at 1000 µg/ml in the preliminary experiment and at 1000 and 500 µg/ml in the replicate study.
	The preliminary experiment was performed at concentrations between 1 x 10^{-6} and 1000 µg/ml. A precipitate was observed adhering to the sides of the tubes at 100 and 1000 µg/ml. UDS was measured at 81-15 concentrations between 1 x 10 ⁻⁴ and 100 µg/ml in the preliminary experiment and between 0.5 and 100 µg/ml in the replicate experiment. The results are tabulated below.
	154 / 370

5. Toxicity			Id Heavy fuel oil Date December 7, 2012	
	Treatment	Preliminary assay N.G %IR	Replicate assay N.G. %IR	
	Control medium DMSO control -	-4.1 3 7.2 5	-3.7 11 -9.3 0	
	2-AA 81-15 1 x10 -4 μg/ml	28.6 94 -5.4 3	60.3 99 NT	
	0.001 μg/ml 0.01 μg/ml	-7.4 1 -7.2 1	NT NT	
	0.1 µg/ml 0.5 µg/ml	-6.8 1 NT	NT -3.3 3	
	1 µg/ml 5 µg/ml	7.8 56 NT	-6.6 3 12.7 67	
	10 μg/ml 50 μg/ml 100 μg/ml	51.1 98 NT 49.8 99	19.5 87 59.7 97 33.2 93	
	500 μg/ml 1000 μg/ml	NT *	*	
	NT Not tested	ge of cells in repair d at the concentration show ity observed, slides unscora		
	and an increased sample 81-15 is	a dose response, positive r d number of cells in repair in genotoxic in this assay.		
Reliability	: (1) valid without	restriction	(11)	
Type System of testing Test concentration		ovary cells (CHO)	1, 1, 10, 100 & 200 μg/ml with	
Metabolic activation Result Year	Negative : 1985			
GLP Test substance	: Yes : CAS RN 64741-6	62-4 Clarified slurry oil		
Method	Based on the res	- , , -, -	ollowing dose levels, using ation in duplicate cultures:	
	Two positive con activation, ethyln 200 μg/ml whilst	d from Aroclor induced rat lintrol substances were used. Inethane sulfonate (EMS) was for the assay without activated at a concentration of 100 µ	For the assay without as used at a concentration of tion dimethyInitrosamine	
	the test material above. Following harvested and a of each culture w ml were then add cells/plate). The following treatme fixed, stained an subcultured for p	and control substances at the g 19 hours incubation after the cell number was determined was diluted in Saline G to a con- ded to each of 3 plates conta se plates were used to deter ent and were incubated for 7 d counted. An additional all obenotypic expression into a		
		155 / 370		

5. Toxicity			Da	Id Heavy fuel oil ate December 7, 2012				
	of F12FCM5. Subcultures were performed on days 3 and 5 with selection on day 7. Selection was accomplished by taking cells from each culture and plating them in medium containing TG (6-thioguanine).							
		ng the total numb ted, corrected fo	per of mutant clo	clonable cells was nes by the number the ciency of the cells at the				
Result	in mutation induction of > 50 Tg r mutants	sidered positive i on with at least of s/10 ⁶ clonable c -dependent incre	ne dose resulting ells. ease in the mutar	se-dependent increase in a mutant frequency nt frequencies of the able below.				
	Dose Rel. initial Survival (%)	Total No mutants	Cloning efficiency (%)	Mutation Frequency (mean)				
	Without activation Untreat. 99.2 100.8 DMSO 108.1 96	1 2 2 7	83 85.3 81 80.7	1.7 2.5 5.6				
	EMS 53.1 53.1	107 109	68.8 62.7	164.6				
	API 81-15 (μg/ml) 0.1 87.9 0.1 85.1	2 3	77.5 80	3.2				
	1.0 80.2 1.0 67.1	14 18	85.2 91.8	18.0				
	3.045.63.052.8	0 1	88.3 85.2	0.6				
	10 33.1 10 31.4	2 1	75.5 74	2.0				
	30 17 30 10.6	13 4	86 100.7	9.6				
	With activation Untreat. 93.8 98.7	4 2	85.8 77.8	3.6				
	DMSO 99.7 98.2	6 3	95.7 77	5.2				
	DMN 14.3 20.5	102 124	43.5 44.2	257.4				
	API 81-15 (μg/ml) 0.1 76.5 0.1 78.5	2 3	79.5 73.7	3.3				
	1.0 70.5 1.0 65.8	0 1 6 / 370	89.3 87.8	0.6				

5. Toxicity					Id Heavy fue Date Decembe	
	10 10	51.2 55.5	4 11	97 82.7	8.7	
	100 100	22 33.8	15 7	82 86.8	13.2	
	200 200	16 9.4	15 16	96.7 93.8	16.4	
	It is c	oncluded that	the test mater	ial was negative	in this assay.	(10)
Metabolic activation Result Year GLP Test substance Reliability Remark	: Negat : 1985 : No da : Heavy Due t : This s Howe	ata / fuels o the inappro study was rep ver a standar	orted fully in a d Ames assay	hod, the study is n open literature has been showr dy, the study is n	publication.	
5.6 GENETIC TOXICI	ty 'in vivo'					(126)
High Pro-			ation System	(HPVIS)		
High Pr	oduction Vo			(HPVIS)		
High Pr Genetic Toxicity in vivo TEST SUBSTANCE	oduction Vo Type in if	lume Inform	64741-62-4	(HPVIS)		
High Providence of the second	oduction Vo Type in if Type in if Catalytical Contains h genotoxic cell transfo	lume Informa not listed: (not listed: (ly cracker cla nigh levels of in Salmonella prmation test	64741-62-4 64741-62-4 arified oil [CCC polycyclic aror a test, mouse and unschedu	(HPVIS) O], derived from natic constituents lymphoma TK+ ta led DNA synthes logenesis assay.	s and is highly m est, Syrian Hams is test, potent in	(126) ude oil. utagenic o ster embry ducer of sk
High Provide the second	oduction Vo Type in if Type in if Catalytical Contains h genotoxic cell transfo tumors in	lume Informa not listed: (not listed: (ly cracker cla nigh levels of in Salmonella prmation test	64741-62-4 64741-62-4 arified oil [CCC polycyclic aror a test, mouse and unschedu	O], derived from natic constituents lymphoma TK+ to led DNA synthes	s and is highly m est, Syrian Hams is test, potent in	(126) ude oil. utagenic o ster embry ducer of sk
High Provide the second	oduction Vo Type in if Type in if Catalytical Contains h genotoxic cell transfo tumors in t authors.]	lume Informa not listed: (not listed: (ly cracker cla nigh levels of in Salmonella prmation test	64741-62-4 64741-62-4 arified oil [CCC polycyclic aror a test, mouse and unschedu	O], derived from natic constituents lymphoma TK+ to led DNA synthes	s and is highly m est, Syrian Hams is test, potent in	(126) ude oil. utagenic o ster embryducer of sk
High Provide the second	oduction Vo Type in if Type in if Catalytical Contains h genotoxic cell transfo tumors in t authors.]	lume Information Information Information Information test	64741-62-4 64741-62-4 arified oil [CCC polycyclic aror a test, mouse and unschedu	O], derived from natic constituents lymphoma TK+ to led DNA synthes	s and is highly m est, Syrian Hams is test, potent in	(126) ude oil. utagenic o ster embryd ducer of sk
High Provide the second	oduction Vo Type in if Type in if Catalytical Contains h genotoxic cell transfo tumors in f authors.] Measured	lume Information International Information Internation Internatio Internation Internation	64741-62-4 64741-62-4 arified oil [CCC polycyclic aror a test, mouse and unschedu	O], derived from natic constituents lymphoma TK+ to led DNA synthes	s and is highly m est, Syrian Hams is test, potent in	(126) ude oil. utagenic o ster embryd ducer of sk

Route of Administration:	Oral or intraperitoneal
Species:	Mice
Strain:	CD-1
Gender:	Male and female animals from Charles River Canada (Quebec, Canada)
Dose:	Intraperitoneal: 0 (corn Oil), 0.188, 0.375, 0.75, 1.5, and 3.0g/kg; Oral: range finder 0 (corn oil), 1.0, 2.0, 3.0 and 4.0g/kg. Initial comparative studies of oral and intraperitoneal routes: 0 (corn oil), 0.04 (oral only), 0.188, 0.375, 0.75, 1.50 (oral only) g/kg
Year Study Performed:	1999
Method/Guideline Followed:	Other, method of Schmid, 1975
GLP:	Not specified
Duration of Treatment/Exposure Period and Units:	2 days, 48 hour total exposure; one study also included a 48 hour post-treatment sacrifice.
Frequency of Treatment:	2 daily doses, sacrifice 24 hrs after last dose
Positive, Negative and Solvent Control Substance(s):	Positive control: Cyclophosphamide (CAS RN 60555-19-2; Aldrich Chemical) 0.04g/kg in water by gavage Comparative control: Dimethylbenz(a)anthracene (DMBA, CAS RN 57-97-6; Aldrich Chemical) 0.075, 0.15, 0.30g/kg in corn oil or mineral oil by gavage. Corn oil or mineral oil
Post-Exposure Period:	Not applicable
Number of Animals per Sex per Dose:	10 (5 males, 5 females)/group in initial study; subsequent studies 4 (2 males, 2 females)/group
Method/Guideline and Test Condition Remarks:	Male and female mice were employed in all studies and acclimated at least 17 days prior to initiation of study. Mice were approximately 6-9 weeks old and 17-35g at time of dosing, singly housed in wire mesh cages and received food and water <i>ad libitum</i> . The micronucleus study was conducted according to the method of Schmid, 1975. Both femurs were removed from each treated mouse, proximal ends were cut and bone marrow was aspirated with fetal bovine serum into a centrifuge tube. Cells were collected by centrifugation and slides were prepared. After fixation in methanol, slides were stained with acridine orange (Hayashi et al., 1983) for approx. 1-2 minutes and evaluated at 400X by fluorescence microscopy. A total of 1000 erythrocytes was counted for each mouse and the total number of polychromatic (PCE) and normochromatic (NCE) erythrocytes were tabulated. An equal distribution of PCE/NCE indicated the absence of test material-induced toxicity. One thousand PCEs were evaluated for the presence of micronuclei (MN). A range-finding study was performed to select doses for the initial oral gavage study. Five separate micronucleus studies were conducted. Initial studies used 10 (5 males, 5 females) mice/groupsubsequent studies used 4 (2 males, 2 females)/group. Test material was administered in 2 consecutive daily doses by gavage or intraperitoneally. Mice were sacrificed approximately 24 hours after the second administration except for one study that utilized a 48 hour cell collection to assure that delayed effects were not missed.
	158 / 370

5. Toxicity					Heavy fuel oil December 7, 2012
	Residuals from AN normally distributed parametric analysis initial studies (10 (5 not separated due	l (values > 0.01) was not perform male, 5 female) in more that med. Sexes mice/group)	n 75% of analyze	yses, thus non- d separately in the
TEST RESULTS					
Systemic Toxicity:	Mortality was obser and high doses in t				ing study for CCCC
	In the initial study CCCO was neither The mean percent corn oil controls. the route of admin neither clastogenic response between data are summarize	clastogenic or t age of PCE/10 To test whether istration, CCCC nor toxic at lev collection of ce ed in Table 1.	oxic to bone 00 total eryt the lack of e was admini vels up to 0. ells at 24 or	marrow cells hrocytes was effect in the o stered intrape 75g/kg. Ther 48 hours (da	at doses up to 1.50 49-54, comparab ral study was relate eritoneally. CCCO e was no difference ata not shown). Th
	Table 1. Effect of				leus assay
	Dose [g/kg, daily for 2 days]	No. of mice/group	MN-I Oral	PCE/1000 Intraperitone al	e
	0 [corn oil]	10 (5M, 5F)	1.3	1.8	
	Positive control ^a	10 (5M, 5F)	9.6	-	
	0.188 CCCO	10 (5M, 5F)	1.8	0.3	
	0.375 CCCO	10 (5M, 5F)	1.8	1.3	
	0.75 CCCO	10 (5M, 5F)	3.0	2.0	
	1.50 CCCO	10 (5M, 5F)	2.3	-	
	a – Cyclophosphan 24 hr harvest. No s	hide, 0.04g/kg ir statistically signi	ficant increas	•	
Genotoxic Effect:	A subsequent stud at 0.75, 1.5 and 3.0 were seen in the frequency of micro was affected by exp	Dg/kg with 4 (2) frequency of P ponucleated PCE posure to CCCC	males, 2 fem CE but no s at levels up but there wa	ales /group. I significant inc to 3.0g/kg (Dose related decre rease was seen ir Table 2) Bone ma
	Table 2. CCCO IF				
	Dose [g/kg, daily for 2 days] 24 hr harvest	No. of mice/group	% PCE (SD)/R ^a	MN-PCE /1000PCE (SD)	
	0 [corn oil]	4 (2M, 2F)	48.8 (2.7)	1.25 (1.0)	
	0.75 CCCO		41.3 (10.1)	1.75 (1.3)	—
	1.50 CCCO	4 (2M, 2F)	36.8 (7.7)	2.5 (1.7)	
	3.00 CCCO		32.4 (10.1)	1.0 (0.8)	
	a- SD; R, statistical	ly significant reg	pression coef	ficient (p<0.01	1)
	DMBA, a recogniz reponse informative response. Dose r of 0.075 to 0.3g/kg by 50% compared lack of activity with components of the compounds from C oral gavage. Thre group. The PAC f level. These result responsible for neg effects of PAC may	ted clastogen a on and detern elated increases g. Dilution in m to the corn oil, CCCO could b is complex mize is complex mize is complex mize cCCO was tester e of 4 mice die raction of CCC s indicate that a gative results bu	and carcinog mine wheth s in miconuc ineral oil red suggesting a be influenced dure, a DN d at levels of d in the 5.0g O did not inc a matrix effect t does not el	en, was eval er vehicles cleated-PCE v luced the leve a vehicle effect by vehicle of 1.25, 2.5, an ykg group and duce cytogene of CCCO co iminate the po	luated to collect d influence clastog vere observed at d I of clastogenic ac ct. To determine i r matrix effects of o of polycyclic aron ad 5.0g/kg in 4 mic d 1 of 4 in the 2.5 etic effects at any o omponents is not w

5. Toxicity	Id Heavy fuel oil Date December 7, 2012					
Results Remarks:	DMBA and cyclophosphamide as comparative and positive control respectively induced the expected statistically significant increase in micronucleated polychromatic erythrocytes.					
Conclusion:	Catalytically cracked clarified oil did not induce cytogenetic damage in the micronucleus assay in bone marrow of mice. These negative results were not due to reduced gastro-intestinal absorption, route of administration, collection time or matrix effect. CCCO is not a clastogen in this assay system.					
RELIABILITY/DATA QU	ALITY					
Reliability:	1. Reliable without restriction.					
Reliability Remarks:	Adherence to GLPs was not specified in the publication but was not considered to invalidate a Reliability score of 1.					
Key Study Sponsor Indicator:						
REFERENCE						
Deference	Przygoda, R.T., Mckee, R.H., Amoruso, M.A., and Freeman, J.J. 1999. Assessment of the utility of the micronucleus test for petroleum-derived materials. Mutation research 438: 145 – 153 <u>Method references</u> : Schmid, W. 1975. The micronucleus test. Mutation Research					
Reference:	31: 9-15. Hayashi, H., Sofuni, T., and Ishidate, M., Jr. 1983. An application of acridine orange fluorescent staining to the micronucleus test. Mutation Research 120: 241- 247.					
Type Species Sex Route of admin. Exposure period Doses Result Year GLP Test substance	 Micronucleus assay Rat Male/female Dermal 90 days 30, 125, 500 & 2000 mg/kg/day Negative 1987 No data CAS RN 64741-57-7 Heavy vacuum gas oil 					
Method	 Groups of ten male and ten female rats were exposed dermally to Heavy vacuum gas oil (HVGO) at daily dose levels of 0, 30, 125, 500 or 2000 mg/kg/day, five days each week for 13 weeks. At the end of the 13 weeks exposure, the animals were killed and the femurs were taken from five animals per sex per dose group except for 125 mg/kg/day females and 2000 mg/kg/day males. Three bone marrow slides were prepared from each animal. The slides were air dried, fixed in absolute methanol and stained with acridine orange. One thousand polychromatic erythrocytes (PCEs) and 1000 normochromatic erythrocytes (NCEs) were scored to determine the prcentage of micronucleated erythrocytes. 					
Result	A statistical analysis was conducted and if a significant increase in micronuclei over the control values occurred it was taken as an indicaton that the test material was clastogenic.The individual raw data are given in the report together with summarized data.					

5. Toxicity	ld	Heavy fuel oil				
	Date	December 7, 2012				
	There were no differences between the control values a the treated groups for: polychromatic erythrocytes/ norr erythrocytes,% micronucleated PCEs or % micronuclea	nochromatic				
	In view of the negative results, the data are not summa	rized here.				
Reliability :	Heavy Vacuum Gas Oil was negative in the micronucle (1) valid without restriction	eus assay.				
		(68)				
Type:Species:Sex:Strain:Route of admin.:Exposure period:Doses:Result:	Cytogenetic assay Rat Male/female Sprague-Dawley Gavage 5 days 0.1, 0.3 & 1 g/kg/day Negative					
Year :	1985					
GLP : Test substance :	Yes CAS RN 64741-62-4 Catalytically cracked clarified oil (API 81-15)				
Method :	Groups of adult male and female Sprague-Dawley rats material by gavage, once each day for five days at the in the table below. In addition, triethylenemelamine (TE of 1 mg/kg was administered to a group of male and fe intraperitoneal dose 24 hours before the end of the stud served as positive controls. Negative controls consiste that were given corn oil orally at the same times as the material.	dose levels shown EM) at a dose level male rats as a single dy; these groups d of groups of rats				
	Treatment No. animals Male Female					
	I g/kg/day 13 13 0.3 g/kg/day 10 10 0.1 g/kg/day 10 10 TEM 0.1 g/kg ip* 10 10 Corn oil 10 10					
	Three hours prior to being killed with CO_2 , animals were injected i.p. with 4 mg/kg of colchicine. After the animal was killed, the adhering soft tissue and epiphyses of both tibiae were removed and the marrow was flushed from the bone and transferred to Hank's balanced salt solution. The marrow button was collected by centrifugation and was then re suspended in 0.075M KCl. The centrifugation was repeated and the pellet re suspended in fixative (methanol:acetic acid, 3:1). The fixative was changed once and left overnight. Cells in fixative were dropped onto glass slides which were then air dried and stained with 5% Giemsa. Slides were coded and scored for chromosomal aberrations.					
	50 spreads were read for each animal where feasible. A mitotic index based on at least 500 counted cells was The index was calculated by scoring the number of cell cells on each read slide.					
	Statistical evaluation was performed by Student's t-test	S.				
	Statistical evaluation was performed by Student's t-tests. <u>Data interpretation and evaluation</u> Gaps were not counted as significant aberrations. Open breaks were considered as indicators of genetic damage as were configurations resulting from the repair of breaks. The latter included translocations, multiradials, rings, multicentrics, etc. Reunion figures such					
	161 / 370					

. Toxicity							Heavy fuel oil December 7, 2012
	as these were weighed slightly higher than breaks since they usually resulted from more than one break. Cells with more than one aberration were considered to indicate more genetic damage than those with evidence of single events. Consistent variations from the euploid number were also considered in the evaluation of mutagenic potential.						indicate more nts. Consistent
Result	:	The type of aberration time was considered negative. The data are given in pooled data.	in evalua the repo	ting the ort for ma	test mat Iles, ferr	terial as b nales and	eing positive or as male and female
		The structural aberra females, both separa previously in the test pooled data for males	tely and laborator	pooled w y. The d	<i>i</i> ere sim	ilar to tho	se obtained
		Dose	Total No of cells	% cells with aberra 1+		Mitotic index	
		Negative control corn oil	929	0.4	0	5.0	-
		Positive control TEM, 0.8 mg/kg	400	57.5**	48.5**	0.9	
		API 81-15 0.1 g/kg 0.3 g/kg 1.0 g/kg	950 900 929	0.4 0.6 0.8	0 0 0	4.8 4.5 4.6	
		**P < 0.01 At all dose levels of to aberrations did not di whereas those for the	iffer signi	ficantly f	rom thos	se for the	
Reliability		Sample 81-15 was no (1) valid without restr		this ass	ay.		
Reliability	•		ICUOIT				(14
Type Species Sex	:	Sister chromatid exch Mouse Male/female	nange as	say			
Strain Route of admin.	:	B6C3F1 i.p.					
Exposure period	:	Four hours					
Doses Result	:	0.4, 2.0 & 4.0 g/kg					
Year		Positive 1985					
GLP Toot outotopoo	:	Yes		olum: '	י ים א	1 15	
Test substance Method	:	CAS RN 64741-62-4 Prior to treatment with anesthetized and an	h the test	materia	l, 30 ma	ale and 30	
		subcutaneously in the Four hours after impla females were given a substance in a dose animals of each sex	e lower al antation a single ir volume o was giver	bdomina of the pe atraperito f 10 ml/k a cyclopl	l region llet, grou nelal do g. A po nosphan	ups of five ose of 0.4 ositive con nide at a	e males and five 4, 2 or 4 g/kg of test htrol group of five level of 10 mg/kg.
		Colchicine (1 mg/kg)	was adm				
		162 /	/ 370				

162 / 370

5. Toxicity					Id Heavy fu	el oil
-					Date Decembe	er 7, 2012
Result	24 Bo asp The sol the con app Tw Tw Eva SC Con cel Eva SC SC SC SC	th femurs were exp pirated into cold Har e cells were collected lution and then incu- e cells. The cells we nsective changes in proximately 4 °C. to to four drops of fi to to five slides were cond-division metap ored for SCEs and co corded as the percent unted. The percent lls was also recorded aluation of test resu e test material is co	positive response if a dose- studentized range test) in vehicle control.			
	 Co	orn oil (M)	4	4.86-6.18	<u>per mouse</u> 5.43±0.60	
		(F)	5	5.91-7.44	6.73±0.68	
		PI 81-15 g/kg (M) (F)	5 5	6.76-11.18 7.82-10.46	8.83±1.60* 9.26±0.95*	
	2 g	g/kg (M) (F)	4 5	6.84-9.5 7.14-10.42	8.43±1.15* 8.06±1.36	
	0.4	4 g/kg (M) (F)	5 5	6.28-8.62 5.84-8.94	7.43±1.0 7.22±1.17	
	CF	P (M) (F)	5 5	16.54-33.97 25.56-43.38	24.61±7.39** 31.60±7.24**	
	*	P< 0.05 P< 0.01				
Reliability	sig fer		esponsiv		did induce a statistic CEs/metaphase in n	
	()					(13)
Type Species Sex Strain Route of admin. Exposure period Doses Result Year	: Ra : Ma : Fis : Ga : 2 a : 50	ale scher 344 avage and 12 hours , 200 & 1000 mg/kg sitive 85				
		163 /	370			

5. Toxicity					Id Heavy fuel oil Date December 7, 2012
GLP Test substance	:	Yes CAS RN 64741-62-/	4 Clarified	slurry oil, .	API 81-15.
Method	:	at doses of 50, 200 were treated 2 and	and 1000 n 12 hours be fluorene in	ng/kg in a efore sacri	ated by gavage with test material dose volume of 3 ml/kg. Animals fice. A positive control group was 2 hours prior to sacrifice. The
		rats. The cells were slips in supplemented	e inoculated William's r	into 6-we	ed from the livers of the treated Il culture dishes containing cover After 1.5 to 2 hours the cultures (those not attached to the cover
		thymidine for 4 hour containing 0.25mM Cultures were then washed with water.	s, followed unlabelled t washed, sw The cover ed at -20 °	by 14 to 1 thymidine. /elled in a slips were C for 12 to	lium containing 10 µCi/ml ³ H- 6 hours in William's medium hypotonic solution, fixed and mounted, dipped in Kodak NTB-2 14 days prior to development. Pyronin Y.
		colony counters. 50 morphologically were counted. The most heavily labelled subtracted from the The percentage of c with at least +5NG.	unaltered co highest cou d cytoplasm nuclear cou cells in repa	ells on a ra unt from tw nic areas a unt to give ir was calo	ting was accomplished using andomly selected area of the slide to nuclear size areas over the adjacent to the nucleus was the net grains/nucleus (NG). culated as the percentage of cells
					ach of 3 animals, for a minimum 50 cells/dose/time point.
		that in the solvent c The presence of a c cellular responses, reproducibility of da	nsidered po ontrol. lose-respon increases o ta were all o	nse, chang f the perc considered	DS is markedly elevated above les in the frequency distribution of entage of cells in repair and d in classifying the test material as al methods were used in
		Negative: A test material was above that in the so	lvent contro	ol.	f UDS was not markedly elevated
Result			oxicity, or at of the solve	t 5000 µg/ ent contro	g has been performed to the limits ml and if UDS is not significantly l.
Rooun	·	Treatment Dos (mg/	e Time		in repair
		Corn oil	12	-3.6 3	
		2-AA 50 81-15 50	12 2	19 8 -6.2 1	I
			12	-5.4 1	
		100			
		100 100	2 12	-5.8 1 -2.8 1	6
			2 12) 2	-5.8 1	6 4

5. Toxicity						Id Heavy fuel oil te December 7, 2012
Deliek Wei		ts indicate that 8	I-15 is a	genotox	ic ager	nt in this assay.
Reliability	: (1) valid with	nout restriction				(1)
5.7 CARCINOGEN	ICITY					
Species	: Mouse					
Remark	CONCAWE and have als	so been reviewed of the studies that	98) and by IAR	Binghan C (IARC	n et al (, 1989)	Bingham et al 1980)
	Dosing regime		Resu	lt*	Mear laten (wee	icy
	Steam crac	ked tar			(
	15 mg 3 x week (10	00) 38/62	tumors	43	Smith (195 <i>1</i>	n et al 1)
		741-62-4 Clarifie	d slurry o	oil undilu	ited	
	25µl 3 x week (40	0) 36/40	tumors	17	McKe (1990	ee et al 0)
	CAS RN 64 50 μl 2 x day (100		tumors alignant	15, 10% 22	5 in tolue API 1	
	Sample API 50 µl 2 x day (100		tumors alignant	72	API 1	1989
	Sample API 50 µl 2 x day (100		umors	113	API 1	1989
		bers given are th ors/number in gro		er of anii	mals wit	th
	An abbrevia	ted version of a s	ummary	table ir	n Bingha	am et al follows:
		f two blended fue of headings give			of C3⊦	l mice
	Base Crac blend resid stock adde	cked Dos due (mg	e No) of <u>mice</u>	FEN	-	nice with tumor gn malignant
	A 0	20 50	19 20	17 17	1 3	1 7 (58.8)
	B 0	20	40	23	0	1
	A 5	20	30	27	15	8 (41.5)
		165 / 370				. ,

							D	ate Dec	ember 7,	2012
				50	30	27	13	8 (28	3.3)	
	В	5		20 50	40 28	31 27	9 9	11 (4 9 (3		
	А	10		20 50	30 30	26 25	19 22	7 (4 3 (3		
	В	10		20 50	40 30	35 30	22 9	13 (4 18 (2		
	А	20		20	25	23	12	9 (2	5.2)	
	В	20		20	29	28	11	16 (2	23.4)	
		A B cked res		ed bunke Texas un	cracked			at the co	oncentratio	ons
	Dos	age was	s applied t	twice wee	ekly					
			ber alive a ng mice w			e of m	nedian	tumor plu	ıs numbei	r of
		nber in p eks)	arenthese	es is the	averasge	e time	of app	earance	of papillor	nas
		·					(21)	(28) (29)	(51) (59)	(101)
		.,	TOGENIC	7 I I V						
Juntto States			TOGENIC	JII Y						
UNITED STATES	duction Volume				vvis)					
High Pro	duction Volume	e Inform	nation Sys		PVIS)					
High Pro EVELOPMENTAL TOXIC	duction Volume	e Inform	nation Sys		PVIS)					
High Pro EVELOPMENTAL TOXIC EST SUBSTANCE Category Chemical:	duction Volume CITY/TERATOG 64741-61-3	e Inform ENICITY	nation Sys	stem (HF						
High Pro EVELOPMENTAL TOXIC EST SUBSTANCE Category Chemical: Test Substance: Test Substance	duction Volume	e Inform ENICITY FCCU H	hation Sys (Heavy Cyc	stem (HF						
High Pro EVELOPMENTAL TOXIC EST SUBSTANCE Category Chemical: Test Substance: Test Substance Purity/Composition	64741-61-3;	FCCU F	hation Sys / Heavy Cyc Dil (F-222)	stem (HF cle Oil (H0	CO)	·6-ZA-	ZR (M	obil. 1994	+)	
High Pro DEVELOPMENTAL TOXIC TEST SUBSTANCE Category Chemical: Test Substance: Test Substance Purity/Composition and Other Test	64741-61-3 64741-61-3; FCCU Heavy	FCCU F Cycle (DMSO	Heavy Cyc Dil (F-222) Content	stem (HF cle Oil (H0) <u>– report</u> 2-ARC	CO) no. 6572 3-ARC	C 4-	ARC	5-ARC	6-ARC	7-ARC
High Pro DEVELOPMENTAL TOXIC TEST SUBSTANCE Category Chemical: Test Substance: Test Substance Purity/Composition and Other Test	64741-61-3 64741-61-3; FCCU Heavy	ENICITY FCCU F Cycle (PAC	Heavy Cyc Dil (F-222) C Content 1-ARC (%) ²	stem (HF cle Oil (H0) – report 2-ARC (%)	CO) no. 6572 3-ARC (%)	C 4- (%	ARC 6)	5-ARC (%)	6-ARC (%)	(%)
High Pro DEVELOPMENTAL TOXIC TEST SUBSTANCE Category Chemical: Test Substance: Test Substance Purity/Composition and Other Test	64741-61-3 64741-61-3; FCCU Heavy	FCCU F Cycle (DMSO	Heavy Cyc Dil (F-222) Content	stem (HF cle Oil (H0) <u>– report</u> 2-ARC	CO) no. 6572 3-ARC	C 4- (%	ARC	5-ARC	6-ARC	
High Pro DEVELOPMENTAL TOXIC TEST SUBSTANCE Category Chemical: Test Substance: Test Substance Purity/Composition and Other Test	64741-61-3 64741-61-3; FCCU Heavy Sample # 091686 (F-222) 1) Percent of	FCCU F Cycle (DMSO wt.% ¹	Heavy Cyc Dil (F-222) Content 1-ARC (%) ² 0.00	stem (HF cle Oil (HC) – report (%) 4.00 le materi	CO) no. 6572 3-ARC (%) 40.00	C 4- (% 4.	ARĊ 6) 00	5-ARC (%) 0.60	6-ARC (%) 0.00	(%) 0.00
High Pro DEVELOPMENTAL TOXIC TEST SUBSTANCE Category Chemical: Test Substance: Test Substance Purity/Composition and Other Test	CITY/TERATOG 64741-61-3 64741-61-3; FCCU Heavy Sample # 091686 (F-222) 1) Percent of method as de 2) ARC is "a aromatic ring	FCCU F Cycle (DMSO wt.% ¹	Heavy Cyce Dil (F-222) Content 1-ARC (%) ² 0.00 -extractab in API (20 ring class he total sa	stem (HF cle Oil (H0) - report 2-ARC (%) 4.00 le materi 008). ". "ARC 1 ample. "A	CO) no. 6572 3-ARC (%) 40.00 als (mos	C 4- (% 4. Stly PA	ARC 6) 00 (Cs), do	5-ARC (%) 0.60 etermined	6-ARC (%) 0.00 d by the P PACs tha	(%) 0.00 PAC 2 t have 1
High Pro	CITY/TERATOG 64741-61-3 64741-61-3; FCCU Heavy Sample # 091686 (F-222) 1) Percent of method as de 2) ARC is "a	FCCU F Cycle (DMSO wt.% ¹	Heavy Cyce Dil (F-222) Content 1-ARC (%) ² 0.00 -extractab in API (20 ring class he total sa	stem (HF cle Oil (H0) - report 2-ARC (%) 4.00 le materi 008). ". "ARC 1 ample. "A	CO) no. 6572 3-ARC (%) 40.00 als (mos	C 4- (% 4. Stly PA	ARC 6) 00 (Cs), do	5-ARC (%) 0.60 etermined	6-ARC (%) 0.00 d by the P PACs tha	(%) 0.00 PAC 2 t have 1
High Pro DEVELOPMENTAL TOXIC DEVELOPMENTAL TOXIC TEST SUBSTANCE Category Chemical: Test Substance Purity/Composition and Other Test Substance Comments: Substance Comments:	CITY/TERATOG 64741-61-3 64741-61-3; FCCU Heavy Sample # 091686 (F-222) 1) Percent of method as de 2) ARC is "a aromatic ring rings, and so	FCCU F Cycle (DMSO wt.% ¹	Heavy Cyce Dil (F-222) Content 1-ARC (%) ² 0.00 -extractab in API (20 ring class he total sa	stem (HF cle Oil (H0) - report 2-ARC (%) 4.00 le materi 008). ". "ARC 1 ample. "A	CO) no. 6572 3-ARC (%) 40.00 als (mos	C 4- (% 4. Stly PA	ARC 6) 00 (Cs), do	5-ARC (%) 0.60 etermined	6-ARC (%) 0.00 d by the P PACs tha	(%) 0.00 PAC 2 t have 1
High Pro DEVELOPMENTAL TOXIC DEVELOPMENTAL TOXIC TEST SUBSTANCE Category Chemical: Test Substance Purity/Composition and Other Test Substance Comments:	CITY/TERATOG 64741-61-3 64741-61-3; FCCU Heavy Sample # 091686 (F-222) 1) Percent of method as de 2) ARC is "a aromatic ring rings, and so	FCCU F Cycle (DMSO wt.% ¹	Heavy Cyce Dil (F-222) Content 1-ARC (%) ² 0.00 -extractab in API (20 ring class he total sa	stem (HF cle Oil (H0) - report 2-ARC (%) 4.00 le materi 008). ". "ARC 1 ample. "A	CO) no. 6572 3-ARC (%) 40.00 als (mos	C 4- (% 4. Stly PA	ARC 6) 00 (Cs), do	5-ARC (%) 0.60 etermined	6-ARC (%) 0.00 d by the P PACs tha	(%) 0.00 PAC 2 t have 1

Id Heavy fuel oil

Route of Administration:	Dermal, non-occluded
Other Route of Administration: Type of Exposure:	Developmental toxicity
Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Wilmington, MA)
Other Strain:	Not applicable
Gender:	Females (non treated males used for mating)
Number of Animals per Dose: Concentration:	12 per dose at 50, 150, or 500 mg/kg dose level of test material 15 per dose for sham control
Dose:	0, 50, 150, 500 mg/kg/day
Year Study Performed :	1994
Method/Guideline	Other
Followed: GLP:	No information
Exposure Period:	Gestation day (GD) 0 to 20
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to determine the developmental toxicity of HCO (F-222) following dermal administration to female rats daily for days 0 through day 20 of gestation.
	 Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Females that exhibited positive signs of mating were randomly assigned to four treatment groups. Males were not treated. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of sperm in a vaginal smear or a copulatory plug: Sham control 0 mg/kg/day – 15 animals (GD 0-20) HCO 50 mg/kg/day – 12 animals (GD 0-20) HCO 150 mg/kg/day – 12 animals (GD 0-20)
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	The animals used in the study were between 12 and 13 weeks of age at exposure initiation.
	The test material was administered to groups 2-4 on GD 0 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Test article was applied to alternating sites (intrascapular and lumbar regions). Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. The dose administered was based upon the GD 0 body weight. With the exception of test article application, control animals underwent the same procedures as treated animals. Dosing was based on the results of an irritation pre-screening test conducted prior to initiation of the developmental study.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted.

Individual body weights were recorded at receipt, near the end of the quarantine period, on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).

Each litter was observed daily during lactation day0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.

Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.

The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup was recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.

STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model.

For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.

For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day 0, pup alterations at lactation day 0, male pups at days 0 and 4, survival of pups at lactation day 4) were analyzed by the "weighted" GLM, with litter size as the "weights" and as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the variances. For all proportions and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)						
Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:	
LOAEL – Dermal	Maternal	=	50		mg/kg/day	
NOAEL- Dermal	Maternal	=	Not identified <50		mg/kg/day	
LOAEL - Dermal	Offspring (F1)	=	50		mg/kg/day	
NOAEL - Dermal	Offspring (F1)	=	Not identified <50		mg/kg/day	

Results Remarks:

The animals used in the study were between 12 and 13 weeks of age at exposure initiation.

One female in the control group was sacrificed on GD 15 because of an accidental injury. One female from the 150 mg/kg dose group was found dead on GD 16. Two other females in this dose group were sacrificed in a moribund condition on GD 15 or 16.

Treatment related dermal irritation was noted in animals in the 50, 150 and 500 mg/kg dose groups beginning GD 1 and continued throughout the duration of the study.

Slight to moderate erythema, edema, eschar and dry skin were observed at the test site for animals in the 50 mg/kg dose group. Slight to extreme (primarily slight to moderate) erythema, slight to moderate edema, slight eschar, and slight to extreme (primarily slight to moderate) dry skin were observed at the test site for animals in the 150 mg/kg dose group. Slight to extreme erythema, edema, eschar (primarily slight to moderate), and dry skin were observed at the test site for animals in the 500 mg/kg dose group. Slight to extreme erythema, edema, eschar (primarily slight to moderate), and dry skin were observed at the test site for animals in the 500 mg/kg dose group. Slight fissuring was also noted.

All of the dose groups treated with F-222 exhibited higher incidences of vaginal discharge when compared to the control group. Slight to moderate (primarily slight) vaginal discharge, with a duration of one or two days, was noted for six of the females in the 0 mg/kg dose group. Slight to moderate (primarily slight) vaginal discharge, with a duration of one to five days, was noted for eight of the females in the 50 mg/kg dose group. Slight to extreme vaginal discharge, which occurred over a period of three to ten days, was noted for all of the females in the 150 mg/kg dose group. Slight to moderate vaginal discharge, which occurred over a period of three to ten days, was noted for all of the females in the 150 mg/kg dose group. Slight to moderate vaginal discharge, which occurred over a period of two to eleven days, was noted for 11 of the 12 females in the 500 mg/kg dose group.

In addition to vaginal discharge, paleness, lethargy, no stools, and decreased body temperature were noted for the two females in the 150 mg/kg dose group that were sacrificed in a moribund condition; one of these females also had labored respiration. Paleness, no stools, and decreased body temperature were also noted for one female in the 150 mg/kg dose group before it was found dead. Three of the other females in this dose group were pale in color; one of these females was also lethargic. Three females in this dose group had red, red/black, or yellow stained coats in the perineal region. One female in the 500 mg/kg dose group was lethargic and cold to the touch. Four of the females in this dose group had yellow-stained coats in the perineal/inguinal region. There were no other clinical observations that were considered to be related to treatment with the test article.

Body weights of pregnant females in the 50 mg/kg dose group were significantly lower than those of the control females on GD 12 (p<0.05), 16 (p<0.05), and 20 (p<0.01). Body weights of pregnant females in the 150 mg/kg dose group were significantly lower (p<0.01) than those of the control females on GD 4, 8, 12, 16, and 20. Body weights of pregnant females in the 500 mg/kg dose group were significantly lower (p<0.01) than

those of the control females on GD 4, 8, 12, 16, and 20. Body weight changes for pregnant females in the 50 mg/kg dose group

were also significantly lower (p<0.05) than those of the control females between GD 0 to 4. Body weight changes for pregnant females in the 150 mg/kg dose group were also significantly lower (p<0.01) than those of the control females between GD 0 to 4, 12 to 16 and 16 to 20. Body weight changes for females dosed at 500 mg/kg were significantly lower (p<0.01) than those of controls throughout gestation.

Absolute food consumption for pregnant females in the 50 mg/kg dose group was significantly lower (p<0.01) than that of the controls during GD 4 to 8; there was no effect on relative food consumption. Absolute food consumption for pregnant females in the 150 mg/kg dose group was significantly lower (p<0.01) than that of the controls throughout gestation. Relative food consumption for pregnant females in this dose group was significantly lower than that of the controls during GD 0 to 4 (p<0.01), 4 to 8 (p<0.01), and 12 to 16 (p<0.05). Absolute food consumption for pregnant females in the 500 mg/kg dose group was significantly lower (p<0.01) than that of the controls throughout gestation. Relative food consumption for pregnant females in the 500 mg/kg dose group was significantly lower (p<0.01) than that of the controls throughout gestation. Relative food consumption for pregnant females in the 500 mg/kg dose group was significantly lower (p<0.01) than that of the controls throughout gestation. Relative food consumption for pregnant females in the 500 mg/kg dose group was significantly lower (p<0.01) than that of the controls throughout gestation. Relative food consumption for pregnant females in this dose group was significantly lower (p<0.01) than that of the controls throughout gestation. Relative food consumption for pregnant females in this dose group was significantly lower (p<0.01) than that of the controls during GD 0 to 4 and 4 to 8.

Dermal irritation (e.g., erythema, edema, eschar, and dry skin) related to administration of the test article was noted at the test site for all dose groups that were treated with the test article.

The death of one female and the moribund condition of two females in the 150 mg/kg dose group may have been due to complications arising from test article treatment. Red/black-stained fur around the vaginal opening, pale tissues and organs, small thymus, and numerous early resorptions in the uterus were noted for the two females in the 150 mg/kg dose group that were sacrificed in a moribund condition. Red fluid on the tail and in the perineal region and resorptions in the uterus were observed for the 150 mg/kg dose group female that was found dead. Although other findings were observed at the time of necropsy, they were considered incidental and unrelated to test article treatment.

At a dose of 50 mg/kg, gestation length was significantly longer (p<0.01), the number of total and live pups on lactation day 0 was significantly lower (p<0.01) and the adjusted mean pup weight and lactation day 0 was significantly decreased (p<0.05) compared to the control group. At this dose level, seven of 10 pregnant females delivered a litter. At a dose of 150 mg/kg, the number of total and live pups on lactation day 0 was significantly lower (p<0.01) than that of the controls. Although not statistically significant, the adjusted mean pup weight (2 pups) on lactation day 0 was decreased (9%) compared to the control group. At this dose level, one of the 12 pregnant females delivered a litter.

The number of implantation sites was significantly lower (p<0.01) for females in the 500 mg/kg dose group, suggesting increased pre-implantation loss at this dose level; none of the 10 pregnant females delivered a litter. For the 50 and 150 mg/kg dose groups, there were no significant differences in number of implantation sites, proportion of dead pups on lactation day 0, proportion of pups surviving to lactation day 4, proportion of males on lactation days 0 and 4 or external pup alterations. External pup alterations noted included: cold to touch, small,

cannibalized, pale, dark in color, anal region inflamed, no milk in stomach and moribund.

Summary of Selected Maternal Weight Parameters

Dose (mg/kg/day)	0	50	150
Body wt –final (g)	422.8	363.0b	300.1b
Body wt – lactation day 0	315.9	305.0	292.0
Body wt – lactation day 4	323.3	314.5	NA
GD 0-4 wt gain (g)	22.9	15.2a	10.2b
GD 4-8 wt gain (g)	19.2	15.3	15.0
GD 8-12 wt gain (g)	23.8	20.2	17.8
GD 12-16 wt gain (g)	33.0	18.9	-15.3b

5. ToxicityIdHeavy fuel oilDateDecember 7, 201				
	GD 16-20 wt gain (g)	57.7	27.5	-0.7b
	Lactation day0-4 wt gain (g)	11.3	6.5	NA
	a)Statistically different from contro b)Statistically different from contro NA=not applicable Summary of Mean	l (p<0.01)́	luction and Litter	Data
	Dose (mg/kg/day)	0	50	150
	Number of dams pregnant	14	10	12
	Dams with resorptions	0	1	4
	Implantation sites - Mean	15.9	15.4	15.1
	Number of litters with live	13	7	1
	pups			
	Total pups/litter (day 0)	14.8	9.0b	5.0b
	Live pups/litter (day 0)	14.4	8.1b	2.0b
	Proportion surviving to day 4 (%)	95	81	0
	Pup weights (g) – mean, day 0	6.47	5.91a	5.87
	Pup weights (g) – mean, day 4	9.41	8.74	NA
Conclusion:	 b)Statistically different from control NA=not applicable Given the design of the study and if the effects observed were a resuland carry a conceptus, or a direct The systemic maternal NOAEL for identified (<50 mg/kg/day); the LO discharge, decreased body weight The developmental NOAEL for de identified (<50 mg/kg/day); the LO total and live pups on lactation day 0. Note the dermal NOAEL was dete occurred at all dose levels. 	the results observ alt of an effect on effect on the emb dermal exposure AEL= 50 mg/kg/d t, body weight cha rmal exposure to AEL = 50 mg/kg/d y 0 and decreased	the dam and the all ryo/fetus. to HCO during GE ay based on increa anges, and food co HCO during GD 0- day based on a dea d pup body weights	bility to produce 0 0-20 was not be ased vaginal nsumption. 20 was not creased number of 5 on lactation day
RELIABILITY/DATA QUALI	ГҮ			
Reliability:	Valid Without Restrictions (KS=1)		
Reliability Remarks:	Non guideline study, but with ade endpoints measured.		ake NOAEL determ	ination for the
Key Study Sponsor Indicator:	Key			
REFERENCE				
Reference:	ARCO. 1994. A Developmental To Administered F-222 Dermally Duri			
	Mobil. 1994. Characterization and Environmental and Health Science API. 2008. PAC Analysis Task Gro content and selected endpoints of petroleum substances." http://www	es Laboratory Rep oup, "The relation: repeat-dose and	oort no. 65726-ZA-2 ship between the a developmental toxi	ZR. romatic ring class city of high-boiling

-

2009

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

TEST SUBSTANCE									
Category Chemical:	64741-57-	7							
Test Substance:	64741-57-	7; Heav	y Vacuu	m Gas C	Dil (HVG	0)			
Test Substance Purity/Composition and Other Test Substance Comments:	HVGO (F-225) PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)								
	Sample #	DMS O wt.%	1- ARC (%) ²	2- ARC (%)	3- ARC (%)	4- ARC (%)	5- ARC (%)	6- ARC (%)	7- ARC (%)
	091689 (F-225)		0.00	0.40	4.00	1.00	0.40	0.10	0.00
	 Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008). ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings 								
Category Chemical Result Type :	Measured								
Unable to Measure or Estimate Justification :									
METHOD									
Route of Administration:	Dermal, n	on-occlu	ided						
Other Route of Administration:									
Type of Exposure:	Developmental toxicity								
Species:	Rat								
Other Species:	Not applic	able							
Mammalian Strain:	Sprague-E	Dawley	(Charles	River, V	Vilmingto	on, MA)			
Other Strain:	Not applic	able							
Gender:	Females (non treated males used for mating)								
Number of Animals per Dose:	12 per dose at 50, 150, or 500 mg/kg dose level of test material 15 per dose for sham control								
Concentration:									
Dose:	0, 50, 150), 500 m	g/kg/day	1					
Year Study Performed :	1994								
Method/Guideline Followed:	Other								
GLP:	No inform	ation							
Exposure Period:	Gestation	Day (G	D) 0 to 2	20					
Frequency of Treatment:	Once per	day							

Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to determine the developmental toxicity of HVGO (F-225) following dermal administration to female rats daily for days 0 through day 20 of gestation.
	 Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Females that exhibited positive signs of mating were randomly assigned to four treatment groups. Males were not treated. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of sperm in a vaginal smear or a copulatory plug: Sham control 0 mg/kg/day – 15 animals (GD 0-20) HVGO 50 mg/kg/day – 12 animals (GD 0-20) HVGO 150 mg/kg/day – 12 animals (GD 0-20)
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	The animals used in the study were between 12 and 13 weeks of age at exposure initiation.
	The test material was administered to groups 2-4 on GD 0 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Test article was applied to alternating sites (intrascapular and lumbar regions). Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site The dose administered was based upon the GD 0 body weight. With the exception of test article application, control animals underwent the same procedures as treated animals. Dosing was based on the results of an irritation pre-screening test conducted prior to initiation of the developmental study.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted.
	Individual body weights were recorded at receipt, near the end of the quarantine period, on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).
	Each litter was observed daily during lactation day0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.
	Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 o lactation and those that did not deliver a litter were necropsied on presumed GD 25.
	The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup was recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model. For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.
	For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day0, pup alterations at lactation day0, male pups at days 0 and 4, survival of pups at lactation day4) were analyzed by the "weighted" GLM, with litter size as the "weights" and as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.
	PAC Analysis: The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas

2 is a single analytical method that involves solvent extraction (DMSO) an an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	150		mg/kg/day
NOAEL- Dermal	Maternal	=	50		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	150		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	50		mg/kg/day

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Results Remarks:	 No mortalities occurred during the study. Slight erythema, eschar, and dry skin were observed at the test site for animals in the 50 mg/kg dose group. Slight to moderate (primarily slight) erythema and slight dry skin were observed at the test site for animals in the 150mg/kg dose group. Slight to moderate erythema, slight edema and slight dry skin were observed at the test site for animals in the 500 mg/kg dose group. All of the dermal irritation findings at the treated site were observed to be reversible by the end of the study period. Since eschar was only observed in one animal of the 50 mg/kg dose group, it is not considered to be treatment related. Rather, it is more probable that it is a result of shaving irritation. The occurrence of vaginal discharge was higher than that of the control group for females in the 500 mg/kg dose group. Seven females in the 500 mg/kg dose group on GD 15 and 16. At a dose of 500 mg/kg, gestation length was significantly increased (p<0.01) when compared to that of the control group. There were no other clinical observations that were considered to be related to treatment with
	At a dose of 50 mg/kg, there were no significant differences in body weights or body weight changes when compared with the control group. At a dose of 150 mg/kg, there were no significant differences in body weights when compared with the control group. Body weights of pregnant females in the 500 mg/kg dose group were significantly lower (p<0.01) than those of the control females on GD 4, 8, 12, 16, and 20 and on Lactation Day 4. Body weight changes for pregnant females in the 150 mg/kg dose group were also significantly lower (p<0.05) than those of the control females between GD 0 to 4. Body weight changes for females dosed at 500 mg/kg were significantly lower (p<0.01) than those of controls between GD 0 to 4, 12 to 16, and 16 to 20, and Lactation Days 0 to 4. There were statistically significant (p<0.01) dose response relationships between treatment groups for the intervals with decreased body weights and body weight changes.
	At a dose of 50 mg/kg, there were no statistically significant differences in absolute or relative food consumption when compared with that of the control group. At a dose of 150 mg/kg, there were no significant differences in absolute food consumption. Relative food consumption for pregnant females in the 150 mg/kg dose group was significantly lower than that of the control group during GD 0 to 4. Absolute food consumption for pregnant females in the 500 mg/kg dose group was significantly lower (p<0.01) than that of the controls during GD 0 to 4, 4 to 8, 12 to 16, and Lactation Days 0 to 4. Relative food consumption for pregnant females in the 500 mg/kg dose group was significantly lower (p<0.01) than that of the controls during GD 0 to 4. Relative food consumption for pregnant females in the 500 mg/kg dose group was significantly lower (p<0.01) than that of the controls during GD 0 to 4 and 4 to 8 and Lactation Days 0 to 4. Relative food consumption for pregnant females in the 500 mg/kg dose group was significantly higher (p<0.01) than that of the controls during GD 16 to 20. The higher relative food consumption was considered to be related to the lower body weights at this interval. There were statistically significant (p<0.01) dose response relationships between treatment groups for the intervals with decreased absolute food consumption.

				Id Heavy fue te December	
the v The l noted fema fetus	papillary process k vay through the cu lobe was white-yel d at necropsy for fe ale in the 500 mg/kg in the uterus at th p had thickened ut	t surface in low and ligh emales in th g dose grou e time of ne	one female in nt red in color ne 50 and 150 up had red vag ecropsy. Anot	n the sham co No visible les mg/kg dose g ginal discharg ner female in	ntrol group. sions were groups. One le and a dead this dose
mg/k 4 we of tot than Day body than mg/k	e were no significa g. At a dose of 150 re significantly low tal and live pups or those of the contro 0 was significantly weights on Lactat those of the contro g dose group did r	0 mg/kg, pu er (p<0.01) n Lactation ol group. Th higher (p<0 ion Days 0 ol group. Th not deliver a	ip body weigh than those of Day 0 were s ie proportion of 0.05) than that and 4 were s iree of the pre- a litter and one	ts on Lactatio the controls. ignificantly low of pups dead of t of the contro ignificantly low egnant females e of the pregna	n Days 0 and The number ver (p<0.01) on Lactation ol group. Pup ver (p<0.01) s in the 500 ant females
cons	ered only dead pup idered to be related	d to dermal	administration	n of the test a	rticle.
male	proportion of pups s on Lactation Day g dose group whe	/ 4 were sig	nificantly lowe	er (p<0.05) fo	r the 500
	been caused by v all dose groups, the	-	-	-	
	antation sites or ex	ternal pup a	alterations. Maternal We	ight Paramet	
impla Dos	Summary of se (mg/kg/day)	ternal pup a f Selected	alterations. Maternal We	ight Paramet	ers
impla Dos Boo	Summary or Summary or se (mg/kg/day) dy wt –final (g)	ternal pup a	Alterations. Maternal We 50 411.0	ight Paramet 150 418.5	ers 500 345.7b
impla Dos Boo Boo day	Summary of Summary of se (mg/kg/day) dy wt –final (g) dy wt – lactation r 0	ternal pup a f Selected 0 423.9 320.8	alterations. Maternal We 50 411.0 313.1	ight Paramet 150 418.5 318.4	ers 500 345.7b 300.6
impla Dos Boo day Boo day	Summary or Summary or se (mg/kg/day) dy wt –final (g) dy wt – lactation r 0 dy wt – lactation r 4	ternal pup a f Selected 423.9 320.8 336.7	Solution 50 411.0 313.1 329.8	ight Paramet 150 418.5 318.4 331.4	ers 500 345.7b 300.6 295.9b
impla Dos Boo day Boo day GD	Summary or Summary or se (mg/kg/day) dy wt –final (g) dy wt – lactation 7 0 dy wt – lactation 7 4 0-4 wt gain (g)	ternal pup a f Selected 423.9 320.8 336.7 23.7	Solution Maternal We 50 411.0 313.1 329.8 18.6	ight Paramet 150 418.5 318.4 331.4 16.8a	ers 500 345.7b 300.6 295.9b 10.7b
impla Dos Boo day Boo day GD GD	Summary or Summary or se (mg/kg/day) dy wt – final (g) dy wt – lactation / 0 dy wt – lactation / 4 0-4 wt gain (g) 4-8 wt gain (g)	ternal pup a f Selected 423.9 320.8 336.7 23.7 16.0	Solution Maternal We 50 411.0 313.1 329.8 18.6 16.2	ight Paramet 150 418.5 318.4 331.4 16.8a 12.9	ers 500 345.7b 300.6 295.9b 10.7b 11.3
impla Dos Boo day Boo day GD GD GD	Summary of Se (mg/kg/day) dy wt –final (g) dy wt – lactation / 0 dy wt – lactation / 4 0-4 wt gain (g) 4-8 wt gain (g) 8-12 wt gain (g)	ternal pup a f Selected 423.9 320.8 336.7 23.7 16.0 23.3	Solution Solution 411.0 313.1 329.8 18.6 16.2 21.5	ight Paramet 150 418.5 318.4 331.4 16.8a 12.9 25.2	ers 500 345.7b 300.6 295.9b 10.7b 11.3 21.3
impla Dos Boo day Boo day GD GD GD GD	Summary or Summary or se (mg/kg/day) dy wt – final (g) dy wt – lactation / 0 dy wt – lactation / 4 0-4 wt gain (g) 4-8 wt gain (g)	ternal pup a f Selected 423.9 320.8 336.7 23.7 16.0	Solution Maternal We 50 411.0 313.1 329.8 18.6 16.2	ight Paramet 150 418.5 318.4 331.4 16.8a 12.9	ers 500 345.7b 300.6 295.9b 10.7b 11.3
impla Dos Boc day Boc day GD GD GD GD GD GD	Summary of Se (mg/kg/day) dy wt –final (g) dy wt – lactation / 0 dy wt – lactation / 4 0-4 wt gain (g) 4-8 wt gain (g) 8-12 wt gain (g)	ternal pup a f Selected 423.9 320.8 336.7 23.7 16.0 23.3	Solution Solution 411.0 313.1 329.8 18.6 16.2 21.5	ight Paramet 150 418.5 318.4 331.4 16.8a 12.9 25.2	ers 500 345.7b 300.6 295.9b 10.7b 11.3 21.3
impla Dos Boc day Boc day GD GD GD (g) GD (g) GD (g) Lac	Summary or Summary or se (mg/kg/day) dy wt –final (g) dy wt – lactation 7 0 dy wt – lactation 7 4 0-4 wt gain (g) 4-8 wt gain (g) 8-12 wt gain (g) 12-16 wt gain 16-20 wt gain	ternal pup a f Selected 423.9 320.8 336.7 23.7 16.0 23.3 28.7	Solution Solution 411.0 313.1 329.8 18.6 16.2 21.5 28.3	ight Paramet 150 418.5 318.4 331.4 16.8a 12.9 25.2 30.5	ers 500 345.7b 300.6 295.9b 10.7b 11.3 21.3 12.6 b
impla Dos Boc day Boc day GD GD GD GD (g) (g) Lac wt (a)Sta	Summary or se (mg/kg/day) dy wt –final (g) dy wt – lactation 7 0 dy wt – lactation 7 4 0-4 wt gain (g) 4-8 wt gain (g) 8-12 wt gain (g) 12-16 wt gain 16-20 wt gain	ternal pup a f Selected 0 423.9 320.8 336.7 23.7 16.0 23.3 28.7 59.7 15.9 from contro	Solution Solution 411.0 313.1 329.8 18.6 16.2 21.5 28.3 55.6 16.9 I (p<0.05)	ight Paramet 150 418.5 318.4 331.4 16.8a 12.9 25.2 30.5 57.1	ers 500 345.7b 300.6 295.9b 10.7b 11.3 21.3 12.6 b 26.8b
Impla Dos Boc day Boc day GD GD GD GD (g) (g) Lac wt (a)Sta	Summary of Se (mg/kg/day) dy wt –final (g) dy wt – final (g) dy wt – lactation 7 0 dy wt – lactation 7 4 0-4 wt gain (g) 4-8 wt gain (g) 8-12 wt gain (g) 12-16 wt gain 16-20 wt gain tation day0-4 gain (g) atistically different	ternal pup a f Selected 0 423.9 320.8 336.7 23.7 16.0 23.3 28.7 59.7 15.9 from contro from contro	Alterations. Maternal We 50 411.0 313.1 329.8 18.6 16.2 21.5 28.3 55.6 16.9 I (p<0.05)	ight Paramet 150 418.5 318.4 331.4 16.8a 12.9 25.2 30.5 57.1 13.0	ers 500 345.7b 300.6 295.9b 10.7b 11.3 21.3 12.6 b 26.8b -4.7b
Impla Dos Boc Boc day Boc day GD GD GD GD GD (g) Lac wt g a)Sta b)Sta	Summary of se (mg/kg/day) dy wt –final (g) dy wt – final (g) dy wt – lactation 7 0 dy wt – lactation 7 0 dy wt – lactation 7 4 0-4 wt gain (g) 4-8 wt gain (g) 8-12 wt gain (g) 12-16 wt gain 16-20 wt gain tation day0-4 gain (g) atistically different for atistically different for Summary of Me	ternal pup a f Selected 0 423.9 320.8 336.7 23.7 16.0 23.3 28.7 59.7 15.9 from contro from contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro	Solution Maternal We 50 411.0 313.1 329.8 18.6 16.2 21.5 28.3 55.6 16.9 I (p<0.05)	ight Paramet 150 418.5 318.4 331.4 16.8a 12.9 25.2 30.5 57.1 13.0 tion and Litte	ers 500 345.7b 300.6 295.9b 10.7b 11.3 21.3 12.6 b 26.8b -4.7b
Dos Boc Boc day Boc day GD GD GD GD (g) GD (g) Lac wt (a)Sta b)Sta	Summary or se (mg/kg/day) dy wt –final (g) dy wt – final (g) dy wt – lactation 7 0 dy wt – lactation 7 4 0-4 wt gain (g) 4-8 wt gain (g) 8-12 wt gain (g) 12-16 wt gain 16-20 wt gain 16-20 wt gain 16-20 wt gain station day0-4 gain (g) atistically different for Summary of Me se (mg/kg/day) mber of dams	ternal pup a f Selected 0 423.9 320.8 336.7 23.7 16.0 23.3 28.7 59.7 15.9 from contro from contro	Alterations. Maternal We 50 411.0 313.1 329.8 18.6 16.2 21.5 28.3 55.6 16.9 I (p<0.05)	ight Paramet 150 418.5 318.4 331.4 16.8a 12.9 25.2 30.5 57.1 13.0	ers 500 345.7b 300.6 295.9b 10.7b 11.3 21.3 12.6 b 26.8b -4.7b
impla Dos Boc day Boc day GD GD GD GD GD GD (g) Lac wt (a)Sta b)Sta	Summary of se (mg/kg/day) dy wt –final (g) dy wt –final (g) dy wt – lactation 7 0 dy wt – lactation 7 4 0-4 wt gain (g) 4-8 wt gain (g) 4-8 wt gain (g) 8-12 wt gain (g) 12-16 wt gain 16-20 wt gain 16-20 wt gain 16-20 wt gain station day0-4 gain (g) atistically different fa Summary of Me se (mg/kg/day) mber of dams gnant mber of dams	ternal pup a f Selected 0 423.9 320.8 336.7 23.7 16.0 23.3 28.7 59.7 15.9 from contro from contro from contro can Selecte 0	Solution Maternal We 50 411.0 313.1 329.8 18.6 16.2 21.5 28.3 55.6 16.9 I (p<0.05)	ight Paramete 150 418.5 318.4 331.4 16.8a 12.9 25.2 30.5 57.1 13.0 tion and Litte 150	ers 500 345.7b 300.6 295.9b 10.7b 11.3 21.3 12.6 b 26.8b -4.7b er Data
Impla Dos Boc day Boc day GD GD GD GD GD GD GD GD GD GD GD GD GD	Summary of se (mg/kg/day) dy wt –final (g) dy wt –final (g) dy wt – lactation 7 0 dy wt – lactation 7 4 0-4 wt gain (g) 4-8 wt gain (g) 8-12 wt gain (g) 12-16 wt gain 16-20 wt gain 16-20 wt gain 16-20 wt gain station day0-4 gain (g) atistically different for Summary of Me se (mg/kg/day) mber of dams sgnant	ternal pup a f Selected 0 423.9 320.8 336.7 23.7 16.0 23.3 28.7 59.7 15.9 from contro from contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro contro	Solution Maternal We 50 411.0 313.1 329.8 18.6 16.2 21.5 28.3 55.6 16.9 I (p<0.05)	ight Parameter 150 418.5 318.4 331.4 16.8a 12.9 25.2 30.5 57.1 13.0 tion and Little 12	ers 500 345.7b 300.6 295.9b 10.7b 11.3 21.3 12.6 b 26.8b -4.7b er Data 500 11

Id Heavy fuel oilDate December 7, 2012

5. Toxicity

	Mean						
	Number of litters with live pups	15	10	12	8		
	Total pups/litter (day 0)	15.1	14.6	14.8	4.6b		
	Live pups/litter (day 0)	14.9	14.4	14.7	4.1b		
	Proportion surviving to day 4 (%)	97	97	92	82		
	Pup weights (g) – mean, day 0	6.723	6.795	6.221b	5.445b		
	Pup weights (g) – mean, day 4 a)Statistically different	10.188	9.404	8.832b	7.084b		
	Given the design of the to determine if the efference and the ability to produce mbryo/fetus.	cts observed ice and carr	l were a resu y a conceptus	It of an effect of s, or a direct effect of	on the dam ffect on the		
Conclusion:	The systemic maternal NOAEL for dermal exposure to HVGO during 0-20 was determined to be 50 mg/kg/day; the LOAEL= 150 mg/kg/da based decreased body weight changes and food consumption. The developmental NOAEL for dermal exposure to HVGO during GE was determined to be 50 mg/kg/day; the LOAEL = 150 mg/kg/day ba on decreased pup body weights on lactation days 0 and 4.						
	Note the dermal NOAEL was determined to be < 50 mg/kg since dermal irritation occurred at all dose levels.						
RELIABILITY/DATA QUALITY							
Reliability:	Valid Without Restrict	ons (KS=1))				
Reliability Remarks:	Non guideline study, but with adequate detail to make NOAEL determination for the endpoints measured.						
Key Study Sponsor Indicator:	Кеу						
REFERENCE							
Reference:	ARCO. 1994. A Develo Dawley Rats Administe ATX-91-0270. Mobil. 1994. Character Mobil Environmental a	ization and	Dermally Durin	ng GD 0 to 20 of Polynuclear	Aromatics.		
	Mobil Environmental and Health Sciences Laboratory Report no. 65726- ZA-ZR API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009						

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

177 / 370

TEST SUBSTANCE								
Category Chemical:	64741-81-7							
Test Substance:	64741-81-7; Heavy Coker Gas Oil (HCGO); Heavy Thermal Cracked							
Test Substance Purity/Composition	Distillate HCGO (F-274)							
and Other Test Substance								
Comments:	PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)							
	Sample # DMSO wt.% ¹ 1-ARC (%) ² 2-ARC (%) 3-ARC (%) 4-ARC (%) 5-ARC (%) 6-ARC (%) 7-ARC (%)							
	094625 7.00 9.00 7.00 5.00 2.00 0.00 0.00							
	(F-274) Image: Arrow of the second secon							
	PAC 2 method as described in API (2008). 2) APC is "aromatic ring class" "APC 1 (\Re)" is the weight percent of PACs							
	2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent							
Cotonomy Chamical Deput Tyme	of PACs with 2 aromatic rings, and so forth to 7 aromatic rings							
Category Chemical Result Type :	Measured							
Unable to Measure or Estimate Justification :								
METHOD								
Route of Administration:	Dermal, non-occluded							
Other Route of Administration:								
Type of Exposure:	Developmental toxicity							
Species:	Rat							
Other Species:	Not applicable							
Mammalian Strain:	Sprague-Dawley (Charles River, Wilmington, MA)							
Other Strain:	Not applicable							
Gender:	Females (non treated males used for mating)							
Number of Animals per Dose:	12 per dose at 1, 50 or 250 mg/kg dose level of test material 15 per dose for sham control							
Concentration:								
Dose:	0, 1, 50, 250 mg/kg/day							
Year Study Performed :	1994							
Method/Guideline Followed:	Other							
GLP:	No information							
Exposure Period:	Gestation Day (GD) 0 to 20							
Frequency of Treatment:	Once per day							
Post-Exposure Period:	None							
Method/Guideline	The study was designed to determine the developmental toxicity of HCGO							
and Test Condition Remarks:	(F-274) following dermal administration to female rats daily for days 0 through day 20 of gestation.							
	 Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Females that exhibited positive signs of mating were randomly assigned to four treatment groups. Males were not treated. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of sperm in a vaginal smear or a copulatory plug: Sham control 0 mg/kg/day – 15 animals (GD 0-20) HCGO 1 mg/kg/day – 12 animals (GD 0-20) 							

5. Toxicity	ld Heavy fuel oil Date December 7, 2012
	 HCGO 50 mg/kg/day – 12 animals (GD 0-20) HCGO 250.mg/kg/day – 12 animals (GD 0-20)
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	The animals used in the study were between 12 and 13 weeks of age at exposure initiation.
	The test material was administered to groups 2-4 on GD 0 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Test article was applied to alternating sites (intrascapular and lumbar regions). Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. The dose administered was based upon the GD 0 body weight. With the exception of test article application, control animals underwent the same procedures as treated animals. Dosing was based on the results of an irritation pre-screening test conducted prior to initiation of the developmental study.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted.
	Individual body weights were recorded at receipt, near the end of the quarantine period, on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).
	Each litter was observed daily during lactation day0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.
	Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.
	The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup was recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.
	STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model. For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the 179/370

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.
	For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day 0, pup alterations at lactation day 0, male pups at days 0 and 4, survival of pups at lactation day 4) were analyzed by the "weighted" GLM, with litter size as the "weights were proportional to the reciprocal of as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the variance and pups were derived as a mean of the individual litter mean values.
	<u>PAC Analysis:</u> The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an

determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentratio n:	Units:
LOAEL – Dermal	Maternal	=	250		mg/kg/day
NOAEL- Dermal	Maternal	=	1		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	250		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	50		mg/kg/day

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

Results Remarks:

TEST RESULTS

No mortalities occurred during the study.

Dermal irritation related to administration of the test article was noted for females dosed at 1 mg/kg beginning GD 3 and continuing through GD 15. Slight to moderate (primarily slight) erythema was observed at the test site. Slight dry skin was also observed at the test site. Dermal irritation related to administration of the test article was noted for animals dosed at 50 mg/kg beginning as early as GD 2 and continuing throughout the duration of the study. Slight to moderate (primarily slight) erythema, edema, eschar and dry skin were observed at the test site. Dermal irritation related to administration of the test article was noted for females dosed at 250 mg/kg beginning GD 2 and continuing throughout the duration of the study. Slight to duration of the study. Slight to severe erythema (primarily slight and moderate) and eschar (primarily slight) were observed at the test she. Slight to moderate edema and dry skin were also observed at the test site. Vaginal discharge was observed in one female on GDs 19 and 20.

Scratches on the back were observed in several rats within each of the treated and control groups. The scratches were observed within the first eight days of gestation and are considered to be a result of aggressive behavior exhibited during mating. Shaving irritation was noted in one female of each of the dose groups and sham control group. Collar irritation was also noted in one female of the sham control group. Slight skin irritation remote from the treatment site was also noted in one female in each of the 1, 50 and 250 mg/kg groups. These observations are considered to be unrelated to treatment with F-274.

Body weights of pregnant females in the 1 mg/kg dose group were not significantly different than those of the control females throughout the duration of the study. Body weight changes for pregnant females in the 1 mg/kg dose group were significantly lower than those of the control females on GDs 0 to 4 (p<0.05). Body weights of pregnant females in the 50 mg/kg dose group were significantly lower than those of the control females on GDs 16 (p<0.05) and 20 (p<0.01). Body weight changes for pregnant females in the 50 mg/kg dose group were significantly lower than those of control females on GDs 0 to 4 (p<0.05), 4 to 8 (p<0.01), 12 to 16 (p<0.05) and 16 to 20 (p<0.05). Body weights of pregnant females in the 250 mg/kg dose group were significantly lower (p<0.01) than those of the control females on GDs 4, 8, 12, 16 and 20. Body weight changes for pregnant females in the 250 mg/kg dose group were significantly lower than those of control females between GDs 0 to 4 (p<0.01), 4 to 8 (p<0.01), 8 to 12 (p<0.05), 12 to 16 (p<0.01) and 16 to 20 (p<0.01). The effects on body weight and body weight change observed at the 50 and 250 mg/kg dose levels are considered to be treatment related. A dose dependent correlation between dose and decreased body weight as well as body weight change was observed at these dose levels. The decrease in body weight change in the 1 mg/kg dose group between GDs 0 to 4 is not considered to be treatment related since this was not observed throughout the rest of the study and a dose related response was not observed.

Absolute and relative food consumption of pregnant females in the 1 mg/kg dose group were not significantly different than those of the control females throughout the duration of the study. Absolute food consumption of pregnant females in the 50 mg/kg dose group was significantly lower than those of the control females during GDs 4 to 8 (p<0.01), 8 to 12 (p<0.01), 12 to 16 (p<0.05), 16 to 20 (p<0.05) and Lactation Days 0 to 4 (p<0.01). Relative food consumption of pregnant females in the 50 mg/kg dose group was significantly lower than those of control females during GDs 4 to 8 (p<0.01), and Lactation Days 0 to 4 (p<0.01). Absolute and relative food consumption of pregnant females in the 50 mg/kg dose group was significantly lower than those of control females during GDs 4 to 8 (p<0.01), and Lactation Days 0 to 4 (p<0.01). Absolute and relative food consumption of pregnant females in the 250 mg/kg dose group were significantly lower (p<0.01) than those of the control females during GDs 0 to 4, 4 to 8, 8 to 12, 12 to 16 and 16 to 20. The effects on absolute and relative food consumption observed in the 50 and 250 mg/kg dose groups are considered to be treatment related since they are consistently observed throughout the treatment period. In addition, there appears to be a correlation between dose and decreases in absolute and relative food consumption at these doses.

At necropsy, slight dermal irritation related to administration of test article was noted in one female of the 50 mg/kg dose group and in 10 females of the 250 mg/kg dose group. Multiple red foci were noted in the thymus of one female in the sham control and one female in the 50 mg/kg dose group. These findings are considered to be incidental in nature and not treatment related. Early resorption sites were noted in the uteri of two females in the 250 mg/kg dose group; with a red fluid filling the uterus of one of these females. The uterus of a third female in the 250 mg/kg dose group was filled with a clear fluid. An atrophied thymus, pale lungs, masses on each uterine horn, enlarged heart, spleen and liver were noted in another female in the 250 mg/kg dose group. Early resorption sites in the uterus are considered to be treatment related since they were observed only in the high dose group. The multiple lesions observed in one animal of the 250 mg/kg dose group are not considered to be treatment related since no evidence of similar findings was observed in other females of this or the lower dose groups. The gestation length in the 50 mg/kg dose group was statistically longer (p<0.05) than that of the sham treated controls.

Total pups per litter and live pups per litter in the 50 mg/kg dose group were significantly less (p<0.05) than in the sham control group. No females in the 250 mg/kg dose group delivered litters. The number of implantation sites in females of the 250 mg/kg dose group were significantly less (p<0.01) than in the sham control group. There were no statistically significant differences observed in any of the other parameters evaluated when the F-274 treated groups were compared to the sham control group.

Average pup body weights for the 1 and 50 mg/kg dose groups were not significantly different than that of controls. The following pup observations of hematoma, tip of tail black, eschar, missing tail, red anal region, pale in color and lethargy occurred sporadically and are considered to be incidental in nature.

Dose (mg/kg/day)	0	1	50	250
Body wt –final (g)	409.9	402.0	352.8b	266.0b
Body wt – lactation	300.0	296.2	289.6	NA
day 0				
Body wt – lactation	319.2	314.6	302.7	NA
day 4				
GD 0-4 wt gain (g)	27.7	21.7a	22.6a	15.3b
GD 4-8 wt gain (g)	26.4	24.3	20.8b	18.7b
GD 8-12 wt gain (g)	26.4	25.9	24.8	21.4a
GD 12-16 wt gain (g)	34.9	34.1	20.1a	-9.5b
GD 16-20 wt gain (g)	66.7	70.7	38.0b	0.7b
Lactation day0-4 wt	19.1	18.4	13.1	NA
gain (g)				

Summary of Selected Maternal Weight Parameters

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

NA= Not applicable

Summary of Mean Selected Reproduction and Litter Data

Dose (mg/kg/day)	0	1	50	250
Number of dams	15	10	12	10
pregnant				
Number of dams with	0	0	0	2
resorptions				
Number of dams that	15	10	10	0
delivered				
Implantation sites -	17.5	16.8	16.1	12.8
Mean				
Number of litters with	15	10	10	NA
live pups				
Total pups/litter (day	16.1	16.0	10.1a	NA
0)				
Live pups/litter (day	15.4	15.9	9.9a	NA
0)				
Proportion surviving	91	97	87	NA
to day 4 (%)				
Pup weights (g) –	6.64	6.58	6.26	NA
mean, day 0				
Pup weights (g) –	10.27	10.06	9.96	NA
mean, day 4				

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

NA= Not applicable

Given the design of the study and the results observed, it was not possible to determine if the effects observed were a result of an effect on the dam and the ability

Conclusion:	to produce and carry a conceptus, or a direct effect on the embryo/fetus. The systemic maternal NOAEL for dermal exposure to HCGO during GD 0-20 was determined to be 1 mg/kg/day; the LOAEL= 50 mg/kg/day based on decreased body weight, body weight changes, food consumption and relative food consumption. The developmental NOAEL for dermal exposure to HCGO during GD 0-20 was determined to be 1 mg/kg/day; the LOAEL = 50 mg/kg/day based on decreased number of total and live pups delivered per litter.
Conclusion:	 determined to be 1 mg/kg/day; the LOAEL= 50 mg/kg/day based on decreased body weight, body weight changes, food consumption and relative food consumption. The developmental NOAEL for dermal exposure to HCGO during GD 0-20 was determined to be 1 mg/kg/day; the LOAEL = 50 mg/kg/day based on decreased
	determined to be 1 mg/kg/day; the LOAEL = 50 mg/kg/day based on decreased
	number of total and ive pups delivered per inter.
	Note the dermal NOAEL was determined to be < 1 mg/kg since dermal irritation occurred at all dose levels.
RELIABILITY/DATA QUALITY	
Reliability:	Valid Without Restrictions (KS=1)
Reliability Remarks:	Non guideline study, but with adequate detail to make NOAEL determination for the endpoints measured.
Key Study Sponsor Indicator:	Key
REFERENCE	
Reference:	ARCO. 1994. A Developmental Toxicity Screen in Female Sprague-Dawley Rats Administered F-274 Dermally During GD 0 to 20. Report ATX-93-0069.
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009
Junito States	
A PROTECTION AND A PROT	High Production Volume Information System (HPVIS)
DEVELOPMENTAL TOXICITY/T	FERATOGENICITY
TEST SUBSTANCE	

Category Chemical:	68410-00-4								
Test Substance:	68410-00-4; Distillates, Crude Oil (DCO); VDF Diesel								
Test Substance	Distillates, Crude Oil (F-194)								
Purity/Composition									
and Other Test Substance		PAC	Content	 report r 	o. 65726-	ZA-ZR (N	lobil, 1994	.)	
Comments:	Sample #	DMSO	1-ARC	2-ARC	3-ARC	4-ARC	5-ARC	6-ARC	7-ARC
		wt.% ¹	$(\%)^2$	(%)	(%)	(%)	(%)	(%)	(%)
	091647 (F- 194)		0.10	4.00	4.00	0.00	0.00	0.00	0.00
	, ,				als (mostl	y PACs),	determine	d by the F	PAC 2
	1) Percent method as 2) ARC is aromatic rir aromatic rir	describec 'aromatic ng within t	d in API (2 ring class the total s	2008). s". "ARC 1 ample. "A	(%)" is th RC 2 (%)	e weight	percent of	PACs that	at have '
Category Chemical Result Type :	method as 2) ARC is aromatic rin	describec 'aromatic ng within t	d in API (2 ring class the total s	2008). s". "ARC 1 ample. "A	(%)" is th RC 2 (%)	e weight	percent of	PACs that	at have '
_ • •	2) ARC is aromatic rin aromatic rin	describec 'aromatic ng within t	d in API (2 ring class the total s	2008). s". "ARC 1 ample. "A	(%)" is th RC 2 (%)	e weight	percent of	PACs that	at have '
Туре:	2) ARC is aromatic rin aromatic rin	describec 'aromatic ng within t	d in API (2 ring class the total s	2008). s". "ARC 1 ample. "A	(%)" is th RC 2 (%)	e weight	percent of	PACs that	at have ?

Route of Administration:	Dermal, non-occluded
Other Route of Administration:	
Type of Exposure:	Developmental toxicity
Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Kingston, NY)
Other Strain:	Not applicable
Gender:	Females (non treated males used for mating)
Number of Animals per Dose:	15, 15, 14 for 125, 250 and 1000 mg/kg dose level of DCO, respectively 19 per dose for sham control
Concentration:	
Dose:	0, 125, 250, 1000 mg/kg/day
Year Study Performed :	1994
Method/Guideline Followed:	Other
GLP:	No information
Exposure Period:	Gestation day (GD) 0 to 20
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to determine the developmental toxicity of DCO (F-194) following dermal administration to female rats daily for days 0 through day 20 of gestation, or days 5 through 9 of gestation (1000 mg/kg/day group). Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Females that exhibited positive signs of mating were randomly assigned to four treatment groups. Males were not treated. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of sperm in a vaginal smear or a copulatory plug: *Sham control 0 mg/kg/day – 19 animals (GD 0-20) DCO 125 mg/kg/day – 15 animals (GD 0-20) DCO 1000 mg/kg/day – 15 animals (GD 0-20) DCO 1000 mg/kg/day – 14 animals (GD 5-9)** *Shared with study number ATX-91-0129 **Dosing adjustment based on initial study indicating severe irritation and poor mating performance At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed. The test material was administered to groups 2-3 on GD 0 through GD 20. The group 4 (1000 mg/kg/day) animals received a shortened dosing regimen of GD 5 through GD 9. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Test article was applied to alternating sites (intrascapular and lumbar regions). Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiyed from the application site. The dose administered was based upon the GD 0 body weight (0.0, 125, 250 mg/kg/day groups) or GD 4 (1000 mg/kg/day group) body weight. With the exception of test article application, control animals underwent the same procedures as treated animals
	regions). Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. The dose administered was based upon the GD 0 body weight (0.0, 125, 250 mg/kg/day groups) or GD 4 (1000 mg/kg/day group) body weight. With the exception of test article application, control animals underwent the same procedures as treated animals.

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted.
	Individual body weights were recorded at receipt, near the end of the quarantine period, on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).
	Each litter was observed daily during lactation day 0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.
	Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.
	The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup was recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.
	STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model. For the nonparametric procedures: the test of equality of means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significant to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.
	For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day 0, pup alterations at lactation day 0, male pups at days 0 and 4, survival of pups at lactation day 4) were analyzed by the "weighted" GLM, with litter size as the "weights were proportional to the reciprocal of the variances. For all proportions and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.
	PAC Analysis: The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO- extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that

	highly a	Ikylated PACs are	e excluded from mea	surement. (API, 20	008; and Mobil, 1994)
TEST RESULTS					
	Conce	ntration (LOAEL	_/LOAEC/NOAEL/NG	DAEC)*	
Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	250		mg/kg/day
NOAEL- Dermal	Maternal	=	125		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	125		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	Not determined (<125)		mg/kg/day
*Determined by revie Results Remarks:	ewer – skin irritat	The animals u exposure initia There were not Slight to extrem and dry skin w test site for the study. For the extreme) eryth site beginning noted. The 10 throughout the moderate to e observed at th test article for Higher incider were noted fo was generally to be due to in There were not related to trea There were not 125 mg/kg/day females in the lower than tho and postnatal There was no mg/kg/day dos was significan Because the e dose level, it w and unrelated the 250 mg/kg the controls du consumption.	ised in the study were ation. In mortalities observed me (primarily slight to vere observed at the e 125 mg/kg/day grou 250 mg/kg/day grou 250 mg/kg/day grou nema, edema, escha GD 2 and throughou 00 mg/kg/day dose g e duration of the stud extreme) erythema, en- ne test site, as well as the high dose group inces of yellow-stained r females in the 1000 noted in areas surro ritation caused by test o other clinical observer thent with the test and o effects on body wei y. Body weights and 2500 and 1000 mg/l ise of the control ferm time period, per the effect on absolute for se group. Relative for atty lower (p<0.05) that of the 1000 mg/kg/ was significantly lower antly higher (p<0.05)	d during the study. p moderate) erythe up beginning on GE p slight to extreme r, and dry skin were t the study. Slight to group, beginning GI y, showed slight to dema, eschar, and s slight fissuring. [N began on GD 5.] d coat in the perine mg/kg/day dose g unding the test site st article that had sp vations that were con- rticle. ghts or body weight body weight change kg/day dose group ales at various point table below. bod consumption for od consumption for an that of the control an that of the control and significantly lower (p<0.01) during C	ma, edema, eschar, D 1 and throughout the (primarily moderate to e observed at the test fissuring was also D 6 and continuing extreme (primarily dry skin were lote: administration of eal region and alopecia roup. The alopecia and was considered pread to these areas. onsidered to be t changes at a dose of ges of pregnant were significantly nts during gestation r females in the 125 r females in the 125 r females in this group ols during GD 4 to 8. the 250 mg/kg/day food consumption for (p<0.05) than that of on relative food SD 4 to 8 and 8 to 12. nowever, this was onsumption the 1000 I) than that of the y higher (p<0.01) on

5. Toxicity				Heavy fuel oil December 7, 2	2012
	absolute food consumpt discontinued, and with a higher relative food cons	slower reco			
	At necropsy, dermal irrit noted for females in all o Alopecia was also noted group.	of the dose g	roups that rec	eived the test a	rticle.
	Although other findings considered incidental ar				ey were
	Pup body weights on lac and 1000 mg/kg/day. P day 4 at doses of 250 a	up body weig	ghts were also		
	For all dose groups, the length, number of implar of pups dead on lactatio day 4, or the proportion alterations observed dur small, cannibalized, leth hematoma, swollen nave region.	ntation sites, n day 0, pro of males on ring lactation argic, pale, l	external pup a portion of pups lactation days Days 0-4 inclu aceration/scab	alterations, the surviving to lac 0 and 4. Extern uded: cold/cool /eschar, discolo	proportion ctation al pup to touch, pred area,
		Selected M	laternal Weigł	nt Parameters	
	Dose (mg/kg/day)	0	125	250	1000
	Body wt day 0	273.5	278.1	270.4	277.5
	Body wt –final (g)	424.7	424.4	389.9b	393.4a
	Body wt – lactation day 0	331.3	319.4	296.5b	300.4
	Body wt – lactation day 4	341.0	338.6	314.0b	315.9
	GD 0-4 wt gain (g)	25.4	22.1	21.3	27.8
	GD 4-8 wt gain (g)	16.8	16.6	11.9	-15.0
	GD 8-12 wt gain (g)	20.6	17.8	19.5	4.8b
	GD 12-16 wt gain (g)	34.6	34.5	23.9a	36.6
	GD 16-20 wt gain (g) Lactation day 0-4 wt	58.1 9.7	56.9 19.3	48.5	61.6 16.7
	gain (g)	0.7	10.0	10.0	10.7
	a)Statistically different f b)Statistically different f				
	Summary of Me	an Selected	I Reproductio		
	Summary of Me Dose (mg/kg/day)	an Selected	Reproductio	250	1000
	Summary of Me Dose (mg/kg/day) Dams with	an Selected	I Reproductio		
	Summary of Me Dose (mg/kg/day) Dams with resorptions	ean Selected	I Reproductio 125 0	250 0	1000 0
	Summary of Me Dose (mg/kg/day) Dams with resorptions Implantation sites	ean Selected	1 Reproductio 125 0 18.0	250	1000 0 16.6
	Summary of Me Dose (mg/kg/day) Dams with resorptions	ean Selected	I Reproductio 125 0	250 0 15.6	1000 0
	Summary of Me Dose (mg/kg/day) Dams with resorptions Implantation sites Number of litters with live pups Total pups/litter (day	ean Selected 0 15.6 15	1 Reproductio 125 0 18.0	250 0 15.6	1000 0 16.6
	Summary of Me Dose (mg/kg/day) Dams with resorptions Implantation sites Number of litters with live pups Total pups/litter (day 0) Live pups/litter (day	ean Selected 0 15.6 15	I Reproductio 125 0 18.0 11	250 0 15.6 14	1000 0 16.6 12
	Summary of Me Dose (mg/kg/day) Dams with resorptions Implantation sites Number of litters with live pups Total pups/litter (day 0) Live pups/litter (day 0) Pup weights (g) –	0 0 15.6 15 14.0	I Reproductio 125 0 18.0 11 16.5	250 0 15.6 14 14.6	1000 0 16.6 12 15.5
	Summary of Me Dose (mg/kg/day) Dams with resorptions Implantation sites Number of litters with live pups Total pups/litter (day 0) Live pups/litter (day 0)	o 0 15.6 15 14.0 13.9	I Reproductio 125 0 18.0 11 16.5 16.4	250 0 15.6 14 14.6 14.4	1000 0 16.6 12 15.5 15.2

Id Heavy fuel oilDate December 7, 2012

	b)Statistically different from control (p<0.01)
Conclusion:	Determined by reviewer: The maternal NOAEL for dermal exposure to DCO during gestation days 0- 20 was determined to be 125 mg/kg/day (LOAEL= 250 mg/kg/day based on decreased body weights, body weight changes and food consumption).
	Note: the authors determined that the NOAEL is <125 mg/kg/day based on skin irritation; irritation was observed at every dose level tested.
	The developmental NOAEL for dermal exposure to DCO during gestation days 0-20 was determined to be less than 125 mg/kg/day (LOAEL = 125 mg/kg/day based on a decreased pup body weights on lactation day 0).
	Administration of the test article at a higher dose level (1000 mg/kg/day), but for a shorter dosing period (GD 5-9) produced signs of both maternal and developmental toxicity.
RELIABILITY/DATA QUALITY	
Reliability:	Valid Without Restrictions (KS=1)
Reliability Remarks:	Non guideline study, but with adequate detail to make NOAEL determination.
Key Study Sponsor Indicator:	Кеу
REFERENCE	
Reference:	ARCO. 1994. A Developmental Toxicity Screen in Female Sprague-Dawley Rats Administered F-194 Dermally During Gestation Days 0 to 20. Report ATX-91-0128
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

Category Chemical:	68410-00-4	68410-00-4							
Test Substance:	68410-00-4	68410-00-4; Distillates, Crude Oil (DCO); VDF Diesel							
Test Substance Purity/Composition and Other Test Substance	Distillates,	Distillates, Crude Oil (F-215) PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)							
Comments:	Sample # 091681	DMSO wt.% ¹	1-ARC (%) ² 0.20	2-ARC (%) 4.00	3-ARC (%) 4.00	4-ARC (%) 0.00	5-ARC (%) 0.00	6-ARC (%) 0.00	7-ARC (%) 0.00
	(F-215) 1) Percent PAC 2 met 2) ARC is	hod as c	lescribed	in API (2	2008).				•
			8 / 370				•		

Id Heavy fuel oilDate December 7, 2012

	have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings.
Category Chemical Result Type :	Measured
Unable to Measure or Estimate Justification :	
METHOD	
Route of Administration:	Dermal, non-occluded
Other Route of Administration:	
Type of Exposure:	Developmental toxicity
Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Wilmington, MA)
Other Strain:	Not applicable
Gender:	Females (non treated males used for mating)
Number of Animals per Dose:	12 at 50, 150, or 500 mg/kg dose level of DC 15 per dose for sham control
Concentration:	
Dose:	0, 50, 150, 500 mg/kg/day
Year Study Performed :	1994
Method/Guideline Followed:	Other
GLP:	No information
Exposure Period:	Gestation day (GD) 0 to 20
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	 The study was designed to determine the developmental toxicity of DCO (F-215) following dermal administration to female rats daily for days 0 through day 20 of gestation. Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Females that exhibited positive signs o mating were randomly assigned to four treatment groups. Males were not treated. The treatment groups and time exposure periods were as follows, wher designation as GD 0 followed detection of sperm in a vaginal smear or a copulatory plug: Sham control 0 mg/kg/day – 15 animals (GD 0-20) DCO 50 mg/kg/day – 12 animals (GD 0-20) DCO 500.mg/kg/day – 12 animals (GD 0-20) DCO 500.mg/kg/day – 12 animals (GD 0-20) At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed. The test material was administered to groups 2-4 on GD 0 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Test article was applied to alternating sites (intrascapular and lumbar regions). Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. The dose administered was based upon the GD 0 body weight. With the exception of test article application, control animals underwent the same procedures as treated animals. Dosing was as the application, control animals underwent the same procedures as treated animals. Dosing was applied to animals underwent the same procedures as treated animals. Dosing was applied to animals underwent the same procedures as treated animals. Dosing was applied to animals underwent the same procedures as treated animals. Dosing was applied to animals underwent the same procedures as treated animals.

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	based on the results of an irritation pre-screening test conducted prior to initiation of the developmental study.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill- health or abortion. All unusual findings were noted.
	Individual body weights were recorded at receipt, near the end of the quarantine period, on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).
	Each litter was observed daily during lactation day 0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.
	Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.
	The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup was recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.
	STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model. For the nonparametric procedures: the test of equality of means was performed
	using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.
	For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day 0, pup alterations at lactation day 0, male pups at days 0 and 4, survival of pups at lactation day 4) were analyzed by the "weighted" GLM, with litter size as the "weights" and as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the variances. For all proportions and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean
	190 / 370

of the individual litter mean values.

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Туре	Population: Value Description:		Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	500		mg/kg/day
NOAEL- Dermal	Maternal	=	150		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	150		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	50		mg/kg/day

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

Results Remarks:	The animals used in the study were between 12 and 13 weeks of age at exposure initiation.
	There were no mortalities observed during the study.
	Slight eschar was noted at the control site of one sham control animal on GD 12 to 17. Slight to extreme (primarily slight to moderate) erythema, slight to moderate edema, slight to moderate eschar, and slight to extreme (primarily slight to moderate) dry skin were observed at the test site for animals in the 50 mg/kg dose group. Slight to extreme (primarily slight to moderate) erythema, edema, eschar, and dry skin were observed at the test site for animals in the 150 mg/kg dose group. Slight to extreme (primarily moderate to extreme) erythema, edema, eschar, and dry skin were observed at the test site for animals in the 500 mg/kg dose group. Slight to extreme (primarily moderate to extreme) erythema, edema, eschar, and dry skin were observed at the test site for animals in the 500 mg/kg dose group. Slight fissuring was noted at the test site for two animals on one or two days. The occurrence of vaginal discharge was slightly higher than that of the control group for females treated with the test article. This difference was not considered to be related to the test article because the vaginal discharge was slight, the duration was limited (one or two days), it occurred soon after mating or at the time that the vascular membrane becomes visually apparent, and did not occur in a dose-dependent manner.
	Yellow, yellow/brown, yellow/orange, or red/yellow stained coats were noted for eight females in the 500 mg/kg dose group. The staining was slight to severe in nature, and occurred in the perineal and abdominal regions. Alopecia, erythema, edema, and eschar were noted for a few of the females in the 500 mg/kg dose group in regions generally located adjacent to the test site. These findings were considered to have been caused by the spread of the test article/irritation beyond the test site.
	There were no other clinical observations that were considered to be related to treatment with the test article.
	There were no statistically significant differences in body weights or body weight changes at doses of 50 and 150 mg/kg. Body weight changes for females dosed at 500 mg/kg were significantly lower than those of controls between GD 0 to 4, 4 to 8, 12 to 16, and 16 to 20, with a statistically significant dose response relationship between treatment groups. Body weight changes for females dosed at 500 mg/kg were significantly higher than those of controls between lactation days

5. Toxicity				Id Heavy f	fuel oil
				Date Decem	ber 7, 2012
	0 and 4, with a statistical treatment groups; this ind related to a recovery from	crease in bo	dy weight cha	nge was consi	
	There were no statisticall consumption for pregnan the control group. There consumption for pregnan consumption for pregnan higher than that of the co pregnant females in the the control group during pregnant females in the the controls during GD 12 statistically significant do the increased absolute a the latter part of gestation food consumption values a recovery from treatment	it females in were no sign t females in tontrols during 500 mg/kg d lactation day 500 mg/kg d 2 to 16 and se response nd relative fin and during at a dose of with the test	the 50 mg/kg nificant differe the 150 mg/kg g GD 16 to 20. lose group was /s 0 to 4. Relat lose group was 16 to 20 and la e relationships ood consumpti g lactation. The f 500 mg/kg w	dose group whences in absoluting dose group. If dose group we dose dose dose dose dose dose dose dos	nen compared to the food Relative food vas significantly consumption for higher than that of umption for higher than that of to 4. There were ment groups for to cocurred during te and relative d to be related to bood consumption
	value at a dose of 150 m not considered to be trea			nce during GD	16 to 20 and is
	Dermal irritation (e.g., erythema, edema, eschar, and dry skin) related to administration of the test article was noted at the test site for all dose groups that were treated with the test article.				
	Alopecia was noted for the adjacent to the test site. the spread of test article/	These findir	ngs were consi	dered to have	
	Although other findings w considered incidental and				ey were
	There were no significan At a dose of 150 mg/kg, significantly lower than th of pups surviving to lacta Pup body weights on lact controls on lactation days differences in gestation le and live pups on lactation	pup body we hat of the co tion day 4 w tation days (s 0 and 4. Fo ength, numb	eights on lacta ntrols. At a do vas significantl) and 4 were s or all dose gro per of implantat	tion days 0 and se of 500 mg/k y lower than th significantly low ups, there wer ion sites, the r	d 4 were g, the proportion hat of the controls ver than those of e no significant number of total
	on lactation day 0, or the pro	oportion of n	nales on lactat	ion days 0 and	14.
	Summary	of Selected	d Maternal W	eight Paramet	ers
	Dose (mg/kg/day)	0	50	150	500
	Body wt –final (g)	426.1	418.2	414.1	355.8b
	Body wt – lactation day 0	324.2	321.9	317.1	267.0b
	Body wt – lactation day 4	335.8	337.2	330.8	291.4b
	GD 0-4 wt gain (g)	21.3	21.9	17.4	8.7b
	GD 4-8 wt gain (g)	17.1	16.5	16.1	1.5b
	GD 8-12 wt gain (g)	24.1	24.3	24.0	20.7
	GD 12-16 wt gain (g)	32.0	32.5	27.6	18.2b
	GD 12-10 wt gain (g)	60.8	55.8	63.7	41.9b
	Lactation day 0-4 wt gain (g)	11.6	15.3	13.7	27.4a

	b)Statistically different fr		. ,				
	Summary of	Mean Sele	cted Reprodu	ction and Litte	er Data		
	Dose (mg/kg/day)	0	50	150	500		
	Implantation sites - Mean	16.0	15.6	17.0*	16.6		
	Number of litters with live pups	15	11	9	12		
	Total pups/litter (day 0)	15.2	13.5	15.3**	15.8		
	Live pups/litter (day 0)	14.9	13.5	14.9	15.1		
	Proportion surviving to day 4 (%)	97	99	99	70b		
	Pup weights (g) – mean, day 0	6.55	6.65	6.10	5.56		
	Pup weights (g) – mean, day 4	9.89	10.52	8.41	6.94		
Conclusion:	 implantation sites was miscounted. ** One female was omitted from the statistical analysis because the number of pups was miscounted. a) Statistically different from control (p<0.05) b) Statistically different from control (p<0.01) Given the design of the study and the results observed, it was not possible to determine if the effects observed were a result of an effect on the dam and the ability to produce and carry a conceptus, or a direct effect on the embryo/fetus. The systemic maternal NOAEL for dermal exposure to DCO during GD 0-20 was determined to be 150 mg/kg/day (LOAEL= 500 mg/kg/day based on decreased body weight and body weight changes during gestation). Note the dermal NOAEL for dermal exposure to DCO during GD 0-20 was determined to be 50 mg/kg/day (LOAEL = 150 mg/kg since dermal irritation occurred at all dose levels. The developmental NOAEL for dermal exposure to DCO during GD 0-20 was determined to be 50 mg/kg/day (LOAEL = 150 mg/kg/day based on a decreased pup body weights on lactation days 0 and 4). 						
Reliability:	Valid Without Restriction	08 (KS-1)					
Reliability Remarks:	Non guideline study, but the endpoints measured.	t with adequ	uate detail to m	nake NOAEL de	etermination for		
Key Study Sponsor Indicator:	Key						
REFERENCE							
Reference:	 ARCO. 1994. A Developmental Toxicity Screen in Female Sprague-Dawley Rats Administered F-215 Dermally During GD 0 to 20. Report ATX-91-0263. Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR 						
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009						

Conception of the states of th	
AL PROTECT	

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE Category Chemical: 68783-08-4 Test Substance: 68783-08-4; Full Range Gas Oil (FRGO) **Test Substance** Full Range Gas Oil (F-275) Purity/Composition and Other Test Substance PAC Content - report no. 65726-ZA-ZR (Mobil, 1994) Comments: Sample DMS 1-2-3-4-5-6-7-ARC ARC ARC ARC ARC ARC ARC 0 # (%)² wt.% (%) (%) (%) (%) (%) (%) 1.00 0.70 4.00 0.70 0.50 094626 0.00 0.00 (F-275) 1) Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008) 2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings **Category Chemical Result Type :** Measured Unable to Measure or Estimate Justification : **METHOD** Route of Administration: Dermal, non-occluded Other Route of Administration: Type of Exposure: Developmental toxicity Species: Rat Other Species: Not applicable Mammalian Strain: Sprague-Dawley (Charles River, Wilmington, MA) Other Strain: Not applicable Gender: Females (non treated males used for mating) 12 at 50, 250, or 500 mg/kg dose level of FRGO Number of Animals per Dose: 15 per dose for sham control Concentration: Dose: 0, 50, 250, 500 mg/kg/day Year Study Performed : 1994 Method/Guideline Followed: Other GLP: No information Exposure Period: Gestation Day (GD) 0 to 20 Frequency of Treatment: Once per day Post-Exposure Period: None Method/Guideline The study was designed to determine the developmental toxicity of FRGO (F-275) and Test Condition Remarks: following dermal administration to female rats daily for days 0 through day 20 of

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	gestation.
	 Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Females that exhibited positive signs of mating were randomly assigned to four treatment groups. Males were not treated. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of sperm in a vaginal smear or a copulatory plug: Sham control 0 mg/kg/day – 15 animals (GD 0-20) FRGO 50 mg/kg/day – 12 animals (GD 0-20)
	 FRGO 250 mg/kg/day – 12 animals (GD 0-20) FRGO 500.mg/kg/day – 12 animals (GD 0-20)
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	The test material was administered to groups 2-4 on GD 0 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Test article was applied to alternating sites (intrascapular and lumbar regions). Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. The dose administered was based upon the GD 0 body weight. With the exception of test article application, control animals underwent the same procedures as treated animals.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted.
	Individual body weights were recorded at receipt, near the end of the quarantine period, on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).
	Each litter was observed daily during lactation day 0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.
	Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.
	The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup was recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.
	STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model. For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were

5. Toxicity				ld ⊦	leavy fuel oil
				Date [December 7, 2012
	gro Jor tes oth Fol len pro use hor the wa the pro pup "we The der ind	t for equal variance in reproductive and I ogth, total number of obability plots of the ed to judge whether mogeneous variance usual analysis was s used, where the we usual analysis was oportions (dead pup ps at days 0 and 4, eighted" GLM, with	cantly from control. monotonic trend in a (Bartlett) was conducted at the 5% and itter data, i.e., the r f pups per litter and residuals and plots or not departure fr weights were propo is invalid, a "weighter weights were propo s valid, the data we s at lactation day 0 survival of pups at litter size as the "w made that these we proportions and me r, and group mean values.	In addition to the I the dose response ducted at the 1% le d 1% level of signifi number of implantat I number of live pup of residuals by tre rom the assumption invalidate the usua d" General Linear rtional to the recipi re analyzed with a lactation day 4) we eights" and as a co- ights were proporti an pup weight data values were derive	Kruskal-Wallis test, was performed. The vel of significance. All cance. ion sites, gestation os per litter, normal atment group were s of normality and al ANOVA analysis. If Model (GLM) analysis rocal of the variance. I non-weighted GLM. A lactation day 0, male are analyzed by the ovariate in the model. onal to the reciprocal a, values were first d as a mean of the
	ana DM det spe	alytical method that	involves solvent ex centrate of PACs by extraction procedure alkylated PACs ar	y gas chromatograp	PAC 2 is a single nd an analysis of the hy with an FID or MS ne less polar PAC
ST RESULTS	ana DM det spe	alytical method that /ISO-extracted conc tector. The DMSO ecies, so that highly	involves solvent ex centrate of PACs by extraction procedure alkylated PACs ar	xtraction (DMSO) a gas chromatograp re is selective for th	PAC 2 is a single nd an analysis of the hy with an FID or MS ne less polar PAC
ST RESULTS	ana DM det spe 200	alytical method that /SO-extracted cond tector. The DMSO ecies, so that highly 08; and Mobil, 1994	involves solvent ex centrate of PACs by extraction procedur alkylated PACs ar b)	xtraction (DŃSO) a gas chromatograp re is selective for th e excluded from mo	PAC 2 is a single nd an analysis of the hy with an FID or MS ne less polar PAC
ST RESULTS	ana DM det spe 200	alytical method that /ISO-extracted conc tector. The DMSO ecies, so that highly	involves solvent ex centrate of PACs by extraction procedur alkylated PACs ar b)	xtraction (DŃSO) a gas chromatograp re is selective for th e excluded from mo	PAC 2 is a single nd an analysis of the hy with an FID or MS ne less polar PAC
[ana DM det spe 200 Conce	alytical method that /ISO-extracted cond tector. The DMSO ecies, so that highly 08; and Mobil, 1994 entration (LOAEL/ Value	involves solvent ex centrate of PACs by extraction procedur alkylated PACs ar () /LOAEC/NOAEL/N Value or Lower	Atraction (DŃSO) a gas chromatograp re is selective for th e excluded from ma OAEC) Upper	PAC 2 is a single nd an analysis of the hy with an FID or MS he less polar PAC easurement. (API,
Туре	ana DM det spe 200 Conce	alytical method that //SO-extracted cond tector. The DMSO ecies, so that highly 08; and Mobil, 1994 entration (LOAEL/ Value Description:	involves solvent excentrate of PACs by extraction procedure alkylated PACs ar () /LOAEC/NOAEL/N Value or Lower Concentration:	Atraction (DŃSO) a gas chromatograp re is selective for th e excluded from ma OAEC) Upper	PAC 2 is a single nd an analysis of the hy with an FID or MS he less polar PAC easurement. (API,

Results Remarks:	The animals used in the study were between 9 and 10 weeks of age at exposure initiation.
	There were no mortalities observed during the study.
	Dermal irritation related to administration of the test article was noted for females dosed at 50 mg/kg on GD 5 - 8 and 18, and lactation day 4. Slight erythema was observed at the test site of one female on GD 5 - 8. Slight dry skin on GD 18 and slight eschar on lactation day 4 were observed at the test site of another female. Dermal irritation related to administration of the test article was noted in one female dosed at 250 mg/kg on GD 9 and another female on lactation day 4.
	Slight erythema was observed at the test site of one female on GD 9 and slight eschar was observed at the test site of the other female on lactation day 4. Dermal irritation related to administration of the test article was noted in females dosed at 500 mg/kg beginning GD 1 and continuing throughout the duration of the study. Slight erythema and dry skin were also observed at the test site. The gestation length in "the 500 mg/kg dose group was statistically longer than that of

=

50

mg/kg/day

Offspring (F1)

NOAEL - Dermal

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	the sham treated controls. The nipple size of one female in the 500 mg/kg dose group was noted to be very small.
	Scratches on the back were observed in several rats within each of the treated and control groups. The scratches were observed within the first eight days of gestation and are considered to be a result of aggressive behavior exhibited during mating. Shaving irritation was noted in one female of the sham control group. Collar irritation was noted in another female of the sham control group.
	Body weights of pregnant females in the 50 mg/kg dose group were significantly lower than those of the control females on GD 0, 4, 8, 12, 16 and 20. Body weights of pregnant females in the 250 mg/kg dose group were significantly lower than those of the control females on GD 12, 16 and 20. Body weight changes for pregnant females in the 250 mg/kg dose group were significantly lower than those of control females on GD 0 to 4, 4 to 8, 8 to 12 and 16 to 20. Body weights of pregnant females in the 500 mg/kg dose group were significantly lower than those of the control females on GD 4, 8, 12, 16, 20 and lactation days 0 and 4. Body weight changes for pregnant females in the 500 mg/kg dose group were significantly lower than those of control females between GD 0 to 4, 8 to 12, 12 to 16, 16 to 20 and lactation days 0 to 4. The differences between mean body weights of the sham control and the 50 mg/kg dose group are not considered to be treatment related since body weight changes were not affected at this dose and mean body weight was significantly lower on GD 0. As a result of the design of this study, strict randomization according to body weight is not performed. Animals are assigned randomly to dose groups as they demonstrate positive evidence of mating. As a result of this procedure, the mean body weight for the animals in the 50 mg/kg dose group was significantly lower than that of the sham control group at initiation of dosing. The significant decreases in body weight and the lack of a corresponding difference in body weight change in the 50 mg/kg dose group appear to be an inadvertent result of the experimental design rather than a treatment related effect.
	The effects on body weight and body weight change observed at the 250 and 500 mg/kg doses are considered to be treatment related since the effect appears to become more marked over the treatment period and there appears to be a dose dependent correlation between dose and decrease in body weight as well as body weight change at these doses.
	Absolute food consumption of pregnant females in the 50 mg/kg dose group was significantly lower than those of the control females during GD 4 to 8, while relative food consumption was not significantly different than controls throughout the duration of the study. Absolute food consumption of pregnant females in the 250 mg/kg dose group was significantly lower than those of the control females during GD 0 to 4 and 4 to 8. Relative food consumption of pregnant females in the 250 mg/kg dose group was significantly lower than those of control females during GD 4 to 8. Absolute food consumption of pregnant females in the 250 mg/kg dose group was significantly lower than those of control females during GD 4 to 8. Absolute food consumption of pregnant females in the 500 mg/kg dose group were significantly lower than those of the control females during GD 0 to 4, 4 to 8, 8 to 12, 16 to 20 and lactation days 0 to 4. Relative food consumption was significantly lower than those of the control females during GD 0 to 4, 4 to 8 and lactation days 0 to 4. Since the effects observed early in the treatment period (GD 0 to 12) on absolute and relative food consumption appear to be dose dependent, these statistically significant effects observed in the 250 and 500 mg/kg dose groups are considered to be treatment related. Decreased absolute and relative food consumption observed in the 500 mg/kg dose group on lactation days 0 to 4 is considered to be a secondary effect of treatment with F-275 since litter size was decreased in this group and one female appeared to have stopped lactating during this period.
	Slight dermal irritation related to administration of test article was noted in one female in each of the 50 and the 250 mg/kg dose groups and two females in the 500 mg/kg dose group. Multiple red foci were noted in the thymus of one female in the sham control group. The left ovaries of one female in the 250 mg/kg dose

5. Toxicity		Id Heavy fuel oil Date December 7, 2012					
	1						
	group and one female in fluid filled sac. The kidne noted to have a mottled incidental in nature and r the uteri of two females i uterus are considered to the high dose group and dose level.	eys of one fem appearance. not treatment in the 500 mg/ be treatment	ale in the 500 These findings related. Early r kg dose group related since th	mg/kg dose g are considere esorption site . Early resorp ney were obs	roup were ed to be s were noted in ption sites in the erved only in		
	Total pups per litter and live pups per litter in the 250 mg/kg and 500 mg groups were significantly decreased when compared to the sham control. Four females in the 500 mg/kg dose group did not deliver litters. The prodead pups in the 500 mg/kg dose group was significantly greater than i sham control group on lactation day 0. Two of the females in the 500 mg group that did deliver litters delivered only one pup each that were both dead on lactation day 0. A third female in the 500 mg/kg dose group that delivered two pups was noted to have very small nipples on lactation da lactation day 4 these two pups were found dead, with no milk in their stor apparently because the dam had stopped lactating. The proportion of m in 500 mg/kg dose group was significantly greater than in the sham control actation days 0 and 4. There were no statistically significant difference observed in any of the other parameters evaluated when the F-275 treat groups were compared to the sham control group. Average pup body we were significantly lower than that of the sham controls on lactation days for the 250 mg/kg and 500 mg/kg dose groups. The following pup obsect of lethargic and purple, isolated from litter, hematoma, tip of tail black, let slightly swollen and dark red, eschar and missing tail occurred sporadical station control sporadical sp						
	are considered to be inc Summary		re. Vaternal Weig	ht Paramete	rs		
	Dose (mg/kg/day)	0	50	250	500		
	Body wt –final (g)	409.9	382.8a	378.4b	314.0b		
	Body wt – lactation day 0	300.0	284.6	293.6	279.7a		
	Body wt – lactation day 4	319.2	306.3	308.8	279.7b		
	GD 0-4 wt gain (g)	27.7	26.9	20.4b	17.8b		
	GD 4-8 wt gain (g)	26.4	24.4	22.2a	23.6		
	GD 8-12 wt gain (g)	26.4	27.8	21.7a	20.9a		
	GD 12-16 wt gain (g) GD 16-20 wt gain (g)	34.9 66.7	33.3 63.5	28.9 56.8a	11.3b 18.8b		
	Lactation day 0-4 wt	19.1	21.6	15.3	0.5b		
	gain (g)			10.0	0.00		
	a)Statistically different from control b)Statistically different from control Summary of Mean Selected Reproduction and Litter Data						
	Dose (mg/kg/day)	0	50	250	500		
	Implantation sites - Mean	17.5	16.9	16.6	16.8		
	Number of litters with live pups	15	11	12	8		
	Total pups/litter (day 0)	16.1	15.4	13.3b	4.4b		
	Live pups/litter (day 0)	15.4	15.2	12.8b	4.0b		
	Proportion surviving to day 4 (%)	97	96	98	92		
	198 / 37	70					

Г

Id Heavy fuel oil Date December 7, 2012

5. Toxicity

	Pup weights (g) –	6.56	6.50	6.56	6.01			
	mean, day 0							
	Pup weights (g) – mean, day 4	10.27	10.57	10.27	8.71			
	a)Statistically different f	rom control	l					
	b)Statistically different f	rom control						
	Given the design of the study and the results observed, it was not possible to determine if the effects observed were a result of an effect on the dam and the ability to produce and carry a conceptus, or a direct effect on the embryo/fetus.							
Conclusion:								
	The systemic maternal NOAEL for dermal exposure to FRGO during GD 0-20 was determined to be 50 mg/kg/day (LOAEL= 250 mg/kg/day based on decreased body weight, body weight changes and food consumption during gestation.							
	The developmental NOAEL for dermal exposure to FRGO during GD 0-20 was determined to be 50 mg/kg/day (LOAEL = 250 mg/kg/day based on a decreased number of total and live pups delivered and decreased pup body weights on lactation days 0 and 4).							
RELIABILITY/DATA QUALITY								
Reliability:	Valid Without Restrictio	ns (KS=1)						
Reliability Remarks:	Non guideline study, but the endpoints measured		ate detail to m	ake NOAEL d	etermination for			
Key Study Sponsor Indicator:	Key							
REFERENCE								
Reference:A Developmental Toxicity Screen in Female Sprague-Dawley Rats Adminis F-275 Dermally During GD 0 to 20. 1994. Report ATX-93-0071.								
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR							
	API. 2008. PAC Analysi ring class content and s toxicity of high-boiling p	elected endp etroleum sub	oints of repeats stances."	t-dose and dev	<i>v</i> elopmental			
	http://www.petroleumhpy	v.org/pages/p	ac.nuni, acce		2009.			

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

Category Chemical: Test Substance:

Test Substance Purity/Composition and Other Test Substance Comments:

64741-45-3 64741-45-3; Atmospheric Tower Bottom (ATB) ATB (F-228)

PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)

Sample	DMS	1-	2-	3-	4-	5-	6-	7-
#	0	ARC	ARC	ARC	ARC	ARC	ARC	ARC
	wt.% ¹	(%) ²	(%)	(%)	(%)	(%)	(%)	(%)
091691		0.10	0.30	2.00	2.00	2.00	0.60	0.10
(F-228)								

1) Percent of DMSO-extractable materials (mostly PACs), determined by the

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Category Chemical Result Type :	PAC 2 method as described in API (2008). 2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings Measured
Unable to Measure or Estimate Justification :	
METHOD	
Route of Administration:	Dermal, non-occluded
Other Route of Administration:	
Type of Exposure:	Developmental toxicity
Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Wilmington, MA)
Other Strain:	Not applicable
Gender:	Females (non treated males used for mating)
Number of Animals per Dose:	12 per dose at 50, 333, or 1000 mg/kg dose level of test material 15 per dose for sham control
Concentration:	
Dose:	0, 50, 333, 1000 mg/kg/day
Year Study Performed :	1994
Method/Guideline Followed:	Other
GLP:	No information
Exposure Period:	Gestation Day (GD) 0 to 20
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to determine the developmental toxicity of ATB (F-228) following dermal administration to female rats daily for days 0 through day 20 of gestation.
	Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Females that exhibited positive signs of mating were randomly assigned to four treatment groups. Males were not treated. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of sperm in a vaginal smear or a copulatory plug: Sham control 0 mg/kg/day – 15 animals (GD 0-20) ATB 50 mg/kg/day – 12 animals (GD 0-20) ATB 333 mg/kg/day – 12 animals (GD 0-20) ATB 1000.mg/kg/day – 12 animals (GD 0-20)
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	The animals used in the study were between 12 and 13 weeks of age at exposure initiation.
	The test material was administered to groups 2-4 on GD 0 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Test article was applied to alternating sites (intrascapular and lumbar regions). Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess 200 / 370

test article was wiped from the application site. The dose administered was based upon the GD 0 body weight. With the exception of test article application, control animals underwent the same procedures as treated animals. Dosing was based on the results of an irritation pre-screening test conducted prior to initiation of the developmental study.

Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted.

Individual body weights were recorded at receipt, near the end of the quarantine period, on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).

Each litter was observed daily during lactation day0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.

Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.

The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup was recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.

STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model.

For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.

For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day0, pup alterations at lactation day0, male pups at days 0 and 4, survival of pups at lactation day4) were analyzed by the "weighted" GLM, with litter size as the "weights" and as a

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the variances. For all proportions and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.
	<u>PAC Analysis:</u> The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the

TEST RESULTS

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

measurement. (API, 2008; and Mobil, 1994)

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	333		mg/kg/day
NOAEL- Dermal	Maternal	=	50		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	333		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	50		mg/kg/day

Results Remarks:

One female in the 333 mg/kg dose group was unsuccessful in delivering her litter and was sacrificed moribund. No other mortality occurred in this phase of the study.

less polar PAC species, so that highly alkylated PACs are excluded from

Slight to moderate (primarily slight) erythema and eschar and slight edema and dry skin were observed, both on treated and untreated skin in the carrier control group. No dermal irritation was observed at the test site for animals in any of the test article dose groups.

One animal in the 333 mg/kg dose group was unsuccessful in delivering her litter and was noted as being cold to touch, pale in color, lethargic, and as having red colored urine on GD 23. She was sacrificed moribund. This is not considered to be related to test article exposure. At a dose of 1000 mg/kg, the gestation length (days) was significantly longer (p<0.01) than that of the control group. There were no other clinical observations that were considered to be related to treatment with the test article.

Body weight changes for pregnant females in the 1000 mg/kg dose group were significantly lower (p<0.05) than those of the control females between GD16 to 20. The changes in female body weight- appear to be influenced by two females which had reduced litter sizes. This finding is considered to be treatment related; however, it may be significantly influenced by a decrease in fetal mass. There were no other effects on body weight or body weight changes at any of the dose levels.

Relative food consumption for pregnant females in the 50 mg/kg dose group was significantly lower (p<0.05) than that of the controls during GD16 to 20 and significantly higher (p<0.05) than that of the controls during Lactation Days 0 to 4. These differences are not considered to be related to treatment with the test article since the relative food consumption was not significantly different at the higher dose levels of 333 and 1000 mg/kg. There were no other effects on absolute or relative food consumption at any of the dose levels.

The 333 mg/kg female sacrificed moribund on GD 23 was observed to have dark red fluid in the bladder and uterus and the uterus contained dead and live fetuses. These findings were not considered to be related to treatment with the test article but rather are attributed to the dystocia. No lesions related to administration of the test article

were noted for females in any of the dose groups.

At a dose of 333 mg/kg, the number of implantation sites was significantly decreased (p<0.05) compared to that of the control group. This difference is not considered to be related to treatment with the test article since the number of implantation sites was not significantly lower at the higher dose of 1000 mg/kg. At a dose of 50 mg/kg, the live pup weights on Lactation Day 4 were significantly lower (p<0.05) than those of the control group; however, this difference is not considered to be related to treatment with the test article since a clear dose response was not observed. In addition, excellent pup survival was observed at this dose level, which would not be expected if the decreased body weight was, in fact, biologically relevant. At a dose of 1000 mg/kg, the live pup weights on Lactation Days 0 and 4 were significantly lower (p<0.05) than those of the control group.

For all dose groups, there were no significant differences for the total pups per litter proportion dead Lactation Day 0, proportion surviving to Lactation Day 4, proportion males Lactation Days 0 and 4 or external pup alterations.

Dose (mg/kg/day)	0	50	333	1000
Body wt –final (g)	424.5	423.3	416.5	404.7
Body wt – lactation	325.1	319.3	327.4	317.4
day 0				
Body wt – lactation	334.8	326.5	335.9	326.0
day 4				
GD 0-4 wt gain (g)	23.5	24.5	18.4	19.4
GD 4-8 wt gain (g)	16.5	18.1	16.3	14.7
GD 8-12 wt gain (g)	22.7	21.1	24.0	19.8
GD 12-16 wt gain (g)	32.8	33.8	33.7	30.8
GD 16-20 wt gain (g)	59.1	57.8	51.7	43.1a
Lactation day0-4 wt	9.7	7.7	8.4	9.4
gain (g)				

Summary of Selected Maternal Weight Parameters

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

Summary of Mean Selected Reproduction and Litter Data

Dose (mg/kg/day)	0	50	333	1000
Number of dams	15	12	10	11
pregnant				
Number of dams	0	0	0	0
with resorptions				
Number of dams	15	12	9	11
that delivered				
Implantation sites -	16.4	17.2	14.0a	17.0
Mean				
Number of litters	15	12	9	11
with live pups				
Total pups/litter (day	14.0	16.0	13.1	11.4
0)				
Live pups/litter (day	13.9	15.9	12.9	10.9
0)				
Proportion surviving	87	95**	94	84*
to day 4 (%)				
Pup weights (g) –	6.681	6.283	6.647	6.132a
mean, day 0				
Pup weights (g) –	8.969	7.745a**	9.066	7.621 a*
mean, day 4				

a)Statistically different from control (p<0.05) b)Statistically different from control (p<0.01)

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	 *one litter excluded from statistical analysis because of the number of accidental deaths in the litter. **One litter was inadvertently sacrificed early. Given the design of the study and the results observed, it was not possible to determine if the effects observed were a result of an effect on the dam and the ability
Conclusion:	to produce and carry a conceptus, or a direct effect on the embryo/fetus. The systemic maternal NOAEL for dermal exposure to ATB during GD 0-20 was determined to be 333 mg/kg/day; the LOAEL= 1000 mg/kg/day based on decreased body weight changes and an increase in gestation length.
	The developmental NOAEL for dermal exposure to ATB during GD 0-20 was determined to be 333 mg/kg/day; the LOAEL = 1000 mg/kg/day based on a decrease in pup body weights on Lactation Days 0 and 4.
RELIABILITY/DATA QUALITY	
Reliability:	Valid Without Restrictions (KS=1)
Reliability Remarks:	Non guideline study, but with adequate detail to make NOAEL determination for the endpoints measured.
Key Study Sponsor Indicator:	Key
REFERENCE	
Reference:	ARCO. 1994. A Developmental Toxicity Screen in Female Sprague-Dawley Rats Administered F-228 Dermally During GD 0 to 20. Report ATX-91-0267.
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009
High Prod	uction Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

Category Chemical: Test Substance:

Test Substance Purity/Composition and Other Test Substance Comments: 64741-57-7 64741-57-7; Heavy Vacuum Gas Oil; Hydrocracker Feed Oil Heavy Vacuum Gas Oil (F-276)

PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)

Sample #	DMS O wt.% ¹	1- ARC (%) ²	2- ARC (%)	3- ARC (%)	4- ARC (%)	5- ARC (%)	6- ARC (%)	7- ARC (%)
094627 (F-276)		9.00	9.00	0.20	0.00	0.00	0.00	0.00

1) Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008).

2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings.

Category Chemical Result Type :

204 / 370

Measured

Unable to Measure or Estimate Justification :	
METHOD	
Route of Administration:	Dermal, non-occluded
Other Route of Administration:	
Type of Exposure:	Developmental toxicity
Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Kingston, NY)
Other Strain:	Not applicable
Gender:	Females (non treated males used for mating)
Number of Animals per Dose:	11, 12, 11 at 1.0, 250 and 500 mg/kg dose level of HVGO, respectively 15 per dose for sham control
Concentration:	
Dose:	0, 1.0, 250, 500 mg/kg/day
	1994
Method/Guideline Followed:	Other
GLP:	Yes
Exposure Period:	Gestation Day (GD) -7 to 20
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to determine the developmental toxicity of HVGO (F- 276) following dermal administration to female rats daily for days 0 through day 20 of gestation.
	 Females were randomly assigned to four treatment groups and dosing began one week prior to the start of mating (GD -7) and throughout mating. Males were not treated. Mating was confirmed by detection of sperm in a vaginal smear or a copulatory plug. Females that exhibited positive signs of mating (GD 0) also received the test article through presumed GD 20. The treatment groups and time exposure periods were as follows: Sham control (0 mg/kg/day) – 15 animals; 13 animals at GD 0 HVGO 1.0 mg/kg/day –11 animals; 11 animals at GD 0 HVGO 250 mg/kg/day – 12 animals; 12 animals at GD 0
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	The test material was administered to groups 2-4 on GD -7 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. With the exception of test article application, control animals underwent the same procedure as the other treatment groups. The dose administered was based upon the day -7 body weight for the pre-mating period and the GD 0 body weight for the gestation period.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	changes in appearance, behavior, excretory function, and general signs of ill- health or abortion. All unusual findings were noted.
	Individual body weights were recorded at receipt, near the end of the quarantine period, on days -7 and -1 (premating period), on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days -7 to -1 (premating); for GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).
	Each litter was observed daily during lactation day 0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.
	Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.
	The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The ovaries were examined and the number of corpora lutea was determined for each female that delivered. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup were recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.
	STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model. For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment
	groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.
	For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day 0, pup alterations at lactation day 0, male pups at days 0 and 4, survival of pups at lactation day 4) were analyzed by the "weighted" GLM, with litter size as the "weights" and as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the variances. For all proportions and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.
	PAC Analysis: 206 / 370

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

ype Population:		Population: Value Description:		Upper Concentration:	Units:		
LOAEL – Dermal	Maternal	=	250		mg/kg/day		
NOAEL- Dermal	Maternal	=	1		mg/kg/day		
LOAEL - Dermal	Offspring (F1)	=	250		mg/kg/day		
NOAEL - Dermal	Offspring (F1)	=	1		mg/kg/day		

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

Results Remarks:

The animals used in the study were between 9 and 10 weeks of age at exposure initiation.

There was no mortality observed during the study period.

Dermal irritation related to administration of the test article was noted for females dosed at 1.0 mg/kg beginning premating day -5 and continuing throughout the duration of the study. Slight to moderate (primarily slight) erythema and edema, and slight dry skin and eschar were observed at the test sites. Dermal irritation related to administration of the test article was noted for females dosed at 250 and 500 mg/kg beginning premating day -5 and continuing throughout the duration of the study. Slight to severe (primarily moderate for the 250 mg/kg dose group and primarily severe for the 500 mg/kg dose group) erythema, edema, dry skin and eschar were observed at the test sites. One animal in the 500 mg/kg dose group exhibited fissuring at the test site on premating day -2.

One animal in the 1.0 mg/kg dose group and one animal in the 500 mg/kg dose group exhibited slight vaginal discharge on GD ay 0. Two animals in the 500 mg/kg dose group exhibited moderate staining of the coat (perineal region) on premating day -1. These findings are considered to be incidental in nature and not treatment related. Scratches on the back were observed in several rats within the sham control, 1.0 and 250 mg/kg dose groups. The scratches were observed within the first four days of gestation and are considered to be a result of aggressive behavior exhibited during mating.

Body weights of pregnant females dosed at 1.0 mg/kg were not significantly different from those of the control females throughout the duration of the study. Body weight changes were significantly higher than those of the control females between GD 4 and 8. Body weights of pregnant females dosed at 250 mg/kg were significantly lower than those of the control females on GD 4, 8, 12, 16 and 20 and on lactation days 0 and 4. Body weight changes were significantly lower than those of the control females between GD 0 and 4 and 12 and 16. Body weights of pregnant females dosed at 500 mg/kg were significantly lower than those of the control females on gremating day -1; on GD 0, 4, 8, 12, 16, 20; and on lactation days 0 and 4. Body weight changes were significantly lower than those of the control females between premating days -7 and -1; between GD 0 and 4, 12 and 16 and 16 and 20. The effects on body weight and body weight change observed at the 250 and 500 mg/kg dose levels are considered to be treatment related. A dose dependent correlation between dose and decreased body weight as well as body weight change was

observed at these dose levels. The increase in mean body weight change in the 1.0 mg/kg dose group between GD4 and 8 is not considered to be treatment related since the effect did not persist throughout the remainder of the study and was not observed at higher dose levels; also the control females mean body weight change for the same time period appears to be abnormally low.

Absolute and relative food consumption of pregnant females dosed at 1.0 mg/kg were not significantly different than those of the control females throughout the duration of the study. Absolute food consumption of pregnant females dosed at 250 mg/kg was significantly lower than that of the control females between premating days -7 and -1. Relative food consumption was significantly lower than that of the control females between premating days -7 and -1. Relative food consumption was significantly higher than that of the control females between GD12 and 16, 16 and 20 and between Lactation Days 0 and 4. Absolute food consumption of pregnant females dosed at 500 mg/kg was significantly lower than that of the control females between premating days -7 and -1. Relative food consumption was significantly lower than that of the control females between premating days -7 and -1. Relative food consumption was significantly higher than that of the control females between GD4 and 8, 8 and 12, 12 and 16 and 16 and 20. The decreases in absolute and relative food consumption observed in the 250 and 500 mg/kg dose groups between premating Days -7 and -1 are considered to be treatment related. A dose dependent correlation between dose and decreased absolute food consumption as well as relative food consumption was observed at these dose levels. The increases in relative food consumption observed in the 250 and 500 ma/kg dose groups are considered to be treatment related in that they occurred in a dose dependent manner over more than one consecutive (4 day) measurement interval.

Dermal irritation related to administration of the test article was noted in all of the females in the 250 and 500 mg/kg dose groups and in 5 of the 11 females in the 1.0 mg/kg dose group. The axillary lymph nodes of two animals in the 250 mg/kg dose group and one animal in the 500 mg/kg dose group were noted as being enlarged. The cervical lymph nodes of three animals in the 500 mg/kg dose group were also noted as being enlarged. These findings are considered to be secondary to the dermal irritation and therefore are indirectly considered to be treatment related. The right ovary of one of the sham control animals was surrounded by a clear fluid filled sac. A red foci was noted on the right side of the thymus of one animal in the 500 mg/kg dose group. These findings are considered to be incidental in nature and not treatment related.

The number of implantation sites for the 250 and 500 mg/kg dose groups was significantly lower than that of the control group. Total pups per litter and live pups per litter were significantly less in the 250 and 500 dose groups than in the control group. The number of pups surviving to day 4 of lactation was significantly less in the 500 mg/kg dose group than in the control group. There were no statistically significant differences observed in any of the other parameters evaluated when the F-276 treated groups were compared to the sham control group.

Average pup body weights for the 250 mg/kg dose group were significantly lower than that of the controls on lactation day 0. Average pup body weight for the 500 mg/kg dose group were significantly lower than that of the controls on lactation days 0 and 4. The following pup observations: cold to the touch, pale in color, hematoma, tip of tail black in color or missing, dry skin, right forelimb cannibalized and eschar occurred sporadically and are considered to be incidental in nature and not treatment related.

Summary of Selected Maternal Weight Parameters

Dose (mg/kg/day)	0	1.0	250	500
208 / 370				

Conclusion:

Id Heavy fuel oil Date December 7, 2012

		-		
Body wt day -7	215.4	213.8	212.8	207.9
Body wt day -1	221.6	224.2	214.7	198.8b
Body wt –final (g)	401.0	416.7	358.7b	331.4 b
Body wt – lactation day 0	304.5	310.3	273.4b	259.9b
Body wt – lactation day 4	320.9	319.2	298.3a	284.2b
Premating day -7 to -1 wt gain (g)	19.4	19.5	17.3b	16.5b
GD 0-4 wt gain (g)	25.6	24.2	23.5	24.8
GD 4-8 wt gain (g)	24.8	25.9	23.6	24.8
GD 8-12 wt gain (g)	26.1	26.9	25.5	26.9
GD 12-16 wt gain (g)	27.9	29.3	27.8	28.7
GD 16-20 wt gain (g)	30.2	32.1	29.8	31.1
Lactation day 0-4 wt	38.2	38.1	42.8	37.1
gain (g)				

a)Statistically different from control

b)Statistically different from control

Summary of Mean Selected Reproduction and Litter Data

Dose (mg/kg/day)	0	1.0	250	500
Implantation sites (mean)	16.4	17.5	15.5a	12.4a
Number of litters with live pups	12	11	12	12
Total pups/litter (day 0)	16.1	16.1	13.9a	10.8b
Live pups/litter (day 0)	15.7	16.1	13.9a	10.3b
Proportion pups surviving to day 4 (%)	97	99	99	84a
Pup weights (g) – mean, day 0	6.70	6.57	6.03b	5.58b
Pup weights (g) – mean, day 4	10.72	10.20	9.83	8.44b

a)Statistically different from control

b)Statistically different from control

Given the design of the study and the results observed, it is not possible to determine if the effects observed were a result of an effect on the dam and the ability to produce and carry a conceptus, or a direct effect on the embryo/fetus. The systemic maternal NOAEL for dermal exposure to HVGO during GD -7 to 20 was determined to be 1.0 mg/kg/day (LOAEL= 250 mg/kg/day based on vaginal discharged, decreased body weights, body weight changes, and decreased absolute and relative food consumption).

The NOAEL for dermal irritation could not be determined, i.e., < 1 mg/kg, since dermal irritation occurred at all doses tested.

The developmental NOAEL for dermal exposure to HVGO during GD -7 to 20 was determined to be 1.0 mg/kg/day (LOAEL = 250 mg/kg/day based on decreased number of implantation sites, total and live pups on lactation day 0, and decreased pup body weights on lactation days 0).

	and decreased pup body weights on lactation days of.
RELIABILITY/DATA QUALITY	
Reliability:	Valid without Restrictions (KS=1)
Reliability Remarks:	Non guideline study, but with adequate detail to make NOAEL determination
	for the endpoints measured.

5. Toxicity							Heavy Decem	fuel oil Iber 7, 20)12
Key Study Sponsor Indicator:	Key								
REFERENCE									
Reference:	ARCO. 1 Rats Adr								
	Mobil. 19 Mobil En								
	API. 200 ring class toxicity o http://ww	s content f high-bo	and sele	cted end bleum su	lpoints of ubstances	repeat-o ."	dose and	developr	
High Product			ion Syst	em (HP'	VIS)				
TEST SUBSTANCE									
Category Chemical:	64741-57-	7							
Test Substance:	64741-57-	7; Heavy	Vacuum	Gas Oil					
Test Substance	Heavy Vacuum Gas Oil (F-196)								
Purity/Composition and Other Test Substance		DA	C Contor	t ropo	rt no. 657	706 74 7	D (Mobil	1004)	
Comments:	Sample	DMS	1-	2-	3-	4-	5-	, 1994) 6-	7-
	#	0	ARC	ARC	ARC	ARC	ARC	ARC	ARC
	091649	wt.% ¹	(%) ² 0.10	(%) 0.30	(%)	(%)	(%) 2.00	(%) 0.70	(%)
	(F-196)								
	1) Percen					nostly PA	Cs), dete	ermined k	by the
	 PAC 2 method as described in API (2008). 2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings. 								
Category Chemical Result Type :	Measured	nauc nng	js, and so		<i>i</i> aroma	uc nngs.			
Unable to Measure or Estimate Justification :	Weddured								
METHOD									
Route of Administration:	Dermal, no	on-occluc	led						
Other Route of Administration:	·								
Type of Exposure:	Developme	ental toxi	city						
Species:	Rat		2						
Other Species:	Not applica	able							
Mammalian Strain:	Sprague-D)awlev ((Charles F	River Kir	naston N	Y)			
Other Strain:	Not applica				igotori, in	•)			
Gender:			ad malac	used fo	r matina)				
Number of Animals per Dose:	Females (1 15 per dos 20 per dos	e level o	f HVGO		i maung)				
Concentration:									

Concentration:

5. Toxicity	Id Heavy fuel oil Date December 7, 2012			
Dose:	0, 1.0, 250, 1000 mg/kg/day 1994			
Method/Guideline Followed:	Other			
GLP:	Yes			
Exposure Period:	GD (GD) -7 to 20			
Frequency of Treatment:				
Post-Exposure Period:	Once per day None			
Method/Guideline and Test Condition Remarks:	The study was designed to determine the developmental toxicity of HVGO (F- 196) following dermal administration to female rats daily for one week prior to mating through day 20 of gestation.			
	 Females were randomly assigned to four treatment groups and dosing began one week prior to the start of mating (GD -7) and throughout mating. Males were not treated. Mating was confirmed by detection of sperm in a vaginal smear or a copulatory plug. Females that exhibited positive signs of mating (GD 0) also received the test article through presumed GD 20. The treatment groups and time exposure periods were as follows: Sham control (0 mg/kg/day) – 20 animals; 16 animals at GD 0 HVGO 1.0 mg/kg/day –15 animals; 10 animals at GD 0 HVGO 250 mg/kg/day – 15 animals; 8 animals at GD 0 			
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.			
	The test material was administered to groups 2-4 on GD -7 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. With the exception of test article application, control animals underwent the same procedure as the other treatment groups. The dose administered was based upon the day -7 body weight for the pre-mating period and the GD 0 body weight for the gestation period.			
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill- health or abortion. All unusual findings were noted.			
	Individual body weights were recorded at receipt, near the end of the quarantine period, on days -7 and -1 (premating period), on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days -7 to -1 (premating); for GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).			
	Each litter was observed daily during lactation day 0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.			
	Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.			
	The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The ovaries were examined and the number of corpora lutea was determined for each female that delivered. The number of implantation sites was recorded for all females,			

5. Toxicity	ld Heavy fuel oil Date December 7, 2012
	including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup were recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.
	STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model. For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.
	For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day 0, pup alterations at lactation day 0, male pups at days 0 and 4, survival of pups at lactation day 4) were analyzed by the "weighted" GLM, with litter size as the "weights" and as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the variances. For all proportions and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.
	<u>PAC Analysis:</u> The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	250		mg/kg/day
NOAEL- Dermal	Maternal	=	1.0		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	250		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	1.0		mg/kg/day

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Results Remarks:	The animals used in the study were between 12 and 13 weeks of age at exposure initiation.
	One female in the 1000 mg/kg dose group was found dead on GD 22. There were no other mortalities during the study.
	Slight eschar was noted on one day for one female in the sham control group. Slight erythema was noted on one day for one female in the 250 mg/kg dose group. Because the erythema was slight, of limited duration, and was noted for only one animal in the dose group, it was not considered to be related to the test article. Sporadic dermal irritation related to administration of the test article was noted for females dosed at 1000 mg/kg on premating days -6, -5, -4; mating days 0, 1; GD 0, 1, and 9-18. Slight erythema and eschar were observed at the test site. After 12 days of dosing, animals in the 1000 mg/kg dose group had accumulated test article over the body surfaces, therefore, there is the possibility of oral exposure via preening.
	The incidence of vaginal discharge was slightly higher in the 250 mg/kg dose group; vaginal discharge was noted as early as GD 13 and as late as GD 20. A higher incidence of vaginal discharge was noted for females in the 1000 mg/kg dose group; vaginal discharge was observed as early as day 12 and as late as day 22 of gestation. A positive correlation was noted between vaginal discharge and resorptions. One animal that died on test exhibited tremors and lethargy on gestation days 20-21.
	There were no other clinical observations that were considered to be related to treatment with the test article.
	There were no effects on body weights or body weight changes at a dose of 1.0 mg/kg. Body weights of pregnant females in the 250 mg/kg dose group were significantly lower than those of the control group on GD 16 and 20. Body weights of females dosed at 1000 mg/kg were significantly lower than those of the controls on Day -1 of the premating period. Body weights of pregnant females in the 1000 mg/kg dose group were also significantly lower than those of the control females during GD 4 , 8 , 12 , 16 , and 20. Body weight changes for females dosed at 250 mg/kg were significantly lower than those of controls between Days -7 and -1 of the premating period. Body weight changes for pregnant females dosed at 250 mg/kg were significantly lower than those of controls for GD 0 to 4. Body weight changes for females dosed at 1000 mg/kg were significantly lower than those of controls for GD 0 to 4. Body weight changes for pregnant females in the 1000 mg/kg dose group were also significantly lower than those of controls between days -7 and -1 of the premating period. Body weight changes for females dosed at 1000 mg/kg were significantly lower than those of controls for GD 0 to 4. Body weight changes for females dosed at 1000 mg/kg were significantly lower than those of controls between days -7 and -1 of the premating period. Body weight changes for pregnant females in the 1000 mg/kg dose group were also significantly lower than those of the control females for GD 0 to 4, 12 to 16, and 16 to 20.
	There were no effects on absolute or relative food consumption at a dose of 1.0 mg/kg. Absolute and relative food consumption for females in the 250 mg/kg dose group were significantly lower than that of the controls during days -7 to -1 of the premating period. Absolute and relative food consumption for pregnant females in the 250 mg/kg dose group were significantly lower than that of the controls during GD 0 to 4. Absolute and relative food consumption for females in the 1000 mg/kg dose group were significantly lower than that of the controls during days -7 to -1 of the premating period. Absolute and relative food consumption for females in the 1000 mg/kg dose group were significantly lower than that of the controls during days -7 to -1 of the premating period. Absolute food consumption for pregnant females in the 1000 mg/kg dose group was significantly lower than that of the controls during days -7 to -1 of the premating period. Absolute food consumption for pregnant females in the 1000 mg/kg dose group was significantly lower than that of the controls during days -7 to -1 of the premating D 0 to 4 and 16 to 20.
	Decreased thymus size was noted at necropsy for one, two, three, and six females in the 0.0, 1.0, 250 and 1000 mg/kg dose groups, respectively. One of three in the 250 mg/kg dose group and five of six in the 1000 mg/kg dose group were noted as very small. The decreased thymus size was considered toxicologically significant at the 250 and 1000 mg/kg dose levels. The 1000 mg/kg female that was found dead also had red vaginal discharge, a pale liver, and a uterus with early and late resorption sites.

Although other findings were observed at the time of necropsy, they were considered incidental and unrelated to test article treatment.

There were no effects on delivery or litter data at a dose of 1.0 mg/kg. For females dosed at 250 mg/kg, the number of total and live pups on lactation day 0 were significantly lower than that of the controls. Body weights of pups in the 250 mg/kg dose group were also significantly lower than those of the control group on lactation days 0 and 4. None of the pregnant females dosed at 1000 mg/kg delivered a litter. For the 1.0 and 250 mg/kg dose groups, there were no significant differences (when compared to the control group) in gestation length, number of implantation sites, external pup alterations, proportion of pups dead on lactation day 0, proportion of pups surviving to lactation day 4, or the proportion of males on lactation days 0 and 4. There was no significant difference between the 1000 mg/kg dose group and the controls for the number of implantation sites.

Dose (mg/kg/day)	0	1.0	250	1000
Body wt day -7	257.7	258.5	258.0	257.7
Body wt day -1	265.4	264.5	257.8	250.5a
Body wt –final (g)	410.9	416.8	374.2a	281.6b
Body wt – lactation day 0	308.8	312.5	293.3	NAc
Body wt – lactation day 4	316.9	316.9	301.2	NAc
Premating day -7 to -1 wt gain (g)	7.7	6.0	-0.2	-7.3b
GD 0-4 wt gain (g)	24.8	223	11.0b	14.3b
GD 4-8 wt gain (g)	12.8	13.8	14.1	11.5
GD 8-12 wt gain (g)	20.5	23.3	19.1	15.6
GD 12-16 wt gain (g)	27.3	29.6	20.1	-2.6b
GD 16-20 wt gain (g)	61.6	64.7	51.0	-8.6b
Lactation day 0-4 wt gain (g)	8.1	4.4	7.9	NAc

Summary of Selected Maternal Weight Parameters

a)Statistically different from control

b)Statistically different from control

c) Not applicable – no females delivered

Summary of Mean Selected Reproduction and Litter Data

	-			
Dose (mg/kg/day)	0	1.0	250	1000
Implantation sites	15.8	16.9	14.7	15.3
(mean)				
Number of litters	16	10	9	(C)
with live pups				
Total pups/litter (day	14.4	15.3	10.9b	(C)
0)				
Live pups/litter (day	13.8	14.9	10.3b	(C)
0)				
Proportion pups	97	82	98	(C)
surviving to day 4				
(%)				
Pup weights (g) –	6.43	6.38	6.02a	(C)
mean, day 0				
Pup weights (g) -	9.58	9.51	8.23b	(c)
mean, day 4				
a)Statistically different from control				

a)Statistically different from control b)Statistically different from control

5. Toxicity	Id Heavy fuel oil						
-	Date December 7, 2012						
	c)No females delivered						
Conclusion:	Given the design of the study and the results observed, it is not possible to determine if the effects observed were a result of an effect on the dam and the ability to produce and carry a conceptus, or a direct effect on the embryo/fetus. The maternal NOAEL for dermal exposure to HVGO during gestation days GD -7 to 20 was determined to be 1.0 mg/kg/day (LOAEL= 250 mg/kg/day based on vaginal discharge, decreased body weights, body weight changes, decreased food consumption and decreased thymus size).						
	The developmental NOAEL for dermal exposure to HVGO during gestation days GD -7 to 20 was determined to be 1.0 mg/kg/day (LOAEL = 250 mg/kg/day based on decreased number of total and live pups on lactation day 0, and decreased pup body weights were lower on lactation days 0 and 4).						
RELIABILITY/DATA QUALITY							
Reliability:	Valid without Restrictions (KS=1)						
Reliability Remarks:	Non guideline study, but with adequate detail to make NOAEL determination.						
Key Study Sponsor Indicator:	Key						
REFERENCE	·						
Reference:	ARCO. 1994. A Developmental Toxicity Screen in Female Sprague-Dawley Rats Administered F-196 Dermally During GD -7 to 20. 1994. Report ATX-91- 0130.						
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR						
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009						
TAL PROTECTO	h Production Volume Information System (HPVIS)						
DEVELOPMENTAL TOXICITY/TER	RATOGENICITY						
Category Chemical:	64741-57-7						
Test Substance:	64741-57-7; Heavy Vacuum Gas Oil (HVGO); VDF Gas Oil						
Test Substance Purity/Composition	Heavy Vacuum Gas Oil; (F-197)						
and Other Test Substance	PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)						
Comments:	Sample DMS 1- 2- 3- 4- 5- 6- 7- # O ARC						
	091650 0.00 0.40 4.00 2.00 0.60 0.20 0.00						
	(F-197) (

2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings.

Category Chemical Result Type :

Measured

Unable to Measure or Estimate Justification:	
METHOD	
Route of Administration:	Dermal, non-occluded
Other Route of Administration:	
Type of Exposure:	Developmental toxicity
Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Kingston, NY)
Other Strain:	Not applicable
Gender:	Females (non treated males used for mating)
Number of Animals per Dose:	15 per dose level of HVGO 20 per dose for sham control
Concentration:	
Dose:	0, 1, 250.0 (241 = corrected dose), 1000.0 (965 = corrected dose) mg/kg/day
Year Study Performed :	1994
Method/Guideline Followed:	Other
GLP:	Yes
Exposure Period:	Gestation day (GD) -7 to 20
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to determine the developmental toxicity of HVGO (F- 197) following dermal administration to female rats daily for one week prior to mating through day 20 of gestation.
	Females were randomly assigned to four treatment groups and dosing began one week prior to the start of mating (GD -7) and throughout mating. Males were not treated. Mating was confirmed by detection of sperm in a vaginal smear or a copulatory plug. Females that exhibited positive signs of mating (GD 0) also received the test article through presumed GD 20. The treatment groups and time exposure periods were as follows: 1. *Sham control (0 mg/kg/day) – 20 animals 2. HVGO 1 mg/kg/day – 15 animals 3. HVGO 241 mg/kg/day – 15 animals 4. HVGO 965 mg/kg/day – 15 animals *Shared with study number ATX-91-0127
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	The test material was administered to groups 2-4 on GD -7 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. With the exception of test article application, control animals underwent the same procedure as the other treatment groups. The dose administered was based upon the day -7 body weight for the pre-mating period and the GD 0 body weight for the gestation period.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for

changes in appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted.

Individual body weights were recorded at receipt, near the end of the quarantine period, on days -7 and -1 (premating period), on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days -7 to -1 (premating); for GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).

Each litter was observed daily during lactation day 0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.

Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.

The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The ovaries were examined and the number of corpora lutea was determined for each female that delivered. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup were recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.

STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model.

For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.

For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day 0, pup alterations at lactation day 0, male pups at days 0 and 4, survival of pups at lactation day 4) were analyzed by the "weighted" GLM, with litter size as the "weights" and as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the variances. For all proportions and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	241		mg/kg/day
NOAEL- Dermal	Maternal	=	1		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	241		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	1		mg/kg/day

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

Results Remarks:

The animals used in the study were between 12 and 13 weeks of age at exposure initiation.

There were no mortalities during the study.

No dermal irritation was noted for the sham control or the 1 mg/kg/day dose. Slight to moderate erythema, edema and eschar, and dry skin were observed at site of administration at the two highest dose levels (241 and 965 mg/kg/day). A higher incidence of vaginal discharge was noted for females in the 241 mg/kg/day dose group; vaginal discharge was observed as early as GD 14 and as late as GD 21. For the 965 mg/kg/day group vaginal discharge was noted as early as GD 12 and as late as GD 23. There were no other clinical observations that were considered to be related to treatment with the test article. Paleness, decreased body temperature, and/or lethargy were noted for three females in the 965 mg/kg/day dose group; these findings were associated with an increased incidence of vaginal discharge.

There were no effects on body weights or body weight changes at a dose of 1 mg/kg/day. Per the table below, mean body weights were significantly decreased in the 241 mg/kg/day groups at various points during gestation and post-natal period. Significant differences were noted in body weight for the 965 mg/kg/day females during the premating and gestational periods. Body weight changes for the 241 and the 965 mg/kg/day dose groups were significantly lower during both the pre-mating and gestational periods.

There were no effects on absolute or relative food consumption at a dose of 1 mg/kg/day. Absolute and relative food consumption for females in the 241 mg/kg/day dose group was significantly lower (p<0.01) than that of the controls during days -7 to -1 of the pre-mating period. Absolute food consumption in this dose group was significantly lower during GD 0 to 4 (p<0.01), 4 to 8 (p<0.01), 8 to 12 (p<0.01), and 12 to 16 (p<0.05). Relative food consumption the 241 mg/kg/day dose group was significantly lower than that of the controls during GD 0 to 4 (p<0.01). Absolute and relative food consumption in the 965 mg/kg/day dose group was significantly lower (p<0.01) than that of the controls during days -7 to -1 of the pre-mating period. Absolute food consumption in this group was significantly lower than that of the controls during days -7 to -1 of the pre-mating period. Absolute food consumption in this group was significantly lower than that of the controls during GD 0 to 4 (p<0.05), 8 to 12 (p<0.05), 12 to 16 (p<0.01), and 16 to 20 (p<0.01). Relative food consumption was significantly

Id Heavy fuel oil Date December 7, 2012

lower (p<0.05) during GD 12 to 16.

A uterus with a late resorption was noted at necropsy for one female in the 965 mg/kg/day dose group. Although other findings were observed at the time of necropsy, they were considered incidental and unrelated to test article treatment.

There were no effects on delivery and litter data at a dose of 1 mg/kg. At a dose of 241 mg/kg/day, the number of total and live pups delivered were significantly lower (p<0.05); the proportion of pups surviving to lactation day 4 was significantly lower (p<0.01); and pup body weights were significantly lower (p<0.05) on both lactation days 0 and 4. At a dose of 965 mg/kg/day, none of the females delivered a litter (pregnancy was confirmed through examination of the uterine horns at necropsy).

For the 1 and 241 mg/kg dose groups, there were no significant differences in gestation length, the number of implantation sites, external pup alterations, or the proportion of males on lactation days 0 and 4.

There was no significant difference in the number of implantation sites between the controls and the 965 mg/kg dose group.

Dose (mg/kg/day)	0	1
Body wt day -7	264.0	263.3
Body wt day -1	272.3	274.1
Body wt –final (g)	428.1	440.3
Body wt – lactation day 0	323.9	323.0
Body wt – lactation day 4	337.0	341.9
Premating day -7 to -1 wt gain	8.3	10.8
(g)		
GD 0-4 wt gain (g)	20.2	22.2
GD 4-8 wt gain (g)	19.1	21.3
GD 8-12 wt gain (g)	20.0	19.7
GD 12-16 wt gain (g)	31.5	31.0
GD 16-20 wt gain (g)	59.6	60.3
Lactation day 0-4 wt gain (g)	13.1	18.9

Summary of Selected Maternal Weight Parameters

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c)No females delivered

Summary of Mean Selected Reproduction and Litter Data

Dose (mg/kg/day)	0	1
Dams with resorptions	0	0
Implantation sites	15.9	17.4
Number of litters with live	18	9
pups		
Total pups/litter (day 0)	14.9	16.1
Live pups/litter (day 0)	14.7	14.8
Proportion pups surviving to	0.985	0.970
day 4		
Pup weights (g) – mean, day	6.625	6.557
0		
Pup weights (g) – mean, day	9.873	9.624
4		
a)Statistically different from contro	l (p<0.05)	
219 / 370		

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
Conclusion:	b)Statistically different from control (p<0.01) c)No females delivered The maternal NOAEL for dermal exposure to HVGO during GD -7 to 20 was determined to be 1 mg/kg/day (LOAEL= 241 mg/kg/day based on increased vaginal discharge, decreased body weights, body weight changes and decreased food consumption)
	The developmental NOAEL for dermal exposure to HVGO during GD - 7 to 20 was determined to be 1 mg/kg/day (LOAEL = 241 mg/kg/day based on a decreased total and live pup numbers, proportion of pups surviving to lactation day 4, and decreased pup body weights on lactation day 0 and 4)
RELIABILITY/DATA QUALITY	
Reliability:	Valid Without Restrictions (KS=1)
Reliability Remarks:	Non guideline study, but with adequate detail to make NOAEL determination.
Key Study Sponsor Indicator:	Кеу
REFERENCE	
Reference:	ARCO. 1994. A Developmental Toxicity Screen in Female Sprague- Dawley Rats Administered F-197 Dermally During Gestation Days -7 to 20. Report ATX-91-0131.
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009
High Production Vo	Jume Information System (HPVIS)
DEVELOPMENTAL TOXICITY/TERATOGEN	IICITY
TEST SUBSTANCE	

TEST SUBSTANCE

Category Chemical: Test Substance: 64741-57-7

Test Substance Purity/Composition and Other Test Substance Comments: 64741-57-7; Heavy Vacuum Gas Oil; Hydrocracker Fresh Feed Heavy Vacuum Gas Oil (F-201)

PAC Content - report no. 65726-ZA-ZR (Mobil, 1994)

Sample #	DMS O wt.% ¹	1- ARC (%) ²	2- ARC (%)	3- ARC (%)	4- ARC (%)	5- ARC (%)	6- ARC (%)	7- ARC (%)
091654 (F-201)		0.10	0.40	4.00	3.00	0.90	0.40	0.00

1) Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008).

2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings. Measured

Category Chemical Result Type :

Unable to Measure or Estimate Justification :	
METHOD	
Route of Administration:	Dermal, non-occluded
Other Route of Administration:	
Type of Exposure:	Developmental toxicity
Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Kingston, NY)
Other Strain:	Not applicable
Gender:	Females (non treated males used for mating)
Number of Animals per Dose:	15 per dose level of HVGO
Concentration:	20 per dose for sham control
Dose:	0, 1.0, 250, 1000 mg/kg/day
	1994
Method/Guideline Followed:	Other
GLP:	Yes
Exposure Period:	Gestation day (GD) -7 to 20
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to determine the developmental toxicity of HVGO (F- 201) following dermal administration to female rats daily for one week prior to mating through day 20 of gestation.
	Females were randomly assigned to four treatment groups and dosing began one week prior to the start of mating (GD -7) and throughout mating. Males were not treated. Mating was confirmed by detection of sperm in a vaginal smear or a copulatory plug. Females that exhibited positive signs of mating (GD 0) also received the test article through presumed GD 20. The treatment groups and time exposure periods were as follows: 1. Sham control (0 mg/kg/day) – 20 animal; 16 animals at GD 0 2. HVGO 1.0 mg/kg/day –15 animals; 10 animals at GD 0 3. HVGO 250 mg/kg/day – 15 animals; 9 animals at GD 0 4. HVGO 1000 mg/kg/day –15 animals; 12 animals at GD 0
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	The test material was administered to groups 2-4 on GD -7 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. With the exception of test article application, control animals underwent the same procedure as the other treatment groups. The dose administered was based upon the day -7 body weight for the pre-mating period and the GD 0 body weight for the gestation period.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill-
	221 / 370

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	health or abortion. All unusual findings were noted.
	Individual body weights were recorded at receipt, near the end of the quarantine period, on days -7 and -1 (premating period), on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days -7 to -1 (premating); for GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).
	Each litter was observed daily during lactation day 0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.
	Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.
	The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The ovaries were examined and the number of corpora lutea was determined for each female that delivered. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup were recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.
	STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model. For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The text for agrid variance (Partlett) was and using the Kruskal-Wallis test,
	test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance. For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non- weighted GLM. All proportions (dead pups at lactation day 0, pup alterations at lactation day 0, male pups at days 0 and 4, survival of pups at lactation day 4) were analyzed by the "weighted" GLM, with litter size as the "weights" and as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the variances. For all proportions and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.
	PAC Analysis:

The percent of each ring class was conducted in a separate study and

determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	250		mg/kg/day
NOAEL- Dermal	Maternal		1.0		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	250		mg/kg/day
NOAEL - Dermal	Offspring (F1)		1.0		mg/kg/day

Results Remarks:

The animals used in the study were between 12 and 13 weeks of age at exposure initiation.

One female in the 1000 mg/kg dose group was sacrificed in a moribund condition.

Slight eschar was noted on one day for one female in the sham control group. Slight erythema was noted on one day for one female in the 1.0 mg/kg dose group. Because the erythema was slight, of limited duration, and was noted for only one animal in the dose group, it was not considered to be related to the test article. Treatment related dermal irritation was observed at the test site in the 250 and 1000 mg/kg dose groups consisting of slight erythema and eschar.

The dermal irritation was noted beginning premating day -2 extending to GD 16 for the 250 mg/kg dose group and premating day -6 to GD 17 for the high dose group. After 12 days of dosing, animals in the 1,000 mg/kg dose group had accumulated test article over the body surfaces.

The incidence of vaginal discharge (primarily slight) was slightly higher in the 250 mg/kg dose group; vaginal discharge was noted as early as GD 12 and as late as GD 22. A higher incidence of vaginal discharge was noted for females in the 1000 mg/kg dose group; vaginal discharge was observed as early as day 12 and as late as day 24 of gestation.

Ocular and nasal discharge were observed more frequently for the 1000 mg/kg dose group. There were no other clinical observations that were considered to be related to treatment with the test article.

Body weights of females dosed at 250 mg/kg were significantly lower than those of the controls on day -1 of the premating period. Body weights of pregnant females in the 250 mg/kg dose group were significantly lower than those of the control group on GD 4, 8, 12, 16, and 20 and on lactation day 4.

Body weights of females dosed at 1,000 mg/kg were significantly lower than those of the controls on day -1 of the premating period. Body weights of pregnant females in the 1,000 mg/kg dose group were also significantly lower than those of the control females during GD 4, 8, 12, 16, and 20. Body weight changes for females dosed at 1.0 mg/kg were significantly higher than those of controls for lactation days 0 to 4; this difference was not considered to be toxicologically significant.

Body weight changes for females dosed at 250 mg/kg were significantly lower

than those of controls between Days -7 and -1 of the premating period. Body weight changes for pregnant females dosed at 250 mg/kg were significantly lower than those of controls for GD 0 to 4, 12 to 16, and 16 to 20 and lactation days 0 to 4. Body weight changes for females dosed at 1000 mg/kg were significantly lower than those of controls between Days -7 and -1 of the premating period. Body weight changes for pregnant females in the 1,000 mg/kg dose group were also significantly lower than those of the control females for GD 0 to 4, 8 to 12,12 to 16, and 16 to 20.

Relative food consumption for females in the 1.0 ma/kg dose group was significantly lower than that of the controls during Days -7 to -1 of the premating period. Absolute and relative food consumption for pregnant females in the 1.0 mg/kg dose group was significantly higher than that of the controls during lactation days 0 to 4. These differences were not considered to be toxicologically significant. Absolute and relative food consumption for females in the 250 mg/kg dose group were significantly lower than that of the controls during days -7 to -1 of the premating period. Absolute food consumption for pregnant females in the 250 mg/kg dose group was significantly lower than that of the controls during GD 0 to 4 and lactation Days 0 to 4. Relative food consumption for pregnant females in the 250 mg/kg dose group was significantly lower than that of the controls during GD 0 to 4. Relative food consumption for pregnant females in the 250 mg/kg dose group was significantly higher than that of the controls during GD 12 to 16; this difference was not considered to be toxicologically significant. Absolute and relative food consumption for females in the 1,000 mg/kg dose group were significantly lower than that of the controls during days -7 to -1 of the premating period. Absolute food consumption for pregnant females in' the 1.000 mg/kg dose group was significantly lower than that of the controls during GD 16 to 20. Relative food consumption for pregnant females in the 1000 mg/kg dose group was significantly higher than that of the controls during GD 8 to 12; this difference was not considered to be toxicologically significant.

Decreased thymus size was noted at necropsy for one of the control females, three females in the 250 and six females in the 1,000 mg/kg dose groups. The decreased thymus size in the 250 and 1000 mg/kg dose groups was considered to be treatment related. The 1,000 mg/kg female sacrificed in a moribund condition also had a pale liver, pale and enlarged kidneys, enlarged cervical lymph nodes, and a hemorrhagic uterus with early and late resorption sites.

Although other findings were observed at the time of necropsy, they were considered incidental and unrelated to test article treatment.

For females dosed at 250 mg/kg, the number of implantation sites was significantly lower than that of the control group, suggesting increased preimplantation loss for the females dosed at 250 mg/kg. The number of total and live pups on lactation day 0 were also significantly lower than that of the controls. Body weights of pups in the 250 mg/kg dose group were also significantly lower than those of the control group on lactation days 0 and 4. The number of implantation sites for females in the 1,000 mg/kg dose group was lower than that of the control group. While this difference was not statistically significant, it was considered to be toxicologically significant based upon the decreased number of implantation sites noted at 250 mg/kg. The number of females that delivered was also decreased in the 250 mg/kg dose group and zero out of twelve of the pregnant females dosed at 1,000 mg/kg delivered a litter.

For the 1.0 and 250 mg/kg dose groups, there were no significant differences in gestation length, external pup alterations, proportion of pups dead on lactation day 0, proportion of pups surviving to lactation day 4, or the proportion of males on lactation days 0 and 4.

224 / 370

Summary	of Selected	Maternal	Weight	Parameters
---------	-------------	----------	--------	------------

	•			1000
Dose (mg/kg/day)	0	1.0	250	1000
Body wt day -7	257.7	259.3	258.2	255.5
Body wt day -1	265.4	263.9	252.0a	248.9b
Body wt –final (g)	410.9	412.0	342.0b	270.7b
Body wt – lactation	308.8	300.9	300.3	NAc
day 0				
Body wt – lactation	316.9	320.6	292.4a	NAc
day 4				
Premating day -7 to	7.7	4.6	-6.2b	-6.6b
-1 wt gain (g)				
GD 0-4 wt gain (g)	24.8	18.3	10.7b	-5.6b
GD 4-8 wt gain (g)	12.8	13.7	15.0	10.8
GD 8-12 wt gain (g)	20.5	23.8	19.2	13.0b
GD 12-16 wt gain (g)	27.3	23.4	12.9 a	-10.9b
GD 16-20 wt gain (g)	61.6	69.1	28.2b	-8.9b
Lactation day 0-4 wt	8.1	19.7b	-3.4a	NAc
gain (g)				

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) Not applicable – no females delivered

Summary of Mean Selected Reproduction and Litter Data

	-			
Dose (mg/kg/day)	0	1.0	250	1000
Implantation sites	15.8	16.1	13.6b	14.3
(mean)				
Number of litters	16	9	6	(C)
with live pups				
Total pups/litter (day	14.4	14.8	8.5b	(C)
0)				
Live pups/litter (day	13.8	14.8	7.5b	(C)
0)				
Proportion pups	97	94	89	(C)
surviving to day 4				
(%)				
Pup weights (g) –	6.54	6.61	5.74	(C)
mean, day 0				
Pup weights (g) –	9.56	9.10	6.07	(C)
mean, day 4				

a)Statistically different from control (p<0.05) b)Statistically different from control (p<0.01) c)No females delivered

Given the design of the study and the results observed, it is not possible to determine if the effects observed were a result of an effect on the dam and the ability to produce and carry a conceptus, or a direct effect on the embryo/fetus. The maternal NOAEL for dermal exposure to HVGO during GD -7 to 20 was determined to be 1.0 mg/kg/day (LOAEL= 250 mg/kg/day based on decreased body weights, body weight changes, skin irritation and decreased thymus size).

The developmental NOAEL for dermal exposure to HVGO during GD -7 to 20 was determined to be 1.0 mg/kg/day (LOAEL = 250 mg/kg/day based on decreased implantation sites, decreased number of total and live pups on lactation day 0, and decreased pup body weights were lower on lactation days 0 and 4).

Conclusion:

Id Heavy fuel oilDate December 7, 2012

RELIABILITY/DATA QUALITY	
Reliability:	Valid Without Restrictions (KS=1)
Reliability Remarks:	Non guideline study, but with adequate detail to make NOAEL determination.
Key Study Sponsor Indicator:	Кеу
REFERENCE	
Reference:	 ARCO. 1994. A Developmental Toxicity Screen in Female Sprague-Dawley Rats Administered F-201 Dermally During GD -7 to 20. Report ATX-913-0135. Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances."
High Productio	http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009.

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE									
Category Chemical:	64741-57-	7							
Test Substance:	64741-57-	64741-57-7; Heavy Vacuum Gas Oil (HVGO); VDF Gas Oil							
Test Substance	Heavy Vacuum Gas Oil; (F-197)								
Purity/Composition and Other Test Substance	PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)								
Comments:		PACC	ontent –	report no	0. 65726	·ZA-ZR (I	NODII, 19	94)	
	Sample	DMS	1-	2-	3-	4-	5-	6-	7-
	#	0	ARC	ARC	ARC	ARC	ARC	ARC	ARC
	091650	wt.% ¹	$(\%)^2$	(%) 0.40	(%)	(%)	(%) 0.60	(%) 0.20	(%) 0.00
	(F-197)		0.00	0.40	4.00	2.00	0.00	0.20	0.00
	1) Percen	t of DMS	O-extract	able mat	terials (n	nostly PA	Cs), dete	rmined b	y the
	PAC 2 met								
	2) ARC is have 1 arc								
	PACs with							percent	0I
Category Chemical Result Type :	Measured		J -,				0-		
Unable to Measure or Estimate Justification:									
METHOD									
Route of Administration:	Dermal, no	on-occlud	ed						
Route of Administration: Other Route of Administration:	Dermal, no	on-occlud	ed						
	Dermal, no Developme								
Other Route of Administration:									
Other Route of Administration: Type of Exposure:	Developme	ental toxic							
Other Route of Administration: Type of Exposure: Species:	Developme Rat	ental toxic able	city	River, Po	rtage, Mi)			

Gender:	Females (non treated males used for mating)
Number of Animals per Dose:	25 per dose for level
Concentration:	
Dose:	0, 50, 100, 250 mg/kg/day
Year Study Performed :	1993
Method/Guideline Followed:	Similar to OECD 414 (Prenatal Developmental Toxicity Study)
GLP:	Yes
Exposure Period:	Gestation day (GD) 0-19
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to evaluate the developmental toxicity (embryo-fetal toxicity and teratogenic potential) of HVGO (F-197) administered percutaneously to presumed pregnant rats.
	 Prior to the initiation of dosing with the test substance, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of sperm in a vaginal smear or a copulatory plug, the individual, presumed pregnant females were randomly assigned to four treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of evidence of mating: 1. Vehicle control (acetone) 0 mg/kg/day – 25 animals (GD 0-19) 2. HVGO 50 mg/kg/day – 25 animals (GD 0-19) 3. HVGO 100 mg/kg/day – 25 animals (GD 0-19) 4. HVGO 250 mg/kg/day – 25 animals (GD 0-19)
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	Suspensions of F-197 were prepared daily at concentrations of 0 (vehicle, acetone), 50, 100 and 250 mg/mL such that doses of 0, 50, 100, and 250 mg/kg/day, respectively, were administered at a volume of 1 mL/kg. Animals in all groups were treated on GD 0 through GD 19. Each treatment day, animals were dosed by even application of the test substance to their shaved backs, using a blunt-tipped glass syringe. The test substance dose was calculated from each rat's most recent body weight. Rats were fitted with Elizabethan collars to minimize ingestion of test substance. Controls were handled in the same manner but with application of the vehicle only. Elizabethan collars were applied just prior to dosing and were removed after a 6 hour exposure period. At the time of collar removal, any excess test article was wiped off with a cloth dipped in acetone and dried with a clean cloth.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted. Skin reactions were graded using the Draize and National Research Council standards.
	Individual body weights and food consumption were recorded daily during presumed gestation.
	All rats were sacrificed by carbon dioxide asphyxiation on day 20 of presumed gestation, and a gross necropsy of the thoracic and abdominal viscera was performed. The abdomen of each rat was opened, and the intact uterus was excised and examined for pregnancy. To confirm the pregnancy status, uteri from rats that appeared non-pregnant were examined while transilluminated
	227 / 370

5. Toxicity	Id Heavy fuel oil
-	Date December 7, 2012
	and pressed between two glass plates. Tissues with gross lesions were preserved in neutral buffered 10% formalin for possible future evaluation; all other maternal tissues were discarded.
	Corpora lutea in each ovary were recorded. The number and distribution of implantations, early and late resorptions, and live and dead fetuses were noted. An early resorption was defined as one in which organogenesis was not grossly evident. A late resorption was defined as one in which the occurrence of organogenesis was grossly evident. A live fetus was defined as a term fetus that responded to mechanical stimuli. Nonresponding term fetuses were considered to be dead. Dead fetuses and late resorptions were differentiated by the degree of autolysis present; marked to extreme autolysis indicated that the fetus was a late resorption.
	Each fetus was removed from the uterus, placed in an individual container, weighed, and examined for weighed and examined for sex and gross external alterations. Live fetuses were sacrificed.
	Approximately one-half of the fetuses in each litter were fixed in Bouin's solution and examined for soft tissue alterations by using an adaptation of Wilson's sectioning technique. The remaining fetuses in each litter were eviscerated, cleared, stained with alizarin red, and examined for skeletal alterations.
	STATISTICAL ANALYSES: Maternal and fetal incidence data were analyzed using the Variance Test for Homogeneity of the Binomial Distribution. Maternal body weights, body weight changes, feed consumption values, and litter averages for fetal body weights, percent male fetuses, fetal ossification sites and percent fetal alterations were analyzed using Bartlett's Test and ANOVA, when appropriate [i.e., Bartlett's Test was not significant (P>0.05)]. If the analysis of variance was significant (P<0.05), Dunnett's Test was used to identify the statistical significance of the individual groups. If the analysis of variance was used, when less than or equal to 75% ties were present. When more than 75% ties were present, Fisher's Exact Test was used. In cases in which the Kruskal-Wallis Test was statistically significant (P<0.05), Dunn's Method of Multiple Comparisons was used to identify the statistical significance of the individual groups. All other Caesarean-sectioning data were evaluated using the procedures described for the Kruskal-Wallis Test.
	PAC Analysis: The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	50		mg/kg/day
NOAEL- Dermal	Maternal	=	Not determined (<50)		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	250		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	100		mg/kg/day

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Results Remarks:	The animals used in the study were between 12 and 13 weeks of age at exposure initiation.
	No deaths occurred during the conduct of this study. Skin reactions related to administration of the test substance occurred in the 50, 100 and 250 mg/kg/day dose groups. Significantly increased (P<0.05 to P<0.01) numbers of rats in the 50, 100 and 250 mg/kg/day dose group had erythema (grade 1). One rat in the 250 mg/kg/day dose group had grade 2 erythema. Significant (P<0.01) desquamation (grade 1) occurred in one rat at the 100 mg/kg/day dose and six rats in the 250 mg/kg/day dose. One 50 mg/kg/day dose group rat also had grade 1 edema. This observation was considered unrelated to the test substance because the incidence was not dose-dependent.
	All other clinical observations were unrelated to administration of the test substance because: 1) the incidences were not dose-dependent; 2) the values were not significantly increased, as compared with the control group values; or 3) the observations commonly occur in this strain of rat. These observations included localized alopecia, lacrimation, chromorrhinorrhea and lesions located on the head, neck or forelimb. The only necropsy observation (moderate dilation of the pelvis of the left kidney) was considered unrelated to test substance administration because it was not a dose~dependent event and occurred in only one rat in the 100 mg/kg/day dose group.
	Maternal body weight and body weight gains were significantly reduced in the 100 and 250 mg/kg/day dose group at various points for for the entire dosing period per the table below. Body weight gains were significantly reduced (P<0.05) in the 50 mg/kg/day dose group on GD 19 to 20. This reduction was not biologically important and considered unrelated to the test substance administration.
	Absolute and relative feed consumption values were reduced or significantly reduced (P<0.05to P<0.01) in the 50, 100 and 250 mg/kg/day dose groups on days 9 to 12 of gestation. Absolute and/or relative feed consumption values were significantly reduced (P<0.05to P<0.01) in the 100 and 250 mg/kg/day dose groups on days 3 to 6, 6 to 9 and 0 to 20 of gestation. These values were also reduced or significantly reduced (P<0.05to P<0.01) in the 250 mg/kg/day dose group on days 0 to 3 of gestation.
	There were 20, 19, 19 and 21 rats pregnant and Caesarean-sectioned on day 20 of gestation in the 0, 50, 100 and 250 mg/kg/day dose groups, respectively. Litter sizes and the number of live fetuses were significantly reduced (P<0.05) in the 250 mg/kg/day dose group. Litter averages for total resorptions, early resorptions and percent resorbed conceptuses and the number of dams with resorptions were increased in the 250 mg/kg/day dose group. Live fetal body weights and female fetal body weights were significantly reduced (P<0.01) in the 250 mg/kg/day dose group. There were no statistically significant or biologically important differences in the litter averages for corpora lutea, implantations and sex ratios. There were no late resorptions. No dam resorbed all conceptuses, and the numbers of dams with viable fetuses were comparable among the four dose groups.
	Fetal alterations were classified as: 1) malformations (irreversible changes which occur at low incidences in this species and strain); or 2) variations (relatively common developmental changes in this species and strain, including minor reversible delays or accelerations in development).
	The average number of caudal vertebral ossification sites per fetus was significantly reduced (P<0.01) in the 250 mg/kg/day dose group, as compared with the control group value. The fetal and litter incidences of bifid thoracic vertebral centra and, incompletely ossified sternebrae tended to be increased in the 250 mg/kg/day dose group.

mg/kg/day dose group. These delays in ossification were considered effects of the test substance and

ld	Heavy fuel oil
Date	December 7, 2012

associated with reduced fetal body weights in this dose group. No gross external or soft tissue alterations in the fetuses were observed at doses as high as 250 mg/kg/day. The incidences that occurred were neither dose-dependent nor statistically significant or the alterations occurred in only one 250 mg/kg/day dose group fetus.

Summary of Selected Maternal Weight Parameters

Dose (mg/kg/day)	0	50	100	250
Body wt –final (gr)	412.6	408.0	408.2	388.9
GD 0-3 wt gain (gr)	18.4	16.8	15.2	11.0 a
GD 3-6 wt gain (gr)	15.6	15.7	16.0	12.8
GD 6-9 wt gain (gr)	14.2	15.3	13.9	10.9
GD 9-12 wt gain (gr)	23.3	20.8	20.4	19.8
GD 12-15 wt gain (gr)	21.8	22.8	21.9	21.1
GD 15-19 wt gain (gr)	61.2	57.5	60.0	56.0
GD 19-20 wt gain (gr)	19.4	16.7	17.7	13.0 b
GD 0-20 wt gain (gr)	174.0	165.7	165.b	144.7 1b

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

Summary of Mean Selected Reproduction and Litter Data

0	50	100	250
20.2	18.7	19.8	18.7
16.4	16.0	17.0	15.8
312	282	300	288
15.6	14.8	15.8	13.7b
15.6	14.8	15.8	13.7b
51.3	52.5	48.5	47.5
0.8	1.2	1.2	2.0
10	12	13	16
	16.4 312 15.6 15.6 51.3 0.8	20.2 18.7 16.4 16.0 312 282 15.6 14.8 15.6 14.8 51.3 52.5 0.8 1.2 10 12	20.2 18.7 19.8 16.4 16.0 17.0 312 282 300 15.6 14.8 15.8 15.6 14.8 15.8 51.3 52.5 48.5 0.8 1.2 1.2 10 12 13

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

Fetal Endpoints

Dose (mg/kg/day)	0	50	100	250
Fetal weights (gr)	3.60	3.62	3.68	3.41b
Litters evaluated	20	19	19	21
Live fetuses - total	312	282	300	288
Dead fetuses – dead	0	0	0	0
% Resorbed conceptuses	5.9	7.6	7.2	12.7
per litter				
Litters with any alteration	5(25.0)	8(42.1)	5(26.3)	10(47.6)cd
(N;%)c				
Fetuses with any alteration	6(1.9)	9(3.2)	8(2.7)	14(4.9)cd
(N;%)c				
Fetuses with any alteration	1.84	3.40	2.52	4.84
per litter (mean %)c				

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) See text for discussion of results.

d) Some of the specific fetal alterations in this group were judged to be test substance related based on criteria described above.

The maternal NOAEL for dermal exposure to HVGO during GD 0-19 was determined to be <50 mg/kg/day (LOAEL = 50 mg/kg/day based on skin irritation and feed consumption).

Conclusion:

5. Toxicity

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
-	
	Reviewer's note: reduced feed consumption did not result in significantly lower body weights or body weight gains at this dose level (50 mg/kg).
	The developmental NOAEL for dermal exposure to HVGO during GD 0-19 was determined to be 100 mg/kg/day. (LOAEL = 250 mg/kg/day based on decreased fetal body weights, and increased variations in fetal skeletal ossification.
RELIABILITY/DATA QUALITY	
Reliability:	Valid Without Restrictions (KS=1)
Reliability Remarks:	Non guideline study, but with adequate detail to make NOAEL determination.
Key Study Sponsor Indicator:	Кеу
REFERENCE	
Reference:	ARCO. 1993. Developmental Toxicity (Embryo-Fetal Toxicity and Teratogenic Potential) Study of F-197 Administered Percutaneously to Crl:CD®BRK VAF/Plus® Presumed Pregnant Rats. Report ATX-92-0154.
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR.
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009
High Proc	duction Volume Information System (HPVIS)
DEVELOPMENTAL TOXICITY/TE	ERATOGENICITY
TEST SUBSTANCE	
Category Chemical: Test Substance:	64741-62-4 64741-62-4: Clarified Slurry Oil (CSO): Petrobase

Test Substance: **Test Substance**

64741-62-4; Clarified Slurry Oil (CSO): Petrobase Clarified Slurry Oil; (F-179)

Purity/Composition		•	,						
and Other Test Substance		PAC	Content	– report	no. 6572	6-ZA-ZR	(Mobil, 1	994)	
Comments:	Sample	DMS	1-	2-	3-	4-	5-	6-	7-
	# '	0	ARC	ARC	ARC	ARC	ARC	ARC	ARC
		wt.% ¹	$(\%)^2$	(%)	(%)	(%)	(%)	(%)	(%)
	091645		0.00	0.70	10.0	30.00	20.00	6.00	0.00
	(F-179)								
Category Chemical Result Type : Unable to Measure or Estimate Justification :	 Percen method a ARC is have 1 arc with 2 aror Measured 	as descril "aromatio matic ring	bed in AF c ring cla g within t	PI (2008) ss". "ARe he total s	C 1 (%)" sample. "	is the we ARC 2 (%	ight perc	ent of PA	ACs that
METHOD									
Route of Administration:	Dermal, no	on-occlud	led						
Other Route of Administration:									

Type of Exposure:	Developmental toxicity
Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Kingston, NY)
Other Strain:	Not applicable
Gender:	Females (non treated males used for mating)
Number of Animals per Dose:	15 per dose level of CSO per details below 20 per dose for sham control
Concentration:	
Dose:	0, 0.05, 10.0, 250 mg/kg/day
Year Study Performed :	1994
Method/Guideline Followed:	Other
GLP:	Yes
Exposure Period:	Gestation day (GD) -7 to 20
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to determine the developmental toxicity of CSO (F-179) following dermal administration to female rats daily for one week prior to mating through day 20 of gestation.
	 Females were randomly assigned to four treatment groups and dosing began one week prior to the start of mating (GD -7) and throughout mating. Males were not treated. Mating was confirmed by detection of sperm in a vaginal smear or a copulatory plug. Females that exhibited positive signs of mating (GD 0) also received the test article through presumed GD 20. The treatment groups and time exposure periods were as follows: Sham control (0 mg/kg/day) – 20 (18 animals at GD 0) CSO 1.0 mg/kg/day – 15 (11 animals at GD 0) CSO 241.0 mg/kg/day – 15 (12 animals at GD 0) CSO 965.0 mg/kg/day – 15 (14 animals at GD 0)
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	The test material was administered to groups 2-4 on GD -7 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. With the exception of test article application, control animals underwent the same procedure as the other treatment groups. The dose administered was based upon the day -7 body weight for the premating period and the GD 0 body weight for the gestation period.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted.
	Individual body weights were recorded at receipt, near the end of the quarantine period, on days -7 and -1 (premating period), on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days -7 to -1 (premating); for GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).

5.	То	xic	ity
----	----	-----	-----

Each litter was observed daily during lactation day 0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.

Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.

The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The ovaries were examined and the number of corpora lutea was determined for each female that delivered. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup were recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.

STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model. For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.

For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day 0, pup alterations at lactation day 0, male pups at days 0 and 4, survival of pups at lactation day 4) were analyzed by the "weighted" GLM, with litter size as the "weights" and as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the variances. For all proportions and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Id Heavy fuel oil Date December 7, 2012

5. Toxicity

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)						
Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:	
LOAEL – Dermal	Maternal	=	10		mg/kg/day	
NOAEL- Dermal	Maternal	=	0.05		mg/kg/day	
LOAEL - Dermal	Offspring (F1)	=	250		mg/kg/day	
NOAEL - Dermal	Offspring (F1)	=	10		mg/kg/day	

Results Remarks:

The animals used in the study were between 13 and 14 weeks of age at exposure initiation.

There were no mortalities during the study.

A higher incidence of vaginal discharge was noted during Days 13 through 22 of gestation for females in the 250 mg/kg dose group. There were no other clinical observations that were considered to be related to treatment with the test article.

Body weights of females dosed at 250 mg/kg were significantly lower than those of the controls on Day -1 of the premating period. Body weights of pregnant females in the 250 mg/kg dose group were also significantly lower than those of the control females throughout most of gestation.

Body weight changes for females dosed at 10.0 or 250.0 mg/kg were significantly lower than those of controls between Days -7 and -1 of the premating period. Body weight changes for pregnant females in the 250 mg/kg dose group were also lower than those of the control females between Gestation Days 0 to 4, 12 to 16, and 16 to 20.

Absolute and relative food consumption for females in the 10.0 and 250 mg/kg dose groups were significantly lower than that of the controls during Days -7 to -1 of the premating period. At a dose of 10.0 mg/kg, absolute and relative food consumption for pregnant females was significantly lower than that of the controls during GD 0 to 4; relative food consumption was also significantly lower (p<0.05) than that of controls during GD 4 to 8. Absolute food consumption for pregnant females in the 250 mg/kg dose group was significantly lower than that of the control females throughout gestation; relative food consumption was significantly lower than that of the control females throughout gestation; relative food consumption was significantly lower than that of controls during GD 0 to 4, 4 to 8, 8 to 12, and 12 to 16.

Decreased thymus size was noted at necropsy for all females in the 250 mg/kg dose group. There were no other necropsy findings that were considered to be related to the test article.

Fertility rates of 39 to 50% were noted for all groups during the study. The reason for these low fertility rates was not determined. Because decreased fertility was also noted in the control group, it was not considered to be related to the test article

Signs of developmental toxicity considered to be related to administration of F-179 was limited to the 250 mg/kg dose group; none of the females in this dose level delivered a litter. (Pregnancy was confirmed through examination of the uterine horns at necropsy)There were no significant differences between the dose groups that delivered a litter and the control group with respect to gestation length, total and live pups delivered, external pup alterations, pup body weights, proportion of pups dead on lactation day 0, proportion of pups surviving to lactation day 4, or the proportion of males on lactation days 0 and 4. None of the dose groups exhibited a significant difference from the control group for number of implantation sites.

Conclusion:

Summary of Selected Maternal Weight Parameters

Dose (mg/kg/day)	0	0.05	10	250
Body wt day -7	284.	282.20	286.33	284.73
Body wt day -1	293.05	285.07	286.53	261.73b
Body wt –final (g)	424.29	455.60	419.17	271.17 b
Body wt – lactation	349.00	355.33	348.50	NAc
day 0				
Body wt – lactation	354.60	350.40	357.40	NAc
day 4				
Premating day -7 to	8.25	2.87	0.20b	-23.00b
-1 wt gain (g)				
GD 0-4 wt gain (g)	27.00	29.60	16.50	-4.67b
GD 4-8 wt gain (g)	16.29	16.80	13.33	9.17
GD 8-12 wt gain (g)	15.29	19.60	21.80	9.17
GD 12-16 wt gain (g)	23.57	30.60	19.20	-26.50b
GD 16-20 wt gain (g)	41.0	65.80	46.33	3.50b
Lactation day 0-4 wt	11.50	-13.33	5.50	NAc
gain (g)				

a)Statistically different from control (p<0.05) b)Statistically different from control (p<0.01)

c)Not applicable no fomales delivered

c)Not applicable - no females delivered

Summary of Mean Selected Reproduction and Litter Data

Dose (mg/kg/day)	0	0.05	10	250
Dams with	1	0	1	6
resorptions				
Implantation sites	11.7	14.4	10.5	9.0
(mean)				
Number of litters	6	5	5	0
with live pups				
Total pups/litter (day	13.0	13.2	10.8	(C)
0)				
Live pups/litter (day	12.7	13.0	10.8	(C)
0)				
Proportion pups	97.4	81.5	92.6	(C)
surviving to day 4				
(%)				
Pup weights (g) –	6.747	6.557	6.280	(C)
mean, day 0				
Pup weights (g) –	9.815	9.215	9.004	(C)
mean, day 4				

a)Statistically different from control (p<0.05) b)Statistically different from control (p<0.01) c)No females delivered

Given the design of the study and the results observed, it is not possible to determine if the effects observed were a result of an effect on the dam and the ability to produce and carry a conceptus, or a direct effect on the embryo/fetus. The maternal NOAEL for dermal exposure to CSO during gestation days -7 to 20 was determined to be 0. 05 mg/kg/day (LOAEL= 10.0 mg/kg/day based on decreased body weight changes and food consumption).

The developmental NOAEL for dermal exposure to CSO during gestation days -7 to 20 was determined to be 10.0 mg/kg/day (LOAEL = 250.0 mg/kg/day based on a 100% resorption rate – none of the females delivered).

a 100% resorption rate – none of the females delivered). RELIABILITY/DATA QUALITY Reliability: Valid Without Restrictions (KS=1)

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
Reliability Remarks: Key Study Sponsor Indicator:	Non guideline study, but with adequate detail to make NOAEL determination. Key
REFERENCE	
Reference:	ARCO. 1994. A Developmental Toxicity Screen in Female Sprague-Dawley Rats Administered F-179 Dermally During GD -7 to 20. 1994. Report ATX-91-0155.
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009
High	n Production Volume Information System (HPVIS)
DEVELOPMENTAL TOXICITY/T	ERATOGENICITY
TEST SUBSTANCE	
Category Chemical: Test Substance:	64741-62-4 64741-62-4; FCCU Clarified Oil, Carbon Black Oil (CBO)

Test Substance Purity/Composition

64741-62-4; FCCU Clarified Oil, Carbon Black Oil (CBO) CBO (F-229)

and Other Test Substance	PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)								
Comments:	Sample #	DMS O wt.% 1	1-ARC (%) ²	2-ARC (%)	3-ARC (%)	4-ARC (%)	5-ARC (%)	6-ARC (%)	7-ARC (%)
	091692 (F-229)		0.00	3.00	20.00	30.00	10.00	4.00	0.00
	 Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008). ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings 								
Category Chemical Result Type	Measured								
Unable to Measure or Estimate Justification:									
METHOD									
Route of Administration:	Dermal, no	on-occlu	uded						
Other Route of Administration:									
Type of Exposure:	Developme	ental to:	vicity						
Species:	Rat								
Other Species:	Not applic	able							
Mammalian Strain:	Sprague-E	Dawley	(Charles	River, W	ilmington,	MA)			
Other Strain:	Not applic	able							
Gender:	Females (non trea	ted male	s used fo	r mating)				
Number of Animals per Dose:	12 per dos 15 per dos				dose lev	el of test	material		

236 / 370

Concentration:	
Dose:	0, 0.05, 10, 50 mg/kg/day
Year Study Performed :	1994
Method/Guideline Followed:	Other
GLP:	No information
Exposure Period:	Gestation Day (GD) 0 to 20
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to determine the developmental toxicity of CBO (F-229) following dermal administration to female rats daily for days 0 through day 20 of gestation.
	Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Females that exhibited positive signs of mating were randomly assigned to four treatment groups. Males were not treated. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of sperm in a vaginal smear or a copulatory plug:
	 Sham control 0 mg/kg/day – 15 animals (GD 0-20) CBO 0.05 mg/kg/day – 12 animals (GD 0-20) CBO 10 mg/kg/day – 12 animals (GD 0-20) CBO 50.mg/kg/day – 12 animals (GD 0-20)
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	The animals used in the study were between 12 and 13 weeks of age at exposure initiation.
	The test material was administered to groups 2-4 on GD 0 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Test article was applied to alternating sites (intrascapular and lumbar regions). Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. The dose administered was based upon the GD 0 body weight. With the exception of test article application, control animals underwent the same procedures as treated animals. Dosing was based on the results of an irritation pre-screening test conducted prior to initiation of the developmental study.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill- health or abortion. All unusual findings were noted.
	Individual body weights were recorded at receipt, near the end of the quarantine

Individual body weights were recorded at receipt, near the end of the quarantine period, on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).

Each litter was observed daily during lactation day0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.

Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.

5. Toxicit	y			ld H	eavy fuel oil
				Date D	ecember 7, 2012
		orifices, and the cer implantation sites w non-gravid. Dead pu lactation days 0 and	4, the sex and weig ving pups were exar	bdominal viscera. T emales, including th examined externally pht of each pup was	he number of
		were evaluated by A dose groups had eq variances were equa nonparametric techr one way ANOVA us significant difference to determine which to the ANOVA, a sta	ual variance at the al, the testing was d niques were used. F sing the F distribution es among the means	tt's test was perform Ipercent level of sig one using parametric or the parametric pr to assess significa s were indicated, Du fered significantly fr halysis for linear res	ned to determine if the nificance. If the c methods; otherwise, ocedures, a standard ince was used. If unnett's test was used om control. In addition ponse in the dose
		For the nonparameter using the Kruskal-W indicated, Dunn's Se groups differed sign Jonckheere's test for test for equal varian	/allis test. If significa ummed Rank test wa ificantly from control or monotonic trend in	nt differences amon as used to determin . In addition to the n the dose response inducted at the 1% k	e which treatment Kruskal-Wallis test, was performed. The evel of significance. All
		length, total number probability plots of the used to judge wheth homogeneous varia the usual analysis we was used, where the the usual analysis we All proportions (dear male pups at days of the "weighted" GLM model. The assump- reciprocal of the var	vas invalid, a "weight e weights were prop vas valid, the data we d pups at lactation d and 4, survival of p d, with litter size as the tion was made that iances. For all propo- thin the litter, and gr	Id number of live put ts of residuals by tre- from the assumption to invalidate the usu ted" General Linear ortional to the recip ere analyzed with a ay0, pup alterations ups at lactation day he "weights" and as these weights were ortions and mean put	ps per litter, normal eatment group were as of normality and al ANOVA analysis. If Model (GLM) analysis rocal of the variance. If non-weighted GLM. at lactation day0, 4) were analyzed by a covariate in the
		determined by the F single analytical me of the DMSO-extrac or MS detector. The	thod that involves so ted concentrate of F e DMSO extraction p at highly alkylated P/	scribed elsewhere. blvent extraction (DI PACs by gas chroma brocedure is selectiv	Briefly the PAC 2 is a MSO) and an analysis atography with an FID re for the less polar
TEST RESULTS		, , , , , , , , , , , , , , , , , , ,	· /		
	Con	•			
Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	50		mg/kg/day
NOAEL- Dermal	Maternal	=	10		mg/kg/day

Id Heavy fuel oilDate December 7, 2012

LOAEL - Dermal	Offspring (F1)	=	50	mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	10	mg/kg/day

Results Remarks:

No mortality occurred during the study.

Slight to moderate (primarily slight) erythema and eschar and slight edema and dry skin were observed, both on treated and untreated skin in the carrier control group. Slight erythema, eschar and/or dry skin were observed at the test site for one or more animals in the 0.05 mg/kg test article dose group. Slight erythema was observed at the test site for one or more animals in the test site for one or more animals in the 10 mg/kg test article dose group. Since the dermal irritation observed in the treated groups was noted with a similar degree and frequency in the control group, these findings are not considered to be treatment related. In addition, one animal in the 50 mg/kg dose group was recorded as having pale eyes on GD 17 - 21. This finding is also not considered to be treatment related.

In the 50 mg/kg test article dose group, there was an increased incidence of vaginal discharge and the gestation length (days) was significantly longer (p<0.01) than that of the control group. There were no other clinical observations that were considered to be related to treatment with the test article.

Body weights for pregnant females in the 50 mg/kg dose group were significantly lower (p<0.05) than those of the control females on GD 16 and significantly lower (p<0.01) than those of the

control females on GD 20. Body weight changes for pregnant females in the 50 mg/kg dose group were significantly lower (p<0.01) than those of the control females between GD 0 to 4 and 16 to 20. They were also significantly lower (p<0.05) than those of the control females between GD 4 to 8 and Lactation Days 0 to 4. There were no other effects on body weights or body weight changes at any of the dose levels.

Mean absolute food consumption for pregnant females in the 50 mg/kg dose group was significantly lower (p<0.01) than that of the control females between GD 16 to 20. Relative food consumption for pregnant females in the 10 mg/kg dose group was significantly higher (p<0.05) than that of the control females during GD 12 to 16. This difference is not considered to be

related to treatment with the test article since the relative food consumption was not significantly different at the higher dose level of 50 mg/kg. There were no other effects on absolute or relative food consumption at any of the dose levels.

No lesions related to administration of the test article were noted for females in any of the dose groups. At a dose of 50 mg/kg, the total number of pups delivered and the total number of live pups delivered were significantly lower (p<0.01) than the control females. The proportion dead on Lactation Day 0 was significantly higher (p<0.01) than the control females. The proportion males was significantly lower (p<0.05) than the control group on Lactation Days 0 and 4. At a dose of 50 mg/kg, the live pup weights on Lactation Day 0 were significantly lower (p<0.01) than those of the control group.

For all dose groups, there were no significant differences for the number of implantation sites, proportion surviving to Lactation Day 4 or external pup alterations.

Dose (mg/kg/day)	0	0.05	10	50
Body wt –final (g)	424.5	420.3	420.3	357.9b
Body wt – lactation day 0	325.1	329.9	316.3	327.8

ld Heavy fuel oil Date December 7, 2012

Body wt – lactation day 4	334.8	337.9	328.1	318.0
GD 0-4 wt gain (g)	23.5	25.9	22.7	14.4b
GD 4-8 wt gain (g)	16.5	21.3	16.5	11.5a
GD 8-12 wt gain (g)	22.7	21.8	22.6	19.7
GD 12-16 wt gain (g)	32.8	32.3	33.4	20.3
GD 16-20 wt gain (g)	59.1	53.6	59.6	20.2b
Lactation day0-4 wt	9.7	8.0	11.8	-9.8a
gain (g)				

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

Summary of Mean Selected Reproduction and Litter Data

Dose (mg/kg/day)	0	0.05	10	50
Number of dams pregnant	15	8	11	10
Number of dams with resorptions	0	0	0	0
Number of dams that delivered	15	8	11	6
Implantation sites - Mean	16.4	14.0	16.7	15.5
Number of litters with live pups	15	8	11	6
Total pups/litter (day 0)	14.0	13.0	15.4	6.5b
Live pups/litter (day 0)	13.9	12.9	15.1	4.5b
Proportion surviving to day 4 (%)	87	83	95	74
Proportion males – day 0	49	49	48	25a
Proportion males – day 4	55	55	48	30a
Pup weights (g) – mean, day 0	6.681	6.338	6.453	5.598b
Pup weights (g) – mean, day 4	8.969	8.744	8.567	7.418

a)Statistically different from control (p<0.05) b)Statistically different from control (p<0.01)

Conclusion:

Given the design of the study and the results observed, it was not possible to determine if the effects observed were a result of an effect on the dam and the ability to produce and carry a conceptus, or a direct effect on the embryo/fetus. The systemic maternal NOAEL for dermal exposure to CBO during GD 0-20 was determined to be 10 mg/kg/day; the LOAEL= 50 mg/kg/day based on decreased body weight on GD 16 and 20, decreased body weight changes between GD 0-4, 4-8, 16-20 and between Lactation Days 0-4, an increased incidence of vaginal discharge and an increase in gestation length.

The developmental NOAEL for dermal exposure to CBO during GD 0-20 was determined to be 10 mg/kg/day; the LOAEL = 50 mg/kg/day based on decreased total and live pups per litter, increased proportion dead on Lactation Day 0, decreased proportion of males on Lactation Days 0 and 4, and a decrease in pup body weights on Lactation Day 0.

	body weights on Lactation Day 0.
RELIABILITY/DATA QUALITY	
Reliability:	Valid Without Restrictions (KS=1)

Id Heavy fuel oil Date December 7, 2012
Non guideline study, but with adequate detail to make NOAEL determination for the endpoints measured. Key
 ARCO. 1994. A Developmental Toxicity Screen in Female Sprague-Dawley Rats Administered F-229 Dermally During GD 0 to 20. Report ATX-91-0267. Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009

High Production Volume Information System (HPVIS)

64742-86-5

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

Category Chemical: Test Substance:

64742-86-5; Hydrodesulfurized Heavy Vacuum Gas Oil (HHVGO) HHVGO (F-227)

Test Substance Purity/Composition and Other Test Substance Comments:

(F-227) PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)

Sample #	DMS O wt.%	1- ARC (%) ²	2- ARC (%)	3- ARC (%)	4- ARC (%)	5- ARC (%)	6- ARC (%)	7- ARC (%)
091690 (F-227)		0.10	0.70	3.00	2.00	1.00	0.30	0.00

1) Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008).

2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings Measured

Category Chemical Result Type :

Unable to Measure or

Estimate Justification :	
METHOD	
Route of Administration:	Dermal, non-occluded
Other Route of Administration:	
Type of Exposure:	Developmental toxicity
Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Wilmington, MA)
Other Strain:	Not applicable
Gender:	Females (non treated males used for mating)
Number of Animals per Dose:	12 per dose at 50, 333, or 1000 mg/kg dose level of test material 15 per dose for sham control
	241 / 370

Concentration:

Dose:

Year Study Performed :

Method/Guideline Followed:

GLP:

Exposure Period:

Frequency of Treatment:

Post-Exposure Period:

Method/Guideline and Test Condition Remarks:

0, 50, 333, 1000 mg/kg/day 1994 Other No information Gestation Day (GD) 0 to 20 Once per day None

The study was designed to determine the developmental toxicity of HHVGO (F-227) following dermal administration to female rats daily for days 0 through day 20 of gestation.

Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Females that exhibited positive signs of mating were randomly assigned to four treatment groups. Males were not treated. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of sperm in a vaginal smear or a copulatory plug:

- 1. Sham control 0 mg/kg/day 15 animals (GD 0-20)
- 2. HHVGO 50 mg/kg/day 12 animals (GD 0-20)
- 3. HHVGO 333 mg/kg/day 12 animals (GD 0-20)
- 4. HHVGO 1000.mg/kg/day 12 animals (GD 0-20)

At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.

The animals used in the study were between 12 and 13 weeks of age at exposure initiation.

The test material was administered to groups 2-4 on GD 0 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Test article was applied to alternating sites (intrascapular and lumbar regions). Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. The dose administered was based upon the GD 0 body weight. With the exception of test article application, control animals underwent the same procedures as treated animals. Dosing was based on the results of an irritation pre-screening test conducted prior to initiation of the developmental study.

Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted.

Individual body weights were recorded at receipt, near the end of the quarantine period, on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).

Each litter was observed daily during lactation day0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.

Each female that mated was sacrificed by overexposure to carbon dioxide

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.
	The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup was recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.
	STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model. For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.
	For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day 0, pup alterations at lactation day 0, male pups at days 0 and 4, survival of pups at lactation day 4) were analyzed by the "weighted" GLM, with litter size as the "weights were proportional to the reciprocal of use as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.
	<u>PAC Analysis:</u> The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)
TEST RESULTS	
	Concentration (LOAEL/LOAEC/NOAEL/NOAEC)
Type Deputction	Value Value et Lewer Unner United

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)							
Туре	Population:	Value	Value or Lower	Upper	Units:		
243 / 370							

		Description:	Concentration:	Concentration:	
LOAEL – Dermal	Maternal	=	333		mg/kg/day
NOAEL- Dermal	Maternal	=	50		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	333		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	50		mg/kg/day

Results Remarks:

One female in the 1000 mg/kg dose group was found dead on GD 16. No other mortalities occurred in this phase of the study.

No dermal irritation was observed at the test site for animals in the 50 mg/kg dose group. Slight dermal irritation (erythema, eschar, and/or dry skin) was observed at the test site for four animals in the 333 mg/kg dose group. The duration of the irritation was less than one week for all of the animals. Slight to extreme (primarily slight) erythema, slight to moderate edema, and slight eschar were observed at the test site for nine of the animals in the 1000 mg/kg dose group.

The incidence of vaginal discharge was higher than that of the control group for females in the 333 and 1000 mg/kg dose groups. One female in the 333 mg/kg dose group and two females in the 1000 mg/kg dose group were pale in color for four to 11 days. One female in the 333 mg/kg dose group was cold to touch for one day. Red/black stained coat in the perineal region was noted for two females in the 1000 mg/kg dose group. One female in the 1000 mg/kg dose group was found dead on GD 16. There were no other clinical observations that were considered to be related to treatment with the test article.

At a dose of 50 mg/kg, there were no significant differences in body weights or body weight changes when compared to the control group. Body weights of pregnant females in the 333 mg/kg dose group were significantly lower (p<0.01) than those of the control females on GD 4, 8, 12, 16, and 20. Body weights of pregnant females in the 1000 mg/kg dose group were significantly lower (p<0.01) than those of the control females on GD 4, 8, 12, 16, and 20.

Body weight changes for pregnant females in the 333 mg/kg dose group were also significantly lower than those of the control females between GD 0 to 4 (p<0.01), and 16 to 20 (p<0.05). Body weight changes for females dosed at 1000 mg/kg were significantly lower (p<0.01) than those of controls between GD 0 to 4, 12 to 16, and 16 to 20.

At a dose of 50 mg/kg, there were no significant differences in absolute or relative food consumption when compared with the control group. Absolute food consumption for pregnant females in the 333 mg/kg dose group was significantly lower than that of the controls during GD 0 to 4 (p<0.01), 4 to 8 (p<0.01), and 8 to 12 (p<0.05). Relative food consumption for pregnant females in the 333 mg/kg dose group was significantly lower (p<0.01) than that of the controls during GD 0 to 4 (p<0.01) than that of the controls during GD 0 to 4 (p<0.01) and 4 to 8 (p<0.01) and during Lactation Days 0 to 4 (p<0.05). Absolute food consumption for pregnant females in the 1000 mg/kg dose group was significantly lower (p<0.01) than that of the controls during GD 0 to 4, 4 to 8, 12 to 16, and 16 to 20 (p<0.01). Relative food consumption for pregnant females in the 1000 mg/kg dose group was significantly lower (p<0.01) than that of the controls during GD 0 to 4 and 4 to 8.

In one female in the sham control group, the papillary process lobe of the liver appeared mottled, extending all of the way through the cut surface. The lobe was white-yellow and light red in color. No lesions related to administration of the test article were noted for females in the 50 and 333 mg/kg dose groups. The 1000 mg/kg female found dead on GD 16 had red stained coat in the perineal, inguinal, and abdominal regions; a red stained tail; red nasal

discharge; a gastrointestinal tract filled with black fluid; a pale liver and kidneys; and a uterus that contained both early and late resorptions. An additional female had two early resorptions in the uterus. Another female in this dose group exhibited slight eschar on the left flank and eschar in the cervical region.

At a dose of 50 mg/kg, the proportion of males on Lactation Day 0 was significantly lower (p<0.05) than that of the control group. This difference was not considered to be related to the test article because the proportion of males on Lactation Day 0 was not significantly lower at a higher dose of 333 mg/kg. At a dose of 333 mg/kg, the number of total and live pups on Lactation Day 0 was significantly lower (P<0.01) than that of the control group.

Pup body weights for the 333 dose group were significantly lower than those of the controls on Lactation Days 0 (p<0.05) and 4 (p<0.01). One of the pregnant females in this dose group delivered only dead pups. At a dose of 1000 mg/kg, none of the 12 pregnant females in the group delivered a litter. For the 50 and 333 mg/kg dose groups, there were no significant differences in the number of implantation sites, gestation length, proportion dead on Lactation Day 0, proportion surviving to Lactation Day 4, proportion of males on Lactation Day 4, or external pup alterations. There were no significant differences in the number of implantation sites between the 1000 mg/kg dose group and the control group.

Summary of Selected	Maternal	Weight Parameters
---------------------	----------	-------------------

Dose (mg/kg/day)	0	50	333	1000
Body wt –final (g)	423.9	420.5	366.2b	299.1b
Body wt – lactation	320.8	317.9	306.4	NA
day 0				
Body wt – lactation	336.7	331.5	313.8	NA
day 4				
GD 0-4 wt gain (g)	23.7	19.8	2.9b	-5.7b
GD 4-8 wt gain (g)	16.0	16.9	16.4	16.7
GD 8-12 wt gain (g)	23.3	22.5	19.0	19.2
GD 12-16 wt gain (g)	28.7	28.3	21.8	-7.0b
GD 16-20 wt gain (g)	59.7	58.5	36.4a	2.0b
Lactation day0-4 wt	15.9	13.6	7.8	NA
gain (g)				

a)Statistically different from control (p<0.05) b)Statistically different from control (p<0.01)

b) Statistically different from control (p<0.

NA=not applicable

Summary of Mean Selected Reproduction and Litter Data

Doco (ma/ka/dov)	0	50	333	1000	
Dose (mg/kg/day)	•				
Number of dams	15	11	12	12	
pregnant					
Number of dams	0	0	0	3	
with resorptions					
Number of dams	15	11	11*	0	
that delivered					
Implantation sites -	16.4	17.0	25.8	15.4	
Mean					
Number of litters	15	11	11	NA	
with live pups					
Total pups/litter (day	15.1	15.3	9.5b	NA	
0)					
Live pups/litter (day	14.9	14.7	8.6b	NA	
0)					
Proportion surviving	97	94	89	NA	
to day 4 (%)					
Pup weights (g) –	6.723	6.538	6.080a	NA	

Id Heavy fuel oil Date December 7, 2012

	mean, day 0								
	Pup weights (g) – mean, day 4	10.188	10.016	7.080b	NA				
Conclusion:	 a) Statistically different from control (p<0.05) b) Statistically different from control (p<0.01) NA=not applicable *One dam in this dose group delivered only dead pups Given the design of the study and the results observed, it was not p determine if the effects observed were a result of an effect on the d ability to produce and carry a conceptus, or a direct effect on the err The systemic maternal NOAEL for dermal exposure to HHVGO dur was determined to be 50 mg/kg/day; the LOAEL= 333 mg/kg/day b decreased body weight, body weight changes and food consumption The developmental NOAEL for dermal exposure to HHVGO during was determined to be 50 mg/kg/day; the LOAEL = 333 mg/kg/day b decreased number of total and live pups on lactation days 0, and a pup body weight on lactation days 0 and 4. In addition, one female mg/kg group failed to deliver. 								
RELIABILITY/DATA QUALITY									
Reliability:	Valid Without Restriction	, , , , , , , , , , , , , , , , , , ,							
Reliability Remarks: Key Study Sponsor Indicator:	Non guideline study, b the endpoints measure		ate detail to ma	ake NOAEL de	etermination fo				
	Key								
REFERENCE									
Reference:	ARCO. 1994. A Develo Rats Administered F-22								

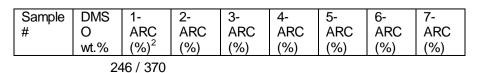
Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR

API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE


5. Toxicity

Category Chemical: Test Substance:

Test Substance Purity/Composition and Other Test Substance Comments:

64741-57-7 64741-57-7; Heavy Vacuum Gas Oil (HVGO); VDF Gas Oil Heavy Vacuum Gas Oil; (F-196)

PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)

5. Toxicity	Id Heavy fuel oil Date December 7, 2012							
	091649 0.10 0.30 3.00 2.00 2.00 0.70 0.00 (F-196)							
	1) Percent of DMSO-extractable materials (mostly PACs), determined by the							
	PAC 2 method as described in API (2008).2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that							
	have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings							
Category Chemical Result Type :	Measured							
Unable to Measure or Estimate Justification :								
METHOD								
Route of Administration:	Dermal, non-occluded							
Other Route of Administration:								
Type of Exposure:	Developmental toxicity							
Species:	Rat							
Other Species:	Not applicable							
Mammalian Strain:	Sprague-Dawley (Charles River, Portage, MI)							
Other Strain:	Not applicable							
Gender:	Females (non treated males used for mating)							
Number of Animals per Dose:	25 per dose for level							
Concentration:								
Dose:	0, 75, 150, 300 mg/kg/day							
Year Study Performed :	1993							
Method/Guideline Followed:	Similar to OECD 414 (Prenatal Developmental Toxicity Study)							
GLP:	Yes							
Exposure Period:	Gestation day (GD) 0-19							
Frequency of Treatment:	Once per day							
Post-Exposure Period:	None							
Method/Guideline and Test Condition Remarks:	The study was designed to evaluate the developmental toxicity (embryo-fetal toxicity and teratogenic potential) of HVGO (F-196) administered percutaneously to presumed pregnant rats.							
	Prior to the initiation of dosing with the test substance, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of sperm in a vaginal smear or a copulatory plug, the individual, presumed pregnant females were randomly assigned to four treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of evidence of mating: 1. Vehicle control (acetone) 0 mg/kg/day – 25 animals (GD 0-19)							
	2. HVGO 75 mg/kg/day – 25 animals (GD 0-19) 3. HVGO 150 mg/kg/day – 25 animals (GD 0-19) 4. HVGO 300 mg/kg/day – 25 animals (GD 0-19)							
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.							
	Suspensions of F-196 were prepared daily at concentrations of 0 (vehicle, acetone), 75, 150 and 300 mg/mL such that doses of 0, 75, 150, and 300 mg/kg/day, respectively, were administered at a volume of 1 mL/kg. Animals in all							
	247 / 370							

groups were treated on GD 0 through GD 19. Each treatment day, animals were dosed by even application of the test substance to their shaved backs, using a blunt-tipped glass syringe. The test substance dose was calculated from each rat's most recent body weight. Rats were fitted with Elizabethan collars to minimize ingestion of test substance. Controls were handled in the same manner but with application of the vehicle only. Elizabethan collars were applied just prior to dosing and were removed after a 6 hour exposure period. At the time of collar removal, any excess test article was wiped off with a cloth dipped in acetone and dried with a clean cloth.

Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of illhealth or abortion. All unusual findings were noted. Skin reactions were graded using the Draize and National Research Council standards.

Individual body weights and food consumption were recorded daily during presumed gestation.

All rats were sacrificed by carbon dioxide asphyxiation on day 20 of presumed gestation, and a gross necropsy of the thoracic and abdominal viscera was performed. The abdomen of each rat was opened, and the intact uterus was excised and examined for pregnancy. To confirm the pregnancy status, uteri from rats that appeared non-pregnant were examined while transilluminated and pressed between two glass plates. Tissues with gross lesions were preserved in neutral buffered 10% formalin for possible future evaluation; all other maternal tissues were discarded.

Corpora lutea in each ovary were recorded. The number and distribution of implantations, early and late resorptions, and live and dead fetuses were noted. An early resorption was defined as one in which organogenesis was not grossly evident. A late resorption was defined as one in which the occurrence of organogenesis was grossly evident. A live fetus was defined as a term fetus that responded to mechanical stimuli. Nonresponding term fetuses were considered to be dead. Dead fetuses and late resorptions were differentiated by the degree of autolysis present; marked to extreme autolysis indicated that the fetus was a late resorption.

Each fetus was removed from the uterus, placed in an individual container, weighed, and examined for weighed and examined for sex and gross external alterations. Live fetuses were sacrificed.

Approximately one-half of the fetuses in each litter were fixed in Bouin's solution and examined for soft tissue alterations by using an adaptation of Wilson's sectioning technique. The remaining fetuses in each litter were eviscerated, cleared, stained with alizarin red, and examined for skeletal alterations.

STATISTICAL ANALYSES: Maternal and fetal incidence data were analyzed using the Variance Test for Homogeneity of the Binomial Distribution. Maternal body weights, body weight changes, feed consumption values, and litter averages for fetal body weights, percent male fetuses, fetal ossification sites and percent fetal alterations were analyzed using Bartlett's Test and ANOVA, when appropriate [i.e., Bartlett's Test was not significant (P>0.05)]. If the analysis of variance was significant (P<0.05), Dunnett's Test was used to identify the statistical significance of the individual groups. If the analysis of variance was not appropriate [i.e., Bartlett's Test was significant (P<0.05)], the Kruskal-Wallis test was used, when less than or equal to 75% ties were present. When more than 75% ties were present, Fisher's Exact Test was used. In cases in which the Kruskal-Wallis Test was statistically significant (P<0.05), Dunn's Method of Multiple Comparisons was used to identify the statistical significance of the individual groups. All other Caesarean-sectioning data were evaluated using the procedures described for the Kruskal-Wallis Test.

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Concentration (COALD COALD NOALD NOALD NOALD)							
Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:		
LOAEL – Dermal	Maternal	=	Not determined < 75		mg/kg/day		
NOAEL- Dermal	Maternal	=	75		mg/kg/day		
LOAEL - Dermal	Offspring (F1)	=	Not determined <75		mg/kg/day		
NOAEL - Dermal	Offspring (F1)	=	75		mg/kg/day		

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

Results Remarks:

The animals used in the study were between 12 and 13 weeks of age at exposure initiation.

No deaths occurred during the conduct of this study. No skin reactions were related to percutaneous administration of the test substance at doses as high as 300 mg/kg/day. Erythema (grades 1 or 2) occurred in two 75 mg/kg/day dose group rats and one 300 mg/kg/day dose group rat. This observation was unrelated to the test substance because the incidences were not dose dependent.

All other clinical observations were unrelated to administration of the test substance because: 1) the incidences were not dose-dependent; 2) the values were not significantly increased, as compared with the control group values; or 3) the observations commonly occur in this strain of rat. These observations included lacrimation, localized alopecia, chromorrhinorrhea, chromodacryorrhea, dental problems, swollen limbs, swollen and purple ears, umbilical hernia and adhesions of the stomach, spleen, left kidney and left ovary.

Maternal body weights and body weight gains were reduced or significantly reduced (P<0.05 to P<0.01) in the 75, 150 and 300 mg/kg/day dose groups at various points throughout the dosing period, per the table below.

Absolute and relative feed consumption values were significantly reduced (P<0.05 to P<0.01) in the 75, 150 and 300 mg/kg/day dose groups for the entire dosing period (calculated as days 0 to 20 of gestation). Within the dosing period, absolute and relative feed consumption values were reduced or significantly reduced

(P<0.05 to P<0.01) in these dose groups.

Percutaneous administration at doses of 150 and 300 mg/kg/day caused biologically important and/or significant reductions (P<0.01) in litter sizes and live fetuses and, increases or significant increases (P<0.01) in resorptions (total and early resorptions) in these groups. The number of dams with any resorptions was also

significantly increased (P<0.01) in the 300 mg/kg/day dose group. Reflecting these effects, the percentage of

5. Toxicity			ld ⊦	Heavy fuel	oil	
			Date [December 7	7, 2012	
	resorbed conceptuses per litter to dose group and was significantly group.					
	Fetal body weights (total and ma reduced (P<0.05 to P<0.01) in the other Caesarean-sectioning and the test substance as high as 30	ne 75, 150 ar litter parame	d 300 mg/kg ters were un	/day dose	groups. All	
	Litter averages for corpora lutea, did not demonstrate any significat resorbed all conceptuses, and th comparable among the four dose	ant or biologic ne numbers o	cally importa	nt differend	ces. No dam	
	Fetal alterations were classified a occur at low incidences in this sp common developmental changes reversible delays or acceleration	becies and st s in this spec	rain); or 2) va ies and strai	ariations (r	elatively	
	The 75, 150 and 300 mg/kg/day cause of increased incidences of size, evident as small eye bulge(at soft tissue examination, or sm incidence of microphthalmia was significant (absence of a clear dose-dependent interrelated with the dose-dependent deaths) in the 150 and 300 mg/k	f eye malforn s) at gross e all eye socke P<0.01) in th ent incidence dent increase	nations in the xternal exam ets at skeletal e 75 mg/kg/c e for this mall es in resorpti	e fetuses [c ination, mi examination day dose gr formation r	lecrease in crophthalmia on]. The fetal roup. The nay be	
	The litter and fetal incidences of bifid thoracic vertebral centra were significantly increased (P<0.01) in the 75, 150 and 300 mg/kg/day dose groups. This variation in vertebral ossification was related to the test substance because: 1) the litter and fetal incidences were significantly increased; and 2) the incidences exceeded the ranges observed historically.					
	Reductions in the average numb occurred in the 300 mg/kg/day d substance because: 1) it was as observed with reduced fetal body range observed Historically.	ose group. T sociated with	nis event wa delays in os	s related to sification o	o the test commonly	
	No other gross external or soft tis percutaneous administration of F mg/kg/day. All other fetal alteration ranges observed historically, and differed from those of the concurrent control group. Alter group occurred in no more than a	-196 to the c ons occurred d there were erations that	lams at dose l at incidence no other inci	es as high a es within th dences tha	as 300 e control t significantly	
	Summary of Select	cted Materna	al Weight Pa	arameters		
	Dose (mg/kg/day)	0	75	150	300	
	Body wt –final (gr)	367.1	3.54.5	346.3b	331.3b	
	GD 0-3 wt gain (gr)	14.0	10.5	6.6b	3.0b	
	GD 3-6 wt gain (gr)	9.0	8.3	8.4	9.6	
	GD 6-9 wt gain (gr)	11.1	10.3	10.6	9.4	
	GD 9-12 wt gain (gr)	14.4	11.9	12.4	10.2b	
	GD 12-15 wt gain (gr) GD 15-18 wt gain (gr)	17.4 37.2	16.6 36.1	15.5 32.8	13.1b 29.9b	
	GD 19-20 wt gain (gr)	16.9	13.6	32.0 11.8b	29.90 10.0b	
		10.0			10.00	

5. Toxicity				Heavy fuel of December 7				
	GD 0-20 wt gain (gr)	132.3	120.5a	109.6b	95. 8b			
	a)Statistically different from con b)Statistically different from con	trol (p<0.	05)	100.00	00.00			
	_,,,,,		- ')					
	Summary of Mean Selected Reproduction and Litter Data							
	Dose (mg/kg/day)	0	75	150	300			
	Corpora lutea	16.5	16.3	16.2	16.1			
	Implantation sites – mean	14.7	14.3	13.1	13.9			
	Live fetuses – total Live fetuses - mean	331	294 13.4	297	231			
	Live fetuses - mean Litter size	13.8 13.8	13.4	11.9 11.9	10.0b 10.0b			
	Viable male fetuses (%)	52.0	52.0	52.1	55.3			
	Total resorptions (mean)	0.9	1.0	1.2	3.9b			
	Dams with resorptions	12	9	1.2	21b			
	a)Statistically different from con		-	17	210			
	b)Statistically different from con	Fetal E						
	Dose (mg/kg/day)		0	75	150			
	Fetal weights (gr)		3.41	3.27	3.22a			
	Litters evaluated		24	22	25			
	Live fetuses - total		331	294	297			
	Dead fetuses – dead		0	0	0			
	% Resorbed conceptuses pe	er litter	5.8	6.4	9.2			
	Litters with any alteration (N		7 (29.2)	10 (45.4)c	11 (44.0)c			
	Fetuses with any alteration		11 (3.3)	15 (5.1)c	15 (5.0)cc			
	Fetuses with any alteration		3.35	6.27cd	4.89cd			
	litter (mean %)c							
	a)Statistically different from con	trol (p<0.						
	b)Statistically different from con	ntrol (p<0.01)						
	c) See text for discussion of res	esults.						
		alterations in this group were judged to be test						
	substance related based on crit							
Conclusion:	The maternal NOAEL for derma			0				
	determined to be <75 mg/kg/day (LOAEL = 75 mg/kg/day based on reduced maternal weight gains and feed consumption).							
	The developmental NOAEL for dermal exposure to HVGO during GD 0-19 was determined to be <75 mg/kg/day. (LOAEL = 75 mg/kg/day based on decreased fetal body weights, microphthalmia and delayed ossification)							
RELIABILITY/DATA QUALITY								
Reliability:	Valid Without Restrictions (KS	S=1)						
Reliability Remarks:	Non guideline study, but with a	adequate	detail to make	NOAEL deter	rmination.			
Key Study Sponsor Indicator:	Key							
REFERENCE								
Reference:	ARCO. 1993. Developmental To Potential) Study of F-196 Admir VAF/Plus® Presumed Pregnan	nistered P	ercutaneously	to Crl:CD®B				
		Characterization and Quantitation of Polynuclear Aromatics. Mobil al and Health Sciences Laboratory Report no. 65726-ZA-ZR.						
	API. 2008. PAC Analysis Task	Group, "T	he relationship	between the	aromatic			
	251 / 370							

5. Toxicity Id Heavy fuel oil Date December 7, 2									
toxi	g class cont city of high ://www.petr	-boiling	petroleu	m substa	ances."	-		-	nental
High Prod	uction Volu	ıme Info	ormatio	n Syste	m (HPV	/IS)			
DEVELOPMENTAL TOXICITY/TERATOO	ENICITY								
TEST SUBSTANCE									
Category Chemical:	64741-57	-7							
Test Substance:	64741-57	-7; Heav	y Vacu	um Gas	Oil (HV	GO)			
Test Substance Purity/Composition	Heavy Va	icuum G	ias Oil	(CRU No	. 85244	l)			
and Other Test Substance Comments:			PAC. (Po	lycyclic	Aromati	c Comp	ound) C	ontent -	report no.
	64348ZV			190901107	a ornau	o oompo		ontont	report no.
	Sample	DMS	1-	2-	3-	4-	5-	6-	7-
	#	0	ARC	ARC	ARC	ARC	ARC	ARC	ARC
		wt.%	(%) ²	(%)	(%)	(%)	(%)	(%)	(%)
	85244 6.20 0.00 0.06 2.48 1.86 1.24 0.50 0.00 1) Percent of DMSO-extractable PACs, determined by the PAC 2 method as described in API (2008). 2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings.								
Category Chemical Result Type :	Measured		omation	ingo, an				ningo.	
Unable to Measure or Estimate Justification:									
METHOD									
Route of Administration:	Dermal, r	ion-occl	uded						
Other Route of Administration:									
Type of Exposure:	Developm	ental to	xicity so	reen					
Species:	Rat								
Other Species:	Not applicable								
Mammalian Strain:	Sprague-Dawley (Charles River, Kingston, NY)								
Other Strain:									
Gender:	Not applicable								
Number of Animals per Dose:	Females, presumed pregnant (non treated males used for mating) 10 per dose, except for an additional group of 8 animals exposed at 500 mg/kg on GD 10-19 used to obtain bioavailability data								
Concentration:	mg/kg on	GD 10-	19 0560	10 00181	Diuava	anability	uala		
Dose:	Developm 0 (remote Bioavailat 500 mg/kg	e), 0 (pro pility stu	oximate)	, 30, 12	5, 500 a	and 1000) mg/kg/	′day.	
Year Study Performed :	1988	- •							
Method/Guideline Followed:	Similar to difference	e was that							
GLP:	No inform	nation							
		252 / 3	370						

Id Heavy fuel oil Date December 7, 2012

Exposure Period:

Frequency of Treatment:

Post-Exposure Period:

Method/Guideline and Test Condition Remarks:

GD 0-19

Once per day

None

The study was designed to obtain data on the influence of HVGO on parameters of reproductive performance during gestation (implantation, litter size) and viability and development of the embryo/fetus. The study was also designed to include clinical chemistry analyses of maternal sera, and bioavailability analyses of HVGO in maternal blood, placentae and fetuses.

Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of a vaginal plug (in situ or expelled), the individual, presumed pregnant females were randomly assigned to eight treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of a vaginal plug, and spermatozoa in the vaginal lavage fluid:

- 5. *Remotely-housed dermal control (0 mg/kg/day) GD 0-19 10 animals
- Proximately-housed dermal control (0 mg/kg/day) GD 0-19 10 animals
- 7. HVGO 30 mg/kg/day GD 0-19 10 animals
- 8. HVGO 125 mg/kg/day GD 0-19 10 animals
- 9. HVGO 500 mg/kg/day GD 0-19 10 animals
- 10. HVGO 1000 mg/kg/day GD 0-19 10 animals
- 11. Radio-labeled HVGO 500 mg/kg/day GD 10-12 8 animals (bioavailability study group).

*Because inhalation of the test material could not be ruled out, a separate control group was not housed in the same animal room (remote-housed control).

The exposure levels were based on results of a 13 week study previously conducted on the same material.

Developmental study (Groups 1-6):

The test material was administered to groups 3-6 on GD 0-19. Hair was clipped from the dorsal trunk of each animal on GD 0, and once weekly during the study. Each treatment day, animals were dosed by even application of the test material to their shaved backs, using the tip of a syringe. The test material dose, calculated from each rat's most recent body weight, was measured by weight. Rats were fitted with Elizabethan collars to minimize ingestion of the test material. Controls were handled in the same manner, minus application of the test material. Control animals were clipped and collared and the intact dorsal skin of each rat was stroked with the tip of a syringe, but no test material was applied.

Each rat was observed at least once a day throughout gestation until sacrifice for 1) changes in appearance, behavior, and excretory function, and 2) signs of ill-health, mortality or abortion. All unusual findings were noted.

Individual body weights were recorded on days 0, 3, 6, 10, 13, 16, and 20 of gestation. Individual food consumption was measured during the study was calculated for GD intervals 0-3, 3-6, 6-10, 10-13, 13-16, and 16-20.

Each female was sacrificed by overexposure to ether on day 20 of its presumed gestation. The ovaries and uterus of each rat were excised and examined grossly. The thoracic and abdominal cavities were exposed and all organs were examined grossly for evidence of pathosis. The thymus and liver of each animal in Groups 1-6 were removed, trimmed of excess tissue,

5. Toxicity	Id Heavy fuel oil
-	Date December 7, 2012
	and weighed to the nearest 0.001 gram. The liver and thymus were preserved in 10 % formalin. No histopathology was performed for these tissues.
	The number of corpora lutea per ovary and the weight of the gravid uteru were recorded. The ovaries in nonpregnant females were grossly examined and then discarded. In the uterus, the number and location of implantations, early and late resorptions, and live and dead fetuses were recorded. An "early resorption" was defined as a reabsorbed dead conceptus in which it was not grossly evident that organogenesis had occurred; a "late resorption" was defined similarly but as one in which it we evident that organogenesis had occurred. A "live fetus" was defined as a fetus which responded to a stimulus, such as touch; a "dead fetus" did no respond to stimuli, nor did it demonstrate the autolysis characteristic of la resorptions. The uterus of each female that appeared non-gravid was pressed between two glass slides and examined grossly for evidence of implantation.
	Blood samples were collected at the time of sacrifice from the aorta of eart and serum was analyzed for alanine aminotransferase, albumin, alkal phosphatase, aspartate aminotransferase, bilirubin, calcium, chloride, cholesterol, creatinine, globulin, glucose, lactate dehydrogenase, iron, inorganic phosphorus, potassium, sodium, sorbitol dehydrogenase, total protein, triglycerides, urea nitrogen, and uric acid. The globulin and albumin/globulin ratios were calculated.
	Each fetus was gendered, weighed and grossly examined for anomalies, malformations and variations. The following definitions and terminology were used in describing fetal
	 findings: Anomaly: Any deviation (malformation or variation) from "normal Malformation: A permanent structural deviation which generally i incompatible with, or severely detrimental to, normal postnatal survival or development. Absence structures which should have been present, as well as deviations in tail development, are also classified as malformations. Variation: A variation is a divergence beyond the usual range of structural constitution. It has an indeterminate effect on health ar generally has no effect on survival.
	After gross evaluation, fetuses in each litter were equally distributed into two groups, and preparation begun for either soft tissue or skeletal evaluations. Approximately half of the fetuses were randomly assigned f examination of soft tissues (visceral) and were fixed in Bouin's solution, using a modification of the Wilson's technique with sectioning by razor blade. The other half were fixed in 95% ethanol, macerated in potassiun hydroxide, differentially stained for cartilage and bone, cleared in glyceri and examined for skeletal anomalies.
	Bioavailability Study (Group 6) Eight presumed-pregnant female rats were used in the bioavailability experiments. From gestation day 0 through the morning of gestation day 10, the rats were housed in stainless steel cages with wire bottoms and fronts. On gestation days 10, 11, and 12, the rats were housed in metabolism cages. Two HVGO mixtures were used in the experiments. One mixture contained two radio labeled surrogates, 14-C-carbazole and H-benzo(a)pyrene (BaP) while the other mixture contained only14-C-

254 / 370

H-benzo(a)pyrene (BaP) while the other mixture contained only14-Cphenanthrene. Five rats were treated in this manner with HVGO containing the dual radiolabels; three rats were treated in another experiment with HVGO containing only 14-C-phenanthrene. On GD 10, the hair was clipped from the dorsal trunk of each animal and the radiolabeled test material was

applied to the skin within a protective device designed to contain the administered dose. A mesh screen was attached to the protective device, and each rat was fitted with an Elizabethan collar. The same procedure was repeated on GD 11 and 12, except the needle tip with the test material was inserted through the mesh screen in order to apply the test material.

On GD 13, 24 hrs after the administration of the last HVGO dose, animals were sacrificed and maternal blood was collected. Necropsies were performed and the uterine contents located and examined for the number of normal and resorbed fetuses for each dam. The individual fetal units were removed, and the amniotic fluid was collected from the isolated placenta. The embryo was separated from the yolk sac and rinsed with water to remove residual amniotic fluid. Placentas, embryos, amniotic fluid and yolk sacs were pooled for each dam and the weights or volumes of the pooled samples determined. Maternal tissues collected for radioactivity analysis included the following: thymus, liver, heart, brain, small intestine, large intestine, kidneys, spleen, stomach, ovaries, urinary bladder, lungs, muscle, retroperitoneal fat, femur bone and residual carcass.

Determination of radioactivity in blood, urine and cage wash was accomplished by measuring the amount of carbon-14 labeled carbon dioxide and H-3 labeled water produced from direct combustion of duplicate samples. Samples were oxidized for three minutes and the carbon dioxide and water generated from the combustion were separated and trapped in a cocktail fluid. Carbon-14 and hydrogen-3 radioactivities were measured. Fecal samples were homogenized, combusted and the radioactivity measured.

The placentae, urteri, embryos, and yolk sacs were homogenized in an equivalent volume of water, and aliquots of the homogenate were combusted. Maternal tissues were treated in the same manner, although six tissues including the ovaries, urinary bladder, muscle, fat, bone and residual carcass were combusted directly without homogenization or dilution. In all cases, the trapped carbon dioxide and water were measured for radioactivity by liquid scintillation counting. Samples of the amniotic fluid were also combusted directly without dilution. Duplicate analyses were performed whenever possible. The sensitivity of the radioactivity allowed for the detection of 0.005% of the applied dose.

The systemic dermal absorption of the three radio labeled surrogates was determined by summing the total carbon-14 or hydrogen-3 radioactivities found in the urine, urine/cage washings, feces and collected maternal and embryonic tissues at the end of 72 hours. Tissue concentrations of carbazole, phenanthrene and benzo(a)pyrene (BaP) were calculated based on the radioactivity found per gram or per ml. The total amount of a radiolabeled surrogate in the tissues was calculated as a percent of the total applied radioactive dermal dose over three days.

Statistical analysis:

Data from the maternal biophase, caesarean section, and gross fetal examinations were evaluated by ANOVA, followed by group comparisons using Fisher's Exact or Dunnett's Test. Data from skeletal and visceral examination were evaluated by ANOVA followed by group comparisons using Fisher's Exact Test. Thymus and liver weights were evaluated statistically using Student-Newman-Keul's test. Statistical analyses of clinical chemistry data were performed separately on individual serum components using SAS procedures. First the F-test was employed to do an analysis of variance on the serum data obtained from the control and exposed groups. Next the Student-Newman-Keul's multiple comparison test was employed to identify the specific group subsets within the serum data sets identified as having nonrandom variance. Differences between control and treated groups were considered statistically significant only if

5. Toxicity	,
-------------	---

the probability of the differences being due to chance was less than 5% (p<0.05).

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere . Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Report no. 64348 ZQ- how to reference??)

TEST RESULTS

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	500		mg/kg/day
NOAEL- Dermal	Maternal	=	125		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	500		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	125		mg/kg/day

Results Remarks:

The animals used in the study were approximately 6 weeks old at receipt and approximately 9 weeks old at exposure initiation.

The red nasal exudate and chromodacryorrhea that were observed in control and HVGO-exposed groups are common in animals that are collared. Also, neck lesions were observed in control and HVGO-exposed groups, in spite of the protective soft rubber tubing that lines the inner surface of the cardboard collar. Scratches and/or flaking of skin were observed on the backs of a few of the animals from control and HVGO-exposed group

Signs of dermal irritation were limited to one dam exposed to 500 mg/kg/day HVGO. A bloody discharge from the vagina, a sign of some degree of litter resorption, was observed only in two dams exposed to HVGO at a dose level of 1000 mg/kg/day. At the time that the discharge was observed, one of these animals was pale in color. Six 1000 mg/kg/day-exposed animals and one 125 mg/kg/day-exposed animal had decreased stool. This was not unexpected since these animals, in general, consumed less food than the other animals.

A dose-related decrease in mean body weights and body weight changes was observed at various points during gestation in dams exposed to HVGO doses of 500 mg/kg/day and higher, per the table below. At these doses, the decreased body weights reflect the decrease in litter sizes. In general, a decrease in food consumption was observed only at the two highest dose levels (500 and 1000 mg/kg/day). At many of the time points, however, the amount of food consumed was not significantly different (p > 0.05) than the amount consumed by control animals.

The thymus of a limited number of dams exposed to 1000 mg/kg/day appeared to be smaller than the thymus of control animals. This observation was confirmed by weighing the thymus from dams in all of the groups. Lungs that were pale in color were observed only in HVGO-exposed groups. The significance of this finding was not known. No significant differences (p >0.05) in liver weight were observed in HVGO-exposed rats in comparison to the control animals.

Id Heavy fuel oil Date December 7, 2012

5. Toxicity

Dose (mg/kg/day)	0 Rem.	0 Prox.	30	125	500	1000 GD 10- 12
Body wt –final (gr)	390	397	387	381	347b d	311bd
GD 0-3 wt gain (gr)	17	14	11	6	-5bd	-14bd
GD 3-6 wt gain (gr)	14	15	11	14	17	22
GD 6-10 wt gain (gr)	17	21	15	16	16	21
GD 10-13 wt gain (gr)	17	14	17	17	17	11
GD 13-16 wt gain (gr)	27	26	28	30	15ac	10bd
GD 16-20 wt gain (gr)	58	66	60	56	46c	21bd
GD 0-20 wt gain (gr)	150	156	142	139	105b d	70bd
Gravid uterus (gr)	74.6	78.5	74.1	78.4	52.2	31.3
Carcass (gr)	315.7	318.4	313. 1	302.3	294.9 c	279.9b d
Net wt change from day 0 (e)	75.3	77.2	68.4	60.2	53.0a d	39.1bd
Thymus weight (g)- absolute	0.254	0.281	0.30 4	0.259	0.221	0.126a c
Thymus weight (g)- relative – not reported						
Liver weight - absolute (g)	16.02	16.52	16.0 0	16.74	17.26	16.69
Liver weight (g)- relative	5.067	5.181	5.11 3	5.545	5.855 ac	5.923a c

Summary of Selected Maternal Weight Parameters

a)Statistically different from remote control (p<0.05)

b)Statistically different from remote control (p<0.01)

c)Statistically different from proximate control (p<0.05)

d)Statistically different from proximate control (p<0.01)

e) = Carcass weight minus day 0 body wt.

The number of implantation sites and percent pre-implantation loss were not affected by exposure to HVGO for GD 1-19. The number of dams with resorptions, the number of resorptions and the litter size were significantly different from the controls at a dose of 500 mg/kg/day and higher.

Summary of Mean Selected Reproduction Data

Dose (mg/kg/day)	0 Rem.	0 Prox.	30	125	500	1000 GD 10-12
Implantation sites – total	135	146	149	124	156	141
Implantation sites – mean	15.0	14.6	14.9	15.5	15.6	15.7
Preimplantation loss (%)	86	8.6	5.7	2.9	1.2	2.8
Viable fetuses	125	140	138	115	100	52
Litter size (e)	13.9	14.0	13.8	14.4	10.0a c	5.8bd
Viable male fetuses (%)	58	49	47	48	50	54
Resorptions (mean)	1.1	0.6	1.1	1.1	5.6bd	9.9bd
Resorptions (mean %)	7.1	4.5	7.7	7.3	35.1b d	63.8b d
Dams with resorptions (%)	58	50	70	63	100ac	100c
a)Statistically different from	remote c	ontrol (ne	(0.05)			

a)Statistically different from remote control (p<0.05)

5. Toxicity				ld	Heavy	fuel oil					
				Date	Decer	mber 7, 20)12				
	c)Statistically different fro d)Statistically different fro	 b)Statistically different from remote control (p<0.01) c)Statistically different from proximate control (p<0.05) d)Statistically different from proximate control (p<0.01) e) Number of viable fetuses/number of litters evaluated. 									
	No statistically significant between the two groups of performed between the re Significant differences we demonstrated a dose-res effect. Under the condition hepatotoxicity as characted aminotransferase and some evidence of an effect on the serum urea nitrogen. The triglycerides and iron are result of resorption. It has their litters have a serum	of control a emote cont ere observe ponse ns of the si erized by n rbitol dehyo he kidneys dose relat likely a res	nimals. T rol and H d for six s tudy, there harked inc drogenase as shown ed respon sult of a se iously obs	herefore /GO-exp serum co was inc reases in activitie by a sig uses that condary served th	statistic osed gr mponen dication n serum s. There gnificant were ol effect on nat the d	cal analys roups only of dose-re a aspartate was equ t increase bserved for fHVGO a lams that	es wer /. which elated e ivocal in or seru as a				
	were significantly reduced doses of 500 mg/kg/day a reduced crown-rump leng control fetuses, the differe	At the time of cesarean section, all fetuses were viable. Fetal body weights were significantly reduced ($p < 0.05$) in fetuses exposed in utero to HVGO at doses of 500 mg/kg/day and higher. Although fetuses exposed to HVGO had reduced crown-rump lengths in comparison to the lengths of the proximate control fetuses, the differences were not significantly different ($p > 0.05$) wher compared to the lengths of remote control fetuses.									
	At the time of external exa exposed in utero to 1000 accumulation of serum in in color. Also, both hind p (brachydactyly) with a sul effusion of blood) located	mg/kg/day the cellula aws were p ocutaneous	HVGO. T r tissues of malformed s hematom	his fetus of the bo l; the dig na (a cir	was ec dy) and jits were cumscri	lematous pale reduced bed derma	(gener in size al				
	In the skeletal examination malformations among the variety of skeletal variatio fetuses. Some skeletal v bones) were seen at a hig particularly at doses of 50 malformations were obse but no individual skeletal controls at any dose level	e exposed (ns were ob <i>r</i> ariations (gher incide 00 mg/kg/da rved amon malformatio	groups col oserved in mostly un nce amon ay and hig g the litter	mpared to HVGO-e ossified of g the HC gher rs of dam	to the co exposed or incon CGO-exp fetuses ns given	ontrol grou and con npletely or posed gro s with vert 500 mg/ł	ups. A trol ssified pups, ebral (g/day)				
	Visceral malformations we group. One fetus had a re and another fetus had a o thoracic cavity) which disp position.	eduction in diaphragma	the size o atic hernia	f one of (protrus	its eyes ion of th	(microph ne liver int	thalmia o the				
	Fetal E	ndpoints	- Weight	and Gro	oss Exai	m					
	Dose (mg/kg/day)	0 Rem.	0 Prox.	30	125	500	1000 GD 10-				
	Fetal weights (gr)	3.5	3.7	3.5	3.6	3.2ad	12 3.0b				
	Crown-rumn length	3/1 1	34.7	34.3	33.8	32.00	d				

34.1

34.7

33.8

32.9c

34.3

32.0

а

Crown-rump length (mm)

Id Heavy fuel oil Date December 7, 2012

Litters evaluated	9	10	10	9	9	10
Fetuses - live	125	140	138	128	100	52
Fetuses – dead	0	0	0	0	0	6
Total gross exam	0; 0.0	0; 0.0	0;	0;	0; 0.0	1;
anomalies			0.0	0.0		1.9
(fetal incidence; %)						
Total gross exam	0; 0.0	0; 0.0	0;	0;	0; 0.0	1; 17
anomalies			0.0	0.0		
(litter incidence; %)						

a)Statistically different from remote control (p<0.05)

b)Statistically different from remote control (p<0.01)

c)Statistically different from proximate control (p<0.05)

d)Statistically different from proximate control (p<0.01)

Fetal Endpoints - Skeletal

Dose (mg/kg/day)	0 Rem.	0 Prox.	30	125	500	1000 GD 10- 12
Litters evaluated	9	10	10	8	10	6
Fetuses - live	65	72	72	59	52	28
Fetuses – dead	0	0	0	0	0	0
Total skeletal	60; 92	59; 82	66;	49;	52;	28;
changes			92	83	100d	100c
(fetal incidence; %)						
Total skeletal	9; 100	10;	10;	8;	10; 100	6; 100
changes		100	100	100		
(litter incidence; %)						

a)Statistically different from remote control (p<0.05)

b)Statistically different from remote control (p<0.01)

c)Statistically different from proximate control (p<0.05)

d)Statistically different from proximate control (p<0.01)

Fetal Endpoints – Soft Tissue

Dose (mg/kg/day)	0 Rem.	0 Prox.	30	125	500	1000 GD 10-12
Litters evaluated	9	3	0	8	10	6
Fetuses - live	60	19	0	56	48	24
Fetuses – dead	0	0	0	0	0	0
Total soft tissue anomalies (fetal incidence; %)	0; 0.0	0; 0.0	*	0; 0.0	3; 63	1; 4.2
Total soft tissue anomalies (litter incidence; %)	0; 0.0	0; 0.0	*	0; 0.0	2; 20	1; 17

*dose group not examined for this endpoint

a)Statistically different from remote control (p<0.05)

b)Statistically different from remote control (p<0.01)

c)Statistically different from proximate control (p<0.05)

d)Statistically different from proximate control (p<0.01)

Bioavailability Analyses

The dermal penetration of 14-C-carbazole (38.7% of total applied dose absorbed) occurred more extensively

than either 14-C-phenanthrene (17.3% of applied dose absorbed) or 3-H-BaP (8.8% of applied dose absorbed). In spite of the dermal bioavailability of 14 -C-carbazole, 14-C-phenanthrene and 3-H-BaP in the dam, the amount of radio labeled material found in the embryo was very low. These findings indicate that although 14-C-carbazole, 14-C-phenanthrene and 3-H-BaP are capable of

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Conclusion:	reaching the embryo, they do not accumulate to any significant degree in the embryo. The results suggest that the placenta may be an effective barrier against the transplacental transport of these HVGO components to the embryo. The maternal NOAEL for dermal exposure to HVGO during GD 0-19 was determined to be 125 mg/kg/day (LOAEL= 500 mg/kg/day based on decreased body weight, body weight gains and food consumption, increased relative liver weight and aberrant serum chemistry)
	The developmental LOAEL for dermal exposure to HVGO during GD 0-19 was determined to be 125 mg/kg/day (LOAEL = 500 mg/kg/day based on increased resorptions and decreased fetal body weight)
RELIABILITY/DATA QUALITY	
Reliability:	Valid Without Restrictions (KS=1)
Reliability Remarks:	Comparable to guideline study
Key Study Sponsor Indicator:	Кеу
REFERENCE	
Reference:	Mobil. 1988. Developmental Toxicity Screen in Rats Exposed Dermally to Heavy Vacuum Gas Oil. 1988. Mobil Environmental and Health Sciences Laboratory Report 61801.
	Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in Heavy Vacuum Oil. Mobil Environmental and Health Sciences Laboratory Report no. 64348ZV
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances."

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

Category Chemical:	64741-62-	64741-62-4							
Test Substance:	64741-62-	64741-62-4; Clarified Slurry Oil (CSO)							
Test Substance Purity/Composition and Other Test Substance Comments:		Clarified Slurry Oil (CRU No 86001) PAC (Polycyclic Aromatic Compound) Content – Report No. 64348 ZA (Mobil, 1991)							
Comments.	Sample # 86001 1) Percen PAC 2 mei 2) ARC is have 1 arc with 2 arcr	DMSO wt.% ¹ 64.20 t of DMSC thod as de "aromatic matic ring	1- ARC (%) ² 0.00 D-extract escribed ring cla	in API (2 ss". "ARe he total s	2008). C 1 (%)" i sample. <i>"/</i>	s the wei ARC 2 (%	ght perc	ent of PA	ACs that

Category Chemical Result Type :	Measured						
Unable to Measure or Estimate Justification :							
METHOD							
Route of Administration:	Dermal, non-occluded						
Other Route of Administration:							
Type of Exposure:	Developmental toxicity study						
Species:	Rat						
Other Species:	Not applicable						
Mammalian Strain:	Sprague-Dawley (Charles River, Kingston, NY)						
Other Strain:	Not applicable						
Gender:	Females, presumed pregnant (non treated males used for mating)						
Number of Animals per Dose:	20 per dose, except for an additional group of 4 animals exposed at 1000 n of radiolabeled material on GD 9-12 used to obtain bioavailability data						
Concentration:							
Dose:	Developmental study: 0, 10, 100, 1000 mg/kg/day Bioavailability study: 1000 mg/kg/day						
Year Study Performed :	1988						
Method/Guideline Followed:	Similar to OECD 414 (Prenatal Developmental Toxicity Study), except fo gestation period exposure (GD 9-12); study designed to evaluate specific malformation – esophagus.						
GLP:	No information						
Exposure Period:	GD 9-12						
Frequency of Treatment:	Once per day						
Post-Exposure Period:	None						
Method/Guideline and Test Condition Remarks:	The study was designed to detect the teratogenic potential of CSO. The study was also designed to include clinical chemistry analyses of maternal sera, bioavailability/bioaccumulation of LCGO in maternal tissues, placentae, and fetuses, and postnatal survival of neonates. Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of a vaginal plug (<u>in situ</u> or expelled), the individual, presumed pregnant females were randomly assigned to eight treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of a vaginal plug, and spermatozoa in the vaginal lavage fluid: 12. Sham control (0 mg/kg/day) – GD 9-12 – 20 animals 13. CSO10 mg/kg/day – GD 9-12 – 15 animals 14. CSO 1000 mg/kg/day – GD 9-12 – 15 animals 15. CSO 1000 mg/kg/day – GD 9-12 – 15 animals 16. CSO 1000 mg/kg/day – GD 9-12 – 4 animals; residue analyses group Developmental study (Groups 1-4): The test material was administered to groups 2-4 on GD 9-12. Hair was clipped from the dorsal trunk of each animal on GD 9. Each treatment day, animals were dosed by even application of the test material to their shaved backs, using the tip of a syringe. The test material dose, calculated from each rat's most						

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	material rats were fitted with Elizabethan collars on GD 0. Controls were handled in the same manner, minus application of the test material. Control animals were clipped, collared and the intact dorsal skin of each rat was stroked with the tip of a syringe, but no test material was applied.
	Each rat was observed at least once a day throughout gestation until sacrifice for 1) changes in appearance, behavior, and excretory function, and 2) signs of ill-health, mortality, abortion or premature delivery. All unusual findings were noted.
	Individual body weights were recorded on days 0, 6, 9, 13, and 20 of gestation. Individual food consumption was measured during the study was calculated for GD intervals 0-6, 6-9, 9-13, 13-20, 0-20.
	Each female was sacrificed by overexposure to ether on day 20 of its presumed gestation. Thoracic and abdominal organs were examined, and all organs were examined grossly for evidence of pathosis. The thymus and livers were removed, trimmed of excess tissue, weighed to the nearest 0.001 gram, and preserved in 10% formalin. The ovaries and uterus of each rat were excised and examined grossly. The number of corpora lutea per ovary was recorded. The ovaries in nonpregnant females were grossly examined and then discarded. In the uterus, the number and location of implantations, early and late resorptions, and live and dead fetuses were recorded. The uterus of each female that appeared non-gravid was pressed between two glass slides and examined grossly for evidence of implantation.
	Blood samples were collected at the time of sacrifice from the aorta of each rat and serum was analyzed for alanine aminotransferase, albumin, alkaline phosphatase, aspartate aminotransferase, bilirubin, calcium, chloride, cholesterol, creatinine, globulin, glucose, lactate dehydrogenase, iron, inorganic phosphorus, potassium, sodium, sorbitol dehydrogenase, total protein, triglycerides, urea nitrogen, and uric acid. The globulin and albumin/globulin ratios were calculated.
	 Each live fetus was gendered, weighed and grossly examined. The following definitions and terminology were used in describing fetal findings: Anomaly: Any deviation (malformation or variation) from "normal." Malformation: A permanent structural deviation which generally is incompatible with, or severely detrimental to, normal postnatal survival or development. Absence structures which should have been present, as well as deviations in tail development, are also classified as malformations. Variation: A variation is a divergence beyond the usual range of structural constitution. It has an indeterminate effect on health and generally has no effect on survival. Incidental: An incidental finding is generally an accidental event, e.g., accidentally, tip of tail was cut off. After gross evaluation, all fetuses in each litter were fixed in Bouin's solution for subsequent soft tissue evaluation using a modification of Wilson's technique. The head and thoracic regions were evaluated for palatal and esophageal anomalies, respectively; no other soft tissues were evaluated.
	<u>Bioavailability</u> Study (Group 9) From GD 0-8, pregnant females were housed in stainless steel cages with wire bottoms and fronts. On GD 9, 10, 11, and 12, the rats were housed in metabolism cages. The CSO used in the bioavailability study contained two radioactive surrogates, carbon-14 radiolabeled carbazole and hydrogen-3 radiolabeled benzo(a)pyrene (BaP). On GD 9, the hair was clipped from the dorsal trunk of each animal and the radiolabeled test material (1000 mg/kg) was applied to the skin within a protective device designed to contain the administered dose. A mesh screen was attached to the protective device, and

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	each rat was fitted with an Elizabethan collar. The same procedure was repeated on GD10, 11 and 12, except the needle tip with the test material was inserted through the mesh screen in order to apply the test material.
	On GD 13, 24 hrs after the administration of the last CSO dose, animals were sacrificed ether overexposure and maternal blood was collected. Necropsies were performed and the uterine contents located and examined for the number of normal and resorbed fetuses for each dam. The individual fetal units were removed, and the amniotic fluid was collected from the isolated placenta. The embryo was separated from the yolk sac and rinsed with water to remove residual amniotic fluid. Placentas, embryos, amniotic fluid and yolk sacs were pooled for each dam and the weights or volumes of the pooled samples determined. Maternal tissues collected for radioactivity analysis included the following: blood, thymus, liver, small intestine, large intestine, kidneys, stomach, and ovaries.
	Determination of radioactivity in blood, urine and cage wash was accomplished by measuring the amount of carbon-14 labeled carbon dioxide and H-3 labeled water produced from direct combustion of duplicate samples. Samples were oxidized for three minutes and the carbon dioxide and water generated from the combustion were separated and trapped in a cocktail fluid. Carbon-14 and hydrogen-3 radioactivities were measured. Fecal samples were homogenized, combusted and the radioactivity measured.
	The placentae, uteri, embryos, and yolk sacs were homogenized in an equivalent volume of water, and aliquots of the homogenate were combusted. Maternal tissues were treated in the same manner, although the ovaries, and amniotic fluid were combusted directly without homogenization or dilution. In all cases, the trapped carbon dioxide and water were measured for radioactivity by liquid scintillation counting. Samples of the amniotic fluid were also combusted directly without dilution. Duplicate analyses were performed whenever possible. The sensitivity of the radioactivity allowed for the detection of 0.005% of the applied dose.
	The systemic dermal absorption of the two radiolabeled surrogates was determined by summing the total carbon-14 or hydrogen-3 radioactivities found in the urine, urine/cage washings, feces and collected maternal and embryonic tissues at the end of 72 hours. Tissue concentrations of carbazole and benzo(a)pyrene (BaP) were calculated based on the radioactivity found per gram or per ml. The total amount of a radiolabeled surrogate in the tissues was calculated as a percent of the total applied radioactive dermal dose over three days.
	Statistical analysis: Data from the maternal biophase, caesarean section, and gross fetal examinations were evaluated by ANOVA, followed by group comparisons using Fisher's Exact or Dunnett's Test. Data from skeletal and visceral examination were evaluated by ANOVA followed by group comparisons using Fisher's Exact Test. Thymus and liver weights were collected, processed and analyzed (Tukey's test). Statistical analyses of clinical chemistry data were performed separately on individual serum components using SAS procedures. First the F- test was employed to do an analysis of variance on the serum data obtained from the control and exposed groups. Next the Student-Newman-Keul's multiple comparison test was employed to identify the specific group subsets within the serum data sets identified as having nonrandom variance. Differences between control and treated groups were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05).
	<u>PAC Analysis:</u> The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an

analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; Mobil, 1991)

TEST RESULTS

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	100		mg/kg/day
NOAEL- Dermal	Maternal	=	10		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	100		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	10		mg/kg/day

Results Remarks:					The female animals used in the study were approximately 8 weeks old at receipt and approximately 10 weeks old at exposure initiation.							
	and CSO-e lesions we protective Scratches	The red nasal exudate and chromodacryorrhea that were observed in control and CSO-exposed groups are common in animals that are collared. Also, neck lesions were observed in control and LCGO-exposed groups in spite of the protective soft rubber tubing that lines the inner surface of the cardboard collar. Scratches were observed on the backs of a few of the animals at the time of the first clipping and probably occurred during mating activity.										
	the skin ar application paws as w possibility discharge was observ section, the bloody disc	CSO did not produce much dermal irritation. One high-dose dam had flaking of the skin and three high-dose animals developed scabs at the site of application. The fur of animals in the high-dose group, including the face and paws as well as the entire body, was discolored by CSO. In view of this, the possibility of ingestion at the high dose level could not be excluded. Bloody discharge from the vagina, usually a sign of some degree of litter resorption, was observed in all of the groups exposed to CSO. However, at cesarean section, the one 10 mg/kg dam and two of the five 100 mg/kg dams which had bloody discharges did not have any resorptions. One 100 mg/kg and three 1000 mg/kg animals had decreased stool.										
	body weigh the decreat food consu	A dose-related decrease in mean body weights, body weight changes, and net body weights was observed in CSO-exposed dams. At the 1000 mg/kg level, the decreased body weights reflect the decrease in litter sizes. A decrease in food consumption was observed in the mid- and high-dose groups for gestation day intervals 9-13 (period of dosing) and 13-20.										
	appeared	nus, spleen, axillary lymph to be adversely affected b y increased and thymus v g.	y exposu	re to CSO.	Liver weigl	nts were						
		Summary of Selected	Maternal	Weight P	arameters							
		Dose (mg/kg/day)	0	10	100	1000						
			399.9	404.0								
		Body wt –at delivery (gr)	399.9	484.8	378.9a	313.3b						
		(gr)	29	30	378.9a	313.3b 29						
		(gr) GD 0-6 wt gain (gr)	29	30	31	29						
		(gr) GD 0-6 wt gain (gr) GD 6-9 wt gain (gr)	29 16	30 18	31 16	29 14						
		(gr) GD 0-6 wt gain (gr) GD 6-9 wt gain (gr) GD 9-13 wt gain (gr)	29 16 25	30 18 19	31 16 –1b	29 14 –8b						

Id Heavy fuel oilDate December 7, 2012

5. Toxicity

	Carcass (gr)/Final	319.6	325.3	305.2	294.9b		
	body weight Net wt change from	79.8	81.4	63.4b	52.4b		
	day 0 (c) Thymus weight (g)-	0.301	0.350	0.252	0.071b		
	absolute Thymus weight (g)-	0.094	0.108	0.082	0.024b		
	relative Liver weight -	16.61	17.18	16.41	18.85b		
	absolute (g) Liver weight (g)-	5.20	5.28	5.38	6.39b		
	relative Ily different from control (
c) = Carcas	Ily different from control (ss weight minus day 0 boo	dy wt	arad to be	advorsalv	offected by		
At 1000 mg/kg, the following parameters appeared to be adversely affected by CSO exposure: number of dams with resorptions (increased), number of resorptions (increased) litter size (decreased).							
Statistically significant differences between the data from control and treated animals were observed for a total of sixteen parameters: uric acid, urea nitrogen, lactate dehydrogenase, aspartate aminotransferase, alkaline phosphatase, cholesterol, triglycerides, total protein, total bilirubin, albumin, calcium, inorganic phosphorus, potassium, albumin/globulin ratio, sorbitol dehydrogenase, and iron. A linear relationship between dose and serum level was found for all of these components. When the historical reference values are taken into consideration, the dose-response curves for uric acid, aspartate aminotransferase, alkaline phosphatase, cholesterol, triglycerides, total bilirubin, albumin, inorganic phosphorus, albumin/globulin ratio, sorbitol dehydrogenase, and iron at the 1000 mg/kg dose level fall outside the normal range as defined by the l0th to 90th percentiles of the historical data. Summary of Mean Selected Reproduction Data (Groups 1-4)							
	Dose (mg/kg/day)	0	10	100	1000		
	Implantation sites – mean	299	299	310	310		
	Viable fetuses- total	278	276	274	42		
	Litter size (c)	14.6	14.5	13.7	2.1b		
	Viable male fetuses (%)	53	51	49	48		
	Resorptions (mean)	1.1	1.2	1.8	13.4b		
	Resorptions (mean %) Dams with) 7.3 63	7.7 68	10.9 65	86.4b 100b		
	resorptions (%)	05	00	00	1000		
b) Statistica c) Number At the time increase in reduced in Anomalous significantly achieved a be of biolog	Ily different from control (Ily different from control (of viable fetuses/number of cesarean section all fe in utero death at 1000 mg fetuses exposed in utero development, primarily e / increased at 1000 mg/kg t 100 mg/kg for some of th gical significance. One fet	p<0.01) of litters e g/kg. Feta to CSO a edema and g. Althoug hese sam us expose	re viable. H I body wei t a dose le d paw malf h statistica e findings, ed in utero	ghts were vel of 1000 ormations, al significat they are c to 100 mg	significantly) mg/kg. was nce was not considered to		
	nis finding is believed to b of resorption observed in t						

5. Toxicity					Heavy fuel December					
	only at th 14%.	other visceral finding noted e 1000 mg/kg level at a lit ndpoints – Weight, Gross	ter incider	nce of 40%	and a feta	incidence of				
		Dose (mg/kg/day)	0	10	100	1000				
		Fetal weights (g) Litters evaluated	3.5 19	3.5 19	3.3 20	2.5b 10				
		Fetuses - live	278	276	274	42				
		Fetuses – dead	0	0	0	0				
		Gross Exam (fetal incidence; %)	3; 1.1	2; 0.7	5; 1.8	11; 26.0				
		Gross Exam (litter incidence; %)	2; 11.0	2; 11.0	3; 15.0	5; 50.0b				
		Total fetal soft tissue (fetal incidence; %)*	0; 0.0	0; 0.0	0; 0.0	6; 14.0				
		Total fetal soft tissue (litter incidence; %)*	0; 0.0	0; 0.0	1; 5.0	4; 40.0				
Conclusion:	Bioavaila The derm rapidly th dermal b of radiola C-carbaz radiolabe the radio the trans C-carbaz The mate at 10 mg body wei	cally different from control <u>bility/Bioaccumulation Ana</u> hal penetration of 14-C-ca an 3H- BaP absorption ov ioavailability of 14-C-carba ibel led material found in the cole and 3-H-BaP found in led dose, compared to the active dose. The placenta port of carbazole and BaP cole or 3-H- BaP accumula ernal NOAEL for dermal ex- /kg/day. (LOAEL= 100 mg ght and food consumption Hopmental NOAEL for der- at 10 mg/kg/day. (LOAEL s.)	alyses rbazole oc er a treatr azole and he embryo the embryo to the embr	ment period 3H- BaP in o was very to was less the materr to be an ef bryo. There ively in the CSO for C ased on sig	d. In spite the dam, the low. The all s than 0.01 hal tissues fective barn e is no evice embryo. GD 9-12 was gnificant der D for GD 9-	of the he amount mount of 14- % of the (0.5-2.2%) of rier against dence the 14- is identified crease in				
Reliability:	Valid W	ithout Restrictions (KS=2)							
Reliability Remarks:		eline study but has sufficie	,							
Key Study Sponsor Indicator:	Key									
REFERENCE										
Reference:	Mobil En Mobil. 19 Clarified Laborato API. 2008 ring class toxicity o	 Teratology Study Rats vironmental and Health So Characterization and Slurry Oil. 1991. Mobil En ry Report No. 64348 ZA. PAC Analysis Task Gro s content and selected end f high-boiling petroleum su w.petroleumhpv.org/pages 	Quantitation Quantitation vironment up, "The r lipoints of ubstances.	boratory R on of Polyr al and Hea elationship repeat-dos	Report 6249 huclear Arc alth Scienc between the se and deve	2. omatics in es he aromatic elopmental				

High Production Volume Information System (HPVIS)

64741-62-4; Syntower Bottoms (STB)

Syntower Bottoms (CRU No 86484)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

Category Chemical: Test Substance:

Test Substance Purity/Composition and Other Test Substance Comments:

PAC (Polycyclic Aromatic Compound) Content 64348 ZM

(Mobil, 1991)

64741-62-4

	Sampl	DMS	1-	2-	3-	4-	5-	6-	7-
	e #	O wt.% ¹	ARC (%) ²	ARC (%)	ARC (%)	ARC (%)	ARC (%)	ARC (%)	ARC (%)
	86484	48.80	0.00	0.98	9.76	19.52	9.76	4.88	0.98
Category Chemical Result Type :	 Perce PAC 2 m ARC i that have PACs wit 	ethod as s "aroma 1 aroma h 2 arom	describe tic ring c tic ring v	ed in API lass". "Al vithin the	(2008). RC 1 (%) total sam	" is the w ple. "AR	eight pei C 2 (%)"	rcent of F	PACs
Unable to Measure or Estimate Justification :	Measured	נ							
METHOD									
Route of Administration:	Dermal, r	non-occli	ıded						
Other Route of Administration:	Dormal, 1								
Type of Exposure:	Developn	nental to:	kicity stu	dy					
Species:	Rat								
Other Species:	Not applicable								
Mammalian Strain:	Sprague-	Dawley	(Charles	River, K	ingston, I	NY)			
Other Strain:	Not appli	cable							
Gender:	Females,	presume	ed pregr	ant (non	treated r	nales use	ed for ma	ating)	
Number of Animals per Dose:	15 per do on GD 10		•		• •		als expos	sed at 50	0 mg/kg
Concentration:					, 				
Dose: Year Study Performed :	Bioavaila 500 mg/k	125, 500 bility stud	mg/kg/da	ау					
Method/Guideline Followed:	1990?? Similar to		114 (Drov		olonmont	ol Tovici		Moin	
Method/Guideline Followed:	Similar to difference		•		-		• • • •		
GLP:	No inforn	nation						,	
Exposure Period:	GD 0-19	(5 group	s); GD 1	0-12 (2 🤉	groups)				
Frequency of Treatment:	Once per	day							
Post-Exposure Period:	None								
		267	/ 370						

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Method/Guideline and Test Condition Remarks:	The study was designed to detect the effects of exposure to STB on parameters of reproductive performance during gestation (implantation, litter size) and viability and development of the embryo/fetus. An experimental group in which STB was administered only on GD 10-12 was included in the study to complement the bioavailability/bioaccumulation assays. The study was also designed to include clinical chemistry analyses of maternal sera, bioavailability/bioaccumulation of LCGO in maternal tissues, placentae, and fetuses, and postnatal survival of neonates.
	 Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of a vaginal plug (in situ or expelled), the individual, presumed pregnant females were randomly assigned to eight treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of a vaginal plug, and spermatozoa in the vaginal lavage fluid: 17. Sham control (0 mg/kg/day) – GD 0-19 – 15 animals 18. STB "4 mg/kg/day" (8mg/kg/day) – GD 0, 2, 4, 6, 8, 10, 14, 16, 18 – 15 animals. * 19. STB 8 mg/kg/day – GD 0-19 – 15 animals 20. STB 30 mg/kg/day – GD 0-19 – 15 animals 21. STB 125 mg/kg/day – GD 0-19 – 15 animals 22. STB 500 mg/kg/day – GD 10-12 – 15 animals 23. STB 500 mg/kg/day – GD 0 0-19 – 15 animals; included as an additional group because was anticipated that administration throughout the complete gestation period may result in a high incidence of fetal lethality. This is a period during which fetuses are susceptible to abnormal development. 23. Radiolabeled STB 500 mg/kg/day – GD 10-12 – 4 animals; residue analyses group *Considered to be "4 "mg/kg/day based on dosing of 8 mg/kg/day on alternate days of during gestation period.
	Developmental study (Groups 1-6: The test material was administered to groups 3-5 on GD 0-19. Group 2 animals were administered test material on alternate days during gestation (GD 0, 2, 4, 6, 8, 10, 14, 16, and 18). Group 6 females were similarly treated but administration of test material was restricted to a period of gestation during which fetuses are susceptible to abnormal development (GD 10-12). Hair was clipped from the dorsal trunk of each animal on GD 0, and once weekly during the study. Each treatment day, animals were dosed by even application of the test material to their shaved backs, using the tip of a syringe. The test material dose, calculated from each rat's most recent body weight, was measured by weight. Rats were fitted with Elizabethan collars to minimize ingestion of test material. Controls were handled in the same manner, minus application of the test material. Control animals were clipped and collared and the intact dorsal skin of each rat was stroked with the tip of a syringe, but no test material was applied.
	Each rat was observed at least once a day throughout gestation until sacrifice for 1) changes in appearance, behavior, and excretory function, and 2) signs of ill-health, mortality, abortion or premature delivery. All unusual findings were noted.
	Individual body weights were recorded on days 0, 3, 6, 10, 13, 16, and 20 of gestation. Individual food consumption was measured during the study was calculated for GD intervals 0-3, 3-6, 6-10, 10-13, 13-16, and 16-20.
	Each female was sacrificed by overexposure to ether on day 20 of its presumed gestation. Thoracic and abdominal organs were examined, and all organs were examined grossly for evidence of pathosis. The thymus and livers were removed, trimmed of excess tissue, weighed to the nearest 0.001 gram, and preserved in 10% formalin. The ovaries and uterus of each rat were

excised and examined grossly. The number of corpora lutea per ovary was recorded. The ovaries in nonpregnant females were grossly examined and then discarded. In the uterus, the number and location of implantations, early and late resorptions, and live and dead fetuses were recorded. The uterus of each female that appeared non-gravid was pressed between two glass slides and examined grossly for evidence of implantation.

Blood samples were collected at the time of sacrifice from the aorta of each rat and serum was analyzed for alanine aminotransferase, albumin, alkaline phosphatase, aspartate aminotransferase, bilirubin, calcium, chloride, cholesterol, creatinine, globulin, glucose, lactate dehydrogenase, iron, inorganic phosphorus, potassium, sodium, sorbitol dehydrogenase, total protein, triglycerides, urea nitrogen, and uric acid. The globulin and albumin/globulin ratios were calculated.

Each live fetus was gendered, weighed and grossly examined. The following definitions and terminology were used in describing fetal findings:

- 8) Anomaly: Any deviation (malformation or variation) from "normal."
- 9) Malformation: A permanent structural deviation which generally is incompatible with, or severely detrimental to, normal postnatal survival or development. Absence structures which should have been present, as well as deviations in tail development, are also classified as malformations.
- 10) Variation: A variation is a divergence beyond the usual range of structural constitution. It has an indeterminate effect on health and generally has no effect on survival.

Approximately half of the fetuses were randomly assigned for examination of soft tissues (viscera) following fixation in Bouin's solution, using a modification of the Wilson's technique. The other half were fixed in 95% ethanol, differentially stained for cartilage and bone, cleared in glycerin and examined for skeletal abnormalities.

Bioavailability Study (Group 9)

From GD 0-9, pregnant females were housed in stainless steel cages with wire bottoms and fronts. On GD 10, 11, and 12, the rats were housed in metabolism cages. The STB used in the bioavailability study contained two radioactive surrogates, carbon-14 radiolabeled carbazole and hydrogen-3 radiolabeled benzo(a)pyrene (BaP). On GD 10, the hair was clipped from the dorsal trunk of each animal and the radiolabeled test material (500 mg/kg) was applied to the skin within a protective device designed to contain the administered dose. A mesh screen was attached to the protective device, and each rat was fitted with an Elizabethan collar. The same procedure was repeated on GD 11 and 12, except the needle tip with the test material was inserted through the mesh screen in order to apply the test material.

On GD 13, 24 hrs after the administration of the last STB dose, animals were sacrificed ether overexposure and maternal blood was collected. Necropsies were performed and the uterine contents located and examined for the number of normal and resorbed fetuses for each dam. The individual fetal units were removed, and the amniotic fluid was collected from the isolated placenta. The embryo was separated from the yolk sac and rinsed with water to remove residual amniotic fluid. Placentas, embryos, amniotic fluid and yolk sacs were pooled for each dam and the weights or volumes of the pooled samples determined. Maternal tissues collected for radioactivity analysis included the following: thymus, liver, small intestine, large intestine, kidneys, stomach, and ovaries.

Determination of radioactivity in blood, urine and cage wash was accomplished by measuring the amount of carbon-14 labeled carbon dioxide and H-3 labeled water produced from direct combustion of duplicate samples. Samples were oxidized for three minutes and the carbon dioxide and water

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	generated from the combustion were separated and trapped in a cocktail fluid. Carbon-14 and hydrogen-3 radioactivities were measured. Fecal samples were homogenized, combusted and the radioactivity measured.
	The placentae, uteri, embryos, and yolk sacs were homogenized in an equivalent volume of water, and aliquots of the homogenate were combusted. Maternal tissues were treated in the same manner, although the ovaries, and amniotic fluid were combusted directly without homogenization or dilution. In all cases, the trapped carbon dioxide and water were measured for radioactivity by liquid scintillation counting. Samples of the amniotic fluid were also combusted directly without dilution. Duplicate analyses were performed whenever possible. The sensitivity of the radioactivity allowed for the detection of 0.005% of the applied dose.
	The systemic dermal absorption of the two radiolabeled surrogates was determined by summing the total carbon-14 or hydrogen-3 radioactivities found in the urine, urine/cage washings, feces and collected maternal and embryonic tissues at the end of 72 hours. Tissue concentrations of carbazole and benzo(a)pyrene (BaP) were calculated based on the radioactivity found per gram or per ml. The total amount of a radiolabeled surrogate in the tissues was calculated as a percent of the total applied radioactive dermal dose over three days.
	Statistical analysis: Data from the maternal biophase, caesarean section, and gross fetal examinations were evaluated by ANOVA, followed by group comparisons using Fisher's Exact or Dunnett's Test. Data from skeletal and visceral examination were evaluated by ANOVA followed by group comparisons using Fisher's Exact Test. Thymus and liver weights were evaluated by ANOVA followed by Duncan's multiple range test. Statistical analyses of clinical chemistry data were performed separately on individual serum components using SAS procedures. First the F-test was employed to do an analysis of variance on the serum data obtained from the control and exposed groups. Next the Student-Newman-Keul's multiple comparison test was employed to identify the specific group subsets within the serum data sets identified as having nonrandom variance. Differences between control and treated groups were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05).
TEST DESIN TS	<u>PAC Analysis:</u> The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; Mobil, 1991)

TEST RESULTS

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	4		mg/kg/day
NOAEL- Dermal	Maternal	=	Not identified <4		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	4		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	Not identified		mg/kg/day

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Results Remarks:	The female animals used in the study were approximately 9 weeks old at
	receipt and approximately 11 weeks old at exposure initiation. The red nasal exudate and chromodacryorrhea that were observed in control and STB-exposed groups are common in animals that are collared. Also, neck lesions were observed in control and LCGO-exposed groups in spite of the protective soft rubber tubing that lines the inner surface of the cardboard collar. Scratches were observed on the backs of a few of the animals at the time of the first clipping and probably occurred during mating activity.
	Findings attributable to STB exposure included vaginal bleeding (generally a sign of some degree of litter resorption) observed in the treated groups at dose levels at or above 8 mg/kg/day. One of the four females in the 8 mg/kg/day group which had red vaginal discharge had no resorptions; another exhibited the discharge on GD 20 which may be indicative of premature delivery. Historically, red vaginal discharge has been observed in the laboratory facility in control animals as well as in animals that had no resorption. The vaginal bleeding may have contributed to the paleness observed in animals exposed at the 30 and 125 mg/kg/day dose levels since this finding Was noted either during or following vaginal bleeding for these animals, Several exposed females had decreased stool. This finding was noted more frequently in the 125 mg/kg/day group. Scabs were observed at the site of application in two females exposed to "4" mg/kg/day; one of these two females also had slight erythema at the dosing site.
	The mean body weights for the 30 and 125 mg/kg/day groups were significantly reduced throughout most of the gestation period. Animals administered test material for a limited period of gestation (GD 10-12; 500 mg/kg/day) weighed significantly less following the period of STB exposure. The body weights for the 8 mg/kg/day group were significantly reduced toward the end of gestation. All STB-exposed groups gained significantly less weight overall than that of the control group; this finding was dose-related. Net maternal body weight changes are significantly reduced in STB exposed groups dosed at 8, 125, and 500 mg/kg/day. Although the body weight change for the 30 mg/kg/day group was low compared to the control group, significance was not achieved due to an increase in variability caused by several outlying animals in this dose group.
	The amount of food consumed by females exposed to STB was lower than that consumed by the control group at each of the intervals measured. This reduction was significant throughout gestation for the 125 mg/kg/day group and during early to mid-gestation for females exposed to STB at dose levels of "4", 8, and 30 mg/kg/day. A significant decrease in food consumption was observed for the 500 mg/kg/day group during the latter part of gestation which reflects the time at which these animals were exposed to the test material (GD 10-12).
	Although the thymus appeared small in females from all groups, the incidence was higher in the 125 and 500 mg/kg/day groups. A significant reduction in absolute and relative thymus weight was noted in animals exposed to STB at dose levels of 125 and 500 mg/kg/day. Absolute liver weights were significantly reduced at the 125 mg/kg/day dose level. This finding was not unexpected due to total fetal resorption for this group. As observed in other studies at this laboratory, the size of the liver increases during pregnancy; however when all fetuses are resorbed, the female returns to the "nonpregnant" state and the liver returns to a "normal" size.
	Summary of Selected Maternal Weight Parameters
	271 / 370

ld Heavy fuel oil Date December 7, 2012

Dose (mg/kg/day)	0	"4"	8	30	125	500 (GD 10-12)
Body wt –at delivery (gr)	428.7	392.1	382.6b	338.7b	256.2b	342.3b
GD 0-3 wt gain (gr)	13	4	3	-2b	24b	15
GD 3-6 wt gain (gr)	17	12	10	12	5a	13
GD 6-10 wt gain (gr)	21	19	16	20	15	23
GD 10-13 wt gain (gr)	18	16	16	13	12	-14b
GD 13-16 wt gain (gr)	20	25	21	4b	-15b	11b
GD 16-20 wt gain (gr)	58	59	52a	27b	-2b	35b
GD 0-20 wt gain (gr)	165	135a	117b	81b	-8b	82b
Gravid uterus (gr)	87.9	75.6	59.8b	22.9b	2.6b	23.7b
Carcass (gr)/Final body weight	340.8	321.5	322.6	316.7	253.7b	318.6
Net wt change from day 0 (e)	76.3	64.3	55.3a	59.1	-10.3b	58.2a
Thymus weight (g)-absolute	0.243	0.212	0.238	0.197	0.075b	0.098k
Thymus weight (g)-relative	0.0768	0.0686	0.0736	0.0818	0.0294 b	0.0310 b
Liver weight - absolute (g)	17.646	16.635	16.741	16.822	13.866 b	17.796
Liver weight (g)-	6.1497	6.1484	6.1883	6.2349	6.4484	6.6784

a)Statistically different from control (p<0.05)

relative

b)Statistically different from control (p<0.01)

c) Statistically different from matched control (p<0.05)

d) Statistically different from matched control (p<0.01)

e) = Carcass weight minus day 0 body wt

The number and percent resorptions were significantly increased at the 30 mg/kg/day level and above. The threefold increase at the 8 mg/kg/day level was considered to be biologically significant. Litter size was significantly decreased at dose levels of 8 mg/kg/day and above.

Adverse effects on serum components were noted at the 125 mg/kg/day dose level. Aberrant serum chemistry values were obtained for urea nitrogen, aspartate aminotransferase, cholesterol, triglycerides, total protein, albumin, albumin/globulin ratio, uric acid, inorganic phosphorus, calcium and iron. A linear relationship (>99% confidence level) was found between dose and serum levels for aspartate aminotransferase, cholesterol, triglyceride, total protein, albumin, albumin/globulin ratio, inorganic phosphorus, calcium and iron. When historical serum reference values were taken into consideration, the dose-response curves for each of these serum components at 125 mg/kg/day dose level and for iron and albumin at the 30 mg/kg/day level fell outside the normal range as defined by the 10th and 90th percentiles of historical data.

Summary of Mean Selected Reproduction Data (Groups 1-6)

5. Toxicity

Id Heavy fuel oil Date December 7, 2012

5. Toxicity

Dose	0	"4"	8	30	125	500 (GD
(mg/kg/day)						10-12)
Implantation	17.8	15.8	16.1	15.5	14.7	16.1
sites – mean						
Viable fetuses-	180	159	161	47	0	56
total						
Litter size (c)	16.4	13.3	11.5b	3.5b	0.0b	3.7b
Viable male	51	56	54	49		54
fetuses (%)						
Resorptions	1.5	2.5	4.6	11.3b	14.7b	12.3b
(mean)						
Resorptions	0.4	16.5	28.9	78.1b	100.0b	74.5b
(mean %)						
Dams with	9	12	12	13	12	15
resorptions (%)						

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) Number of viable fetuses/number of litters evaluated.

A significant decrease in mean fetal body weight was observed in male fetuses from dams exposed to greater than "4" mg/kg/day (8 mg/kg/day and above.

At the time of fetal gross examination, two fetuses exposed in utero to 500 mg/kg/day (GD 10-12) were edematous and one fetus had a kinked tail. The incidence of each observation alone was not significant; however, the total number of affected fetuses observed in this group was significantly greater than that observed in the control group. One fetus in the 30 mg/kg/day group exhibited hyperflexion of both forelimbs.

Fetal Endpoints – Weight and Gross Examination (Groups 1-6)

Dose (mg/kg/day)	0	"4"	8	30	125	500 (GD 10-12)
Fetal weights (g)	3.5	3.5	3.2	2.9b	*	2.6b
Litters evaluated	11	12	14	10	0	11
Fetuses - live	190	159	161	47	0	58
Fetuses – dead	0	0	0	0	0	0
Gross Exam (fetal incidence; %)	0; 0.0	0; 0.0	0; 0.0	1; 2.1		3; 5.4a
Gross Exam (litter incidence; %)	0; 0.0	0; 0.0	0; 0.0	1; 10		3; 27

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

*No viable fetuses

A significant increase in total rib malformations was observed for the 500 mg/kg/day group (GD 10-12). Other malformations observed in the study appeared randomly and at a low frequency throughout the groups. Incomplete ossification of the nasal bones, vertebrae and sternebrae were the most commonly observed variations noted in the STB-exposed groups. In general, the incidence was dose-related.

Fetal Endpoints – Skeletal Malformations and Skeletal Variations (Groups 1-6)

ld Heavy fuel oil Date December 7, 2012

5. Toxicity

Dose (mg/kg/day)	0	"4"	8	30	125	500 (GD 10-12)
Litters evaluated	11	12	14	10	0	11
Fetuses - live	94	83	63	25	0	30
Fetuses – dead	0	0	0	0	0	0
Total skeletal observations (fetal incidence; %)	86;91	73; 88	60; 96	25; 100		30; 100
Total skeletal observations (litter incidence; %)	11; 100	12; 100	14; 100	10; 100		11; 100

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

A significant increase in fetuses having cleft palate was observed for the 500 mg/kg/day (GD 10-12) group. Isolated incidences of other malformations were noted throughout the control and STB –exposed groups. These findings were not statistically significant from the control group. The most commonly noted variation was distention of the ureters. This finding, although present in the control fetuses, was observed significantly more in fetuses exposed in utero to 8 and 500 mg/kg/day.

Fetal Endpoints – Soft Tissue Anomalies (Groups 1-6)

Dose (mg/kg/day)	0	"4"	8	30	125	500 (GD 10-12)
Litters evaluated	11	12	14	9	0	10
Fetuses - live	96	78	73	22	0	26
Fetuses – dead	0	0	0	0	0	0
Total fetal soft tissue (fetal incidence; %)*	7; 8.1	7; 9.2	18;2 3b	4;18		11; 42b
Total fetal soft tissue (litter incidence; %)*	6; 55	5; 42	10; 71	3; 33		5; 50

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

Bioavailability/Bioaccumulation Analyses

The dermal penetration of 14-C-carbazole occurred more extensively and rapidly than 3H- BaP absorption over a 72 hour period. About 27.5% of the total applied 14-C radioactive dose (three applications) was dermally absorbed. In comparison 3.3% of the total applied 3-H-benzo(a)pyrene dose was systemically absorbed. At the end of 72 hours, 2.5% of the 14-C-carbazole was found in the maternal tissues and less than 0.01% of the 14-C radioactive dose (three embryo. The majority of the 14-C-radioactive dose), maternal tissues was found in the large intestines (0.81% of the radioactive dose), maternal blood (0.69%), liver (0.30%), and small intestines (0.26%). The amount of 3-H-BaP found in maternal tissues at the end of 72 hours was 0.8% of the tritiated dose and the amount found in the embryo was less than 0.01% of the radiolabeled dose. Most of the tritium (3-H) was found in th large and small intestines (0.47% and 0.12% of the radiolabeled dose, respectively), liver (0.12%) and maternal blood (0.09%).

In spite of the dermal bioavailability of 14C-carbazole and 3H- BaP in the dam, the amount of radiolabel led material found in the embryo was very low.

5. Toxicity	Id Heavy fuel oil Date December 7, 2012							
Conclusion:	Less than 0.01% of the 14-C-carbazole or 3-H-benzo(a)pyrene in the radioactive doses was detected in the embryos on gestation day 13. The placenta appears to be an effective barrier against the transport of carbazole and BaP to the embryo. There is no evidence the 14C-carbazole or 3H- BaP accumulates selectively in the embryo. The maternal NOAEL for dermal exposure to STB for GD 0-19 could not be identified (<4 mg/kg/day). (LOAEL= 4 mg/kg/day based on decreased body weight gain)							
	The developmental NOAEL for dermal exposure for GD 0-19 could not be identified (<4 mg/kg/day). (LOAEL = 4 mg/kg/day based on a potentially biologically significant increase in resorptions and decreased litter size. Neither was statistically significant, but the authors determined biological significance.							
RELIABILITY/DATA QUALITY								
Reliability:	Valid Without Restrictions (KS=1)							
Reliability Remarks:	Comparable to guideline study							
Key Study Sponsor Indicator:	Кеу							
REFERENCE								
Reference:	Mobil. 1989. Developmental Toxicity Study in Rats Exposed Dermally to Ferndale Syntower Bottoms. Mobil Environmental and Health Sciences Laboratory Report 62934.							
	Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in Syntower Bottoms. Mobil Environmental and Health Sciences Laboratory Report No. 64348 ZM.							
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009.							
High Pro	duction Volume Information System (HPVIS)							
TEST SUBSTANCE								
Category Chemical:	64741-62-4							
Test Substance:	64741-62-4; Clarified Slurry Oil (CSO); Cat Cracked Clarified Oil							
Test Substance	Clarified Slurry Oil (F-179)							
Purity/Composition and Other Test Substance Comments:	PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)							
	SampleDMS1-2-3-4-5-6-7-#OARCARCARCARCARCARCARC							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	091645 (F-179) 0.00 0.70 10.00 30.00 20.00 6.00 0.00							
	1) Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008).							
	2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs							

5. Toxicity	Id Heavy fuel oil Date December 7, 2012	
	with 2 aromatic rings, and so forth to 7 aromatic rings	
Category Chemical Result Type :	Measured	
Unable to Measure or Estimate Justification :		
METHOD Boute of Administration		1
Route of Administration:	Dermal, non-occluded	
Other Route of Administration:	I	1
Type of Exposure:	Developmental toxicity	1
Species:	Rat	
Other Species:	Not applicable	
Mammalian Strain:	Sprague-Dawley (Charles River, Portage, MI)	1
Other Strain:	Not applicable	1
Gender:	Females (non treated males used for mating)	
Number of Animals per Dose:	25 per dose for vehicle (acetone) control 25 per dose level of 0.05 mg/kg/day CSO per administration schedule listed below 70 per dose level of 1, 50 and 250 mg/kg/day per administration schedule listed below (10 per subgroup)	
Concentration:		
Dose:	0, 0.05, 1, 50, 250 mg/kg/day	
Year Study Performed :	1992	1
Method/Guideline Followed:	Other	
GLP:	Yes	
Exposure Period:	Gestation day (GD) 0-19 (two dose groups) Three dose groups were divided into the following subgroup schedule: GD 0-2, GD 3 12-14, GD 15-17, or GD 18-19.	8-5,
Frequency of Treatment:	Once per day	
Post-Exposure Period:	None	
Method/Guideline and Test Condition Remarks:	The study was designed to determine the critical period effect of dermal administration of CSO (F-179) on major organogenesis in the developing rat conceptus.	
	Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of sperm in a vaginal smear or a copulatory plug, the individual, presumed pregnant females were randomly assigned to five treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of evidence of mating: 1. Vehicle control (acetone) 0 mg/kg/day – 25 animals (GD 0-19)	
	 CSO 0.05 mg/kg/day – 25 animals (GD 0-19) CSO 1.0 mg/kg/day – 70 animals (7 subgroups according to GD)* 	
	276 / 370	1

5.	То	xic	ity
----	----	-----	-----

4. CSO 50.0 mg/kg/day – 70 animals total (7 subgroups according to GD)*
5. CSO 250.0 mg/kg/day – 70 animals total (7 subgroups according to GD)*
*Subgroups were as follows: GD 0-2, GD 3-5, GD 6-8, GD 9-11, GD 12-14, GD 15-17, or GD 18-19.

At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.

Suspensions of F-179 were prepared daily at concentrations of 0 (vehicle, acetone), 0.05, 1.0, 50, and 250 mg/mL such that doses of 0. 0.05, 1.0, 50 and 250 mg/kg/day, respectively, were administered at a volume of 1 mL/kg. The test material was administered to groups 1 and 2 GD 0 through GD 19; Groups 3-5 received test material according to their assigned subgroups of GD 0-2, GD 3-5, GD 6-8, GD 9-11, GD 12-14, GD 15-17, or GD 18-19. Each treatment day, animals were dosed by even application of the test material to their shaved backs, using the tip of a syringe. The test material dose, calculated from each rat's most recent body weight, was measured by weight. Rats were fitted with Elizabethan collars to minimize ingestion of test material. Controls, dosed at GD 0 through 19, were handled in the same manner but with application of the vehicle only. Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped off with a cloth dipped in acetone and dried with a clean cloth.

Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted.

Individual body weights and food consumption were recorded daily during presumed gestation.

The abdomen of each rat was opened, and the intact uterus was excised and examined for pregnancy. Uteri from rats that appeared nonpregnant were examined while pressed between two glass plates to confirm pregnancy status. The thoracic and abdominal cavities were examined for gross lesions. Gross lesions were preserved in neutral buffered 10% formalin.

Corpora lutea in each ovary were counted. The number and distribution of implantations, early and late resorptions and live and dead fetuses were noted. An early resorption was defined as one in which organogenesis was not grossly evident. A late resorption was defined as one in which the occurrence of organogenesis was grossly evident. A live fetus was defined as a term fetus that responded to mechanical stimuli. Nonresponding term fetuses were considered to be dead. Dead fetuses and late resorptions were differentiated by the degree of autolysis present; marked to extreme autolysis indicated that the fetus was a late resorption. Each fetus was removed from the uterus, placed in an individual container, weighed, and examined for weighed and examined for sex and gross external alterations. Live fetuses were sacrificed by immersion in the appropriate fixative.

Approximately one-half of the fetuses in each litter were preserved in Bouin's solution, and the remaining fetuses in each litter were preserved in alcohol. Fetuses in dose groups 1 and 2 that were preserved in Bouin's solution were examined for soft tissue alterations by using a variation of Wilson's sectioning technique. The remaining fetuses in these two dose groups that were preserved in alcohol were cleared, stained with alizarin red S and examined for skeletal alterations.

STATISTICAL ANALYSES: Maternal and fetal incidence data were analyzed using the Variance Test for Homogeneity of the Binomial Distribution. Maternal body weights, body weight changes, feed consumption values, and litter averages for fetal body weights, percent male fetuses, fetal ossification sites and percent fetal

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	alterations were analyzed using Bartlett's Test and ANOVA, when appropriate [i.e., Bartlett's Test was not significant (P>0.05)]. If the analysis of variance was

Bartlett's Test was not significant (P>0.05)]. If the analysis of variance was significant (P<0.05), Dunnett's Test was used to identify the statistical significance of the individual groups. If the analysis of variance was not appropriate [i.e., Bartlett's Test was significant (P<0.05)], the Kruskal-Wallis test was used, when less than or equal to 75% ties were present. When more than 75% ties were present, Fisher's Exact Test was used. In cases in which the Kruskal-Wallis Test was statistically significant (P<0.05), Dunn's Method of Multiple Comparisons was used to identify the statistical significance of the individual groups. All other Caesarean-sectioning data were evaluated using the procedures described for the Kruskal-Wallis Test.

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Туре	Population:	Value Description:			Units:	
LOAEL – Dermal	Maternal	=	Not identified for GD 0-19		mg/kg/day	
NOAEL- Dermal	Maternal	=	0.05		mg/kg/day	
LOAEL - Dermal	Offspring (F1)	=	Not identified for GD 0-19		mg/kg/day	
NOAEL - Dermal	Offspring (F1)	=	0.05		mg/kg/day	

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

Results Remarks:

The animals used in the study were between 10-11 weeks of age at exposure initiation.

No deaths occurred during the conduct of this study. No skin irritation occurred and no clinical or necropsy observations were related to the test substance at doses as high as 250 mg/kg/day. The clinical observations that occurred in the 0.05 mg/kg/day dose group were single events and not significant. These observations included dental problems and chromodacryorrhea. Clinical and necropsy observations that occurred in the 1, 50 and 250 mg/kg/day dose groups, when dosing occurred at different intervals during gestation, were also considered unrelated to the test substance because: 1) they were single events; or 2) they are commonly observed in this strain of rat. These observations included localized alopecia, dental problems, mouth lesion. ovarian cyst, mass on the back, distended uterine horn and cervix apparently filled with blood.

The 0.05 mg/kg/day dose did not affect maternal body weight gains, body weights or absolute and relative feed consumption values (GD 0-20). Maternal body weight gains during the dosing periods were reduced by administration of the test article at levels of 1, 50 and 250 mg/kg/day at all intervals between days 3 through 17 of gestation. In fact, the 50 and 250 mg/kg/day doses reduced maternal body weight gains during the dosing period for each interval examined. Maternal body weights were unaffected. These reductions were biologically important and/or statistically significant (P<0.05 to P<0.0I). These three doses of the test substance also caused biologically

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	important and/or significant reductions (P<0.05 to P<0.01) in absolute and/or relative feed consumption values during the treatment periods, when administered at intervals between days 6 through 19 of gestation. The 50 and 250 mg/kg/day doses of the test substance also caused biologically important or significant changes in absolute and/or relative feed consumption values during the treatment periods, when administered on days 0 through 2 or 3 through 5 of gestation. During the post-dosing period, relative feed consumption values remained significantly reduced (P<0.05 to P<0.01) at the 1, 50 and 250 mg/kg/day dose levels, when these doses were administered on days 15 through 17 or 18 and 19 of gestation.
	The 0.05 mg/kg/day dose of the test substance also did not adversely affect the offspring (there were no effects on embryo-fetal viability, sex, body weight. or external, soft tissue and skeletal morphology).
	The authors conclude that the most sensitive indicator of the potential developmental toxicity of F-179 was early resorption; fetal body weights and morphology were unaffected by the doses of the test substance tested in this study. The critical periods for causing embryo deaths (early resorptions) were days 6 through 8 and 9 through 11 of gestation, with the earlier period being the most sensitive. Both the 50 and 250 mg/kg/day doses of F-179 increased early resorptions in these groups, when the test substance was administered

s e d on days 6 through 8 of gestation. The 250 mg/kg/day level also resulted in increased early resorptions when administered on days 9 through 11 of gestation. Reflecting test substance effects, the percentage of resorbed conceptuses per litter tended to be increased in the 50 mg/kg/day dose aroup and was significantly increased (P<0.05) in the 250 mg/kg/day dose aroup, when the test substance was administered on days 6 through 8 of gestation. This parameter tended to be increased at the 250 mg/kg/day dose level, when the test substance was administered on days 9 through 11 of gestation. There were no other adverse effects on the conceptuses at the 50 or 250 mg/kg/day doses of the test substance.

All fetal alterations that occurred in this study were considered unrelated to the test substance because: 1) the incidences were not significant, as compared to the control group values; and 2) the incidences were either not dose-dependent or were single events and within the ranges observed historically. Fetal sex ratios, body weights and gross external, soft tissue or skeletal morphology were unaffected by these doses of test substance, when administered on days 0 through 19 of gestation and days 0 through 2, 3 through 5, 6 through 8, 9 through 11, 12 through 14, 15 through 17 or 18 and 19 of gestation, respectively.

Dose (mg/kg/day)	0 *	0.05*	1d	50d	250d
Body wt –final (gr)	407.5	404.5	С	С	С
GD 0-3 wt gain (gr)	13.2	12.0	С	D	d
GD 3-6 wt gain (gr)	15.9	14.1	d	D	d
GD 6-9 wt gain (gr)	12.8	14.8	d	D	d
GD 9-12 wt gain (gr)	18.3	17.5	d	D	d
GD 12-15 wt gain	23.6	22.7	С	D	d
(gr)					
GD 15-18 wt gain	42.9	41.1	е	D	d
(gr)					
GD 18-20 wt gain	15.0	15.5	С	D	d
(gr)					
GD 19-20 wt gain	34.1	34.8	С	E	d
(gr)					
GD 0-20 wt gain (gr)	160.8	157.1	С	С	С

Summary of Selected Maternal Weight Parameters

a) Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) No different from control, regardless of GD dosing period.

d) Significant difference from controls occurred: see text for explanation. e) Exact interval not measured; however differences were observed at some

point within this interval.

Summary of Mean Selected Reproduction and Litter Data

Dose (mg/kg/day)	0	0.05	1	50	250
Implantation sites -	16.1	15.8	С	С	С
mean					
Viable fetuses	344	362	С	С	С
Litter size	15.0	15.1	С	С	С
Viable male fetuses	51	52	С	С	С
(%)					
Resorptions (mean)	1.1	0.8	С	ш	d
Resorptions (mean	7.0	4.6	С	Е	d
%)					
Dams with	13	11	С	С	С
resorptions					

*GD 0-19 dosing period

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) No different from control, regardless of GD dosing period.

d) Significant difference from controls occurred: see text for explanation.

e) Judged to be biologically significant.

Fetal Endpoints

	-				
Dose (mg/kg/day)	0	0.05	1	50	250
Fetal weights (g)	3.5	3.5	С	С	С
Litters evaluated	23	24	С	С	С
Fetuses - live	344	362	С	С	С
Fetuses – dead	0	0	С	С	С
Gross exam	3.5	4.4	С	С	С
anomalies					
(fetal incidence; %)					
Gross exam	3.69	4.32	С	С	С
anomalies					
(litter incidence; %)					
Total skeletal	3.4	3.2	С	С	С
alterations	(N=177)	(N=187)			
(fetal incidence; %)					
Total skeletal	13.0	8.3	С	С	С
alterations					
(litter incidence; %)					
Total fetal soft	0	1.2	С	С	С
tissue	(N=167)	(N=175)			
(fetal incidence; %)					
Total fetal soft	0	8.6	С	С	С
tissue (litter					
incidence; %)					

*GD 0-19 dosing period

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) No different from control, regardless of GD dosing period.

d) Significant difference from controls occurred: see text for explanation. The maternal NOAEL for dermal exposure to CSO during GD 0-19 was determined to be 0.05 mg/kg/day. (the LOAEL was not identified for GD 0-19

Conclusion:

5. Toxicity	Id Heavy fuel oil						
	Date December 7, 2012						
)						
	The developmental NOAEL for dermal exposure to CSO during GD 0-19 was determined to be 0.05 mg/kg/day. (the LOAEL was not identified for GD 0-19)						
RELIABILITY/DATA QUALITY							
Reliability:	Valid with Restrictions (KS=2)						
Reliability Remarks:	Non-guideline study; research study to determine critical period of developmental toxicity; adequate detail provided						
Key Study Sponsor Indicator:	Кеу						
REFERENCE							
Reference:	ARCO, 1992. Critical Period Developmental toxicity (Embryo-Fetal Toxicity and Teratogenic Potential) Study of F-179 Administered Percutaneously to CrI:CD®BRK VAF/Plus® Presumed Pregnant Rats. Report ATX-91-0042.						
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA- ZR						
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009						
High Production Volume Information System (HPVIS)							

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

TEST SUBSTANCE										
Category Chemical:	64741-62-	4								
Test Substance:	64741-62-	64741-62-4; Clarified Slurry Oil (CSO); Cat Cracked Clarified Oil								
Test Substance	Clarified Slurry Oil (CRU No. 86001)									
Purity/Composition		-								
and Other Test Substance			T		rt no. 643		1	. /		
Comments:	Sample	DMS	1-	2-	3-	4-	5-	6-	7-	
	#	0	ARC	ARC	ARC	ARC	ARC	ARC	ARC	
	00004	wt.% ¹	$(\%)^2$	(%)	(%)	(%)	(%)	(%)	(%)	
	86001	64.20	0.00	2.57	25.68	19.26	6.42	3.21	0.64	
	1) Percen PAC 2 met					OSUY PAG	uele	rminea b	y me	
	2) ARC is					is the wei	iaht nerc	ent of PA	Cs that	
	have 1 arc									
	with 2 aror						•) •• •••	p 0. 0 0		
Category Chemical Result Type	Measured	0				Ū				
Unable to Measure or Estimate Justification:										
METHOD										
Route of Administration:	Dermal, no	on-occlud	led							
Other Route of Administration:										
Type of Exposure:	Developme	ental toxic	city scree	en						
		28	81 / 370							

Id Heavy fuel oilDate December 7, 2012

5. Toxicity

Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Kingston, NY)
Other Strain:	Not applicable
Gender:	Females, presumed pregnant (non treated males used for mating)
Number of Animals per Dose:	10 per dose, except for an additional group of 5 animals exposed at 125 mg/kg on GD 0-19 used to obtain residue data
Concentration:	
Dose:	Developmental study, GD 0-19: 0 (remote), 0 (proximate), 8, 30, 125, 250 mg/kg/day Developmental study, GD 0, 2, 4, 6, 8, 10, 14, 16, 18: 8 mg/kg/day [Note: since the dose was administered on alternate days throughout gestation, this was considered to be the 4 mg/kg/day group] Residue Group, GD 0-19: 125 mg/kg/day
Year Study Performed :	1987
Method/Guideline Followed:	Similar to OECD 414 (Prenatal Developmental Toxicity Study). Main difference was that fewer females were used (10/group versus 20),
GLP:	No information
Exposure Period:	GD 0-19 (7 groups); GD 0, 2, 4, 6, 8, 10, 14, 16, 18 (1 group)
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to obtain data on the influence of CSO on parameters of reproductive performance during gestation (implantation, litter size) and viability and development of the embryo/fetus. An additional experimental group was initially added in order to include residue analyses of maternal blood, fetuses, and placentae. However, the dams assigned to this group resorbed their entire litters, precluding any analyses. Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of a vaginal plug (in <u>situ</u> or expelled), the individual, presumed pregnant females were randomly assigned to eight treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of a vaginal plug, and spermatozoa in the vaginal lavage fluid: 1. *Remotely-housed dermal control (0 mg/kg/day) – GD 0-19 2. Proximately-housed dermal control (0 mg/kg/day) – GD 0-19 3. CSO 8 mg/kg/day – GD 0-19 – 10 animals 4. CSO 30 mg/kg/day – GD 0-19 – 10 animals 5. CSO 125 mg/kg/day – GD 0-19 – 10 animals 7. CSO 8 mg/kg/day – GD 0, 2, 4, 6, 8, 10, 14, 16, 18 – 10 animals. ** 8. CSO 125 mg/kg/day – GD 0, 2, 4, 6, 8, 10, 14, 16, 18 – 10 animals. ** 8. CSO 125 mg/kg/day – GD 0, 19 – 5 animals; residue analyses group *Because inhalation of the test material could not be ruled out, a separate control group was not housed in the same animal room (remote-housed control). Subsequent analyses of air samples indicated that no single compound was
	detected above the limit of detection of 0.2 mg/m3. **Considered to be "4 "mg/kg/day based on dosing of 8 mg/kg/day on alternate days of during gestation period. The exposure levels were based on results of a 13 week study previously
	conducted on the same material.
	Developmental study (Groups 1-7):
	282 / 370

The test material was administered to groups 3-6 and group 8 on GD 0-19. Group 7 animals were administered test material on alternat days during gestation (GD 0, 2, 4, 6, 8, 10, 14, 16, and 18). Hair was clipped from the dorsal trunk of each animal on GD 0, and once weekly during the study. Each treatment day, animals were dosed by even application of the test material to their shaved backs, using the tip of a syringe. The test material dose, calculated from each rat's most recent body weight, was measured by weight. Rats were fitted with Elizabethan collars to minimize ingestion of test material. Controls were handled in the same manner, minus application of the test material. Control animals were clipped and collared and the intact dorsal skin of each rat was stroked with the tip of a syringe, but no test material was applied.

Each rat was observed at least once a day throughout gestation until sacrifice for 1) changes in appearance, behavior, and excretory function, and 2) signs of ill-health, mortality or abortion. All unusual findings were noted.

Individual body weights were recorded on days 0, 3, 6, 10, 13, 16, and 20 of gestation. Individual food consumption was measured during the study was calculated for GD intervals 0-3, 3-6, 6-10, 10-13, 13-16, and 16-20.

Each female was sacrificed by overexposure to ether on day 20 of its presumed gestation. Thoracic and abdominal organs were examined, and all organs were examined grossly for evidence of pathosis. The thymus and liver of each animal exposed to 0, "4", and 250 mg/kg/day were removed, trimmed of excess tissue, weighed to the nearest 0.001 gram, and preserved in 10% formalin. The ovaries and uterus of each rat were excised and examined grossly. The number of corpora lutea per ovary were recorded. The ovaries in nonpregnant females were grossly examined and then discarded. In the uterus, the number and location of implantations, early and late resorptions, and live and dead fetuses were recorded. The uterus of each female that appeared non-gravid was pressed between two glass slides and examined grossly for evidence of implantation.

Blood samples were collected at the time of sacrifice from the aorta of each rat and serum was analyzed for alanine aminotransferase, albumin, alkaline phosphatase, aspartate aminotransferase, bilirubin, calcium, chloride, cholesterol, creatinine, globulin, glucose, lactate dehydrogenase, iron, inorganic phosphorus, potassium, sodium, sorbitol dehydrogenase, total protein, triglycerides, urea nitrogen, and uric acid. The globulin and albumin/globulin ratios were calculated.

Each live fetus was gendered, weighed and grossly examined. Approximately half of the fetuses were randomly assigned for examination of soft tissues (viscera) following fixation in Bouin's solution, using a modification of the Wilson's technique. The other half were fixed in 95% ethanol, differentially stained for cartilage and bone, cleared in glycerin and examined for skeletal abnormalities.

Residue Study (Group 8)

An additional experimental group was initially added in order to include residue analyses of maternal blood, fetuses, and placentae. These analyses were not performed because the dams assigned to this group resorbed their entire litters.

Statistical analysis:

Data from the maternal biophase, caesarean section, and gross fetal examinations were evaluated by ANOVA, followed by group comparisons using Fisher's Exact or Dunnett's Test. Data from skeletal and visceral examination were evaluated by ANOVA followed by group comparisons using Fisher's Exact Test. Thymus and liver weights were evaluated by ANOVA followed by Duncan's multiple range test. Statistical analyses of clinical chemistry data were performed separately on individual serum components using SAS procedures. First the Ftest was employed to do an analysis of variance on the serum data obtained from the control and exposed groups. Next the Student-Newman-Keul's multiple

comparison test was employed to identify the specific group subsets within the serum data sets identified as having nonrandom variance. Differences between control and treated groups were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05).

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; Mobil, 1991)

TEST RESULTS

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:	
LOAEL – Dermal	Maternal	=	8		mg/kg/day	
NOAEL- Dermal	Maternal	=	"4"		mg/kg/day	
LOAEL - Dermal	Offspring (F1)	=	8		mg/kg/day	
NOAEL - Dermal	Offspring (F1)	=	"4"		mg/kg/day	

Results Remarks:

The animals used in the study were approximately 9 weeks old at receipt and approximately 11 weeks old at exposure initiation.

The majority of clinical observations were noted in both the control and treated groups and appear not to be treatement related. Alopecia was observed in some of the animals exposed to CSO. Findings were not considered to be test material related due to the low incidence and lack of a dose response relationship.

Except for two dams exposed to 4 mg/kg/day which exhibited erythema, flaking and scabs, there were no signs of dermal irritation in the CSO exposed animals. One dam exposed to 125 mg/kg/day was found dead in her cage on GD 18. Vaginal bleeding, a sign of some degree of litter resorption was observed in all exposed groups exposed to CSO at doses of 8 mg/kg/day or greater.

Mean body weights, body weight gains and net body weights decreased in a dose-related fashion at doses of 8 mg/kg/day or greater. Except at 8 mg/kg/day, the decreased body weights reflect the decrease in litter sizes observed at these doses. In general, animals exposed to CSO 8 mg/kg/day or greater consumed less food than the controls.

Maternal necropsy result showed a reduced size of the thymus at doses greater than 8 mg/kg/day. Thymus weight measurements confirmed this observation , reflecting a significant decrease (p<0.05) in mean weight at the 250 mg/kg/day, but not at the "4" mg/kg/day level. [note: 8 mg/kg/day weight not determined.] In addition, there was a significant reduction (p<0.05) in liver weights in the high dose rats. However, when the data are expressed in terms of mean organ-to-body weight ratios, results of the high-dose group were higher than the other groups examined.

Summary of Selected Maternal Weight Parameters

Dose 0	0	0	8	30	125	250	"4"	125

Id Heavy fuel oil Date December 7, 2012

(D -	Dura		r	1	[r	
(mg/kg/day)	Re	Pro						
	m.	Χ.						
Body wt –final	396	397	376	316	272b	243b	396	260
(g)				bd	d	d		bd
GD 0-3 wt gain	17	17	12	7	1bd	-2bd	9	-
(g)								3bd
GD 3-6 wt gain	16	13	10	12	6	2b	16	11
(g)								
GD 6-10 wt	19	23	20	18	19	14c	16	18
gain (g)								
GD 10-13 wt	20	20	18	13	7bd	9ac	22	8
gain (g)								
GD 13-16 wt	24	26	22	2ad	-10bd	-13bd	22	-
gain (g)								4ac
GD 16-20 wt	62	64	60	26b	9bd	-1bd	68	-
gain (g)				d				10b
								d
GD 0-20 wt	158	162	141	78b	35bd	9bd	152	22b
gain (g)				d				d
Thymus weight	0.24	0.29	ND	ND	ND	0.061	0.28	ND
(g)-absolute	9	5				ac	0	
(relative weight								
not								
determined)								
Liver weight	15.8	16.5	ND	ND	ND	13.54	16.4	ND
(g)-absolute	08	78				3ac	85	
Liver weight	5.03	5.20	ND	ND	ND	5.60a	5.18	ND
(g)-relative						С		

a)Statistically different from remote control (p<0.05)

b)Statistically different from remote control (p<0.01)

c)Statistically different from proximate control (p<0.05)

d)Statistically different from proximate control (p<0.01)

For clinical chemistry parameters, statistical analyses were performed only between the remote control and CSO-exposed groups. Differences were seen for seven serum parameters, all of which demonstrated a dose response effect. A linear relationship was found between dose and serum level for all of these components but cholesterol. Of these findings, only the increased levels of alkaline phosphatase and cholesterol, indicative of liver toxicity, appear to be related to CSO exposure.

At Cesarean section, the number of implantation sites and percent preimplantation loss were not observed to be affected by exposure to CSO. The parameters affected by CSO were the number of dams with all resorptions, number of resorptions (increased at levels of 30 mg/kg/day or more- p<0.01) and litter size (decreased at levels of 30 mg/kg/day or more – p<0.01).

Summary	of	Mean	Selected	Reproduction Data	
---------	----	------	----------	-------------------	--

Dose (mg/kg/day)	0 Re	0 Pro	8	30	125	250	"4"	125
	m.	х.						
Implantation	164	157	146	141	107	135	166	35
sites - total								
Implantation	16.4	15.7	16.2	15.7	15.3	15.0	16.6	11.7
sites – mean								
Preimplantat	10.8	12.4	3.6	7.7	12.1	11.5	10.8	22.2
ion loss (%)								
Viable	154	143	128	41	2	0	148	0.0
			•		•	•		

								·
fetuses								
Litter size	15.4	14.3	14.2	4.8b	0.4bd	0.0bd	14.8	0.0
(e)				d				
Viable male	80	75	65	19	2	0.0	82	0.0
fetuses								
Viable	74	68	63	22	0.0	0.0	66	0.0
female								
fetuses								
Resorptions	1.0	1.4	2.0	10.9	14.9b	15.0b	1.0	11.7b
(mean)				bd	d	d		d
Resorptions	6.0	8.9	11.7	69.9	97.1b	100.0	10.8	100.0
(mean %)				bd	d	bd		bd
Dams with	70	70	78	89	100	100	80	100
resorptions								
(%)								

a)Statistically different from remote control (p<0.05)

b)Statistically different from remote control (p<0.01)

c)Statistically different from proximate control (p<0.05)

d)Statistically different from proximate control (p<0.01)

e) Number of viable fetuses/number of litters evaluated.

Fetuses from pregnant females exposed to CSO at dose levels of 30 and 125 mg/kg/day were smaller (decreased body weight and crown rump lengths than fetuses from the control and low dose groups. Abnormal external fetal development was observed in fetuses at dosages of 8, 30 and 125 mg/kg/day. Anomalies included micrognathia, kinked tail and edema. Of the six fetuses that were affected, only three of the fetuses exposed to CSO were observed at the time of soft tissue and skeletal evaluations.

Visceral anomalies observed in viable fetuses included enlarged ventricles of the brain, displacement of the esophagus from a left-sided position to a rightsided position, and anomalous development of the heart. A variety of skeletal variations and malformations were observed in CSO-exposed and control fetuses, however the degree of aberrant development in the controls was not as severe as the CSO-exposed fetuses. Although the number of adverse findings was limited, they were judged to be possibly test material related. Abnormal external and visceral development was observed in all of the dead fetuses.

Fetal Endpoints – Weight and Gross Examination
--

Dose (mg/kg/day)	0 Re m.	0 Pro x.	8	30	125	250	"4"	125
Fetal weights (g)	3.5	3.5	3.4	2.7b d	2.3ac		3.5	
Litters evaluated	10	10	9	7	1	0	10	0
Fetuses - live	80	75	66	22	1	0	77	0
Fetuses – dead	0	0	0	0	0	0	0	0
Gross fetal exam anomalies (%)	0	0	0.8	2.4	50			

a)Statistically different from remote control (p<0.05)

b)Statistically different from remote control (p<0.01)

c)Statistically different from proximate control (p<0.05)

d)Statistically different from proximate control (p<0.01)

Id Heavy fuel oilDate December 7, 2012

5. Toxicity

Fetal	Endpoints – Skeletal	Malformations	and Skeletal	Variations

Deee		•	•		405	050	"4"	405
Dose	0	0	8	30	125	250	"4"	125
(mg/kg/day)	Re	Prox						
	m.	•						
Litters	10	10	9	7	1	0	10	0
evaluated								
Fetuses -	80	75	66	22	1	0	77	0
live								
Fetuses –	0	0	0	0	0	0	0	0
dead								
Total	1;	0;	1;	1;	0;		2;	
skeletal	1.3	0.0	1.5	4.5	0.0		2.6	
malformatio								
ns (fetal								
incidence;								
%)								
Total	1:	0;	11; 1	1; 14	0;		1; 10	
skeletal	10	0.0			0.0			
malformatio								
ns (litter								
incidence;								
%)								
Total	25;	51;	34;	20;	1;		50;	
skeletal	31	68b	52a	91b	100		65b	
variations								
(fetal								
incidence;								
%)								
Total	7;	10;	9;	7;	1;		10;	
skeletal	70	100	100	100	100		100	
variations								
(litter								
incidence;								
%)								
<u>/0</u>	I					1		

a)Statistically different from remote control (p<0.05)

b)Statistically different from remote control (p<0.01)

c)Statistically different from proximate control (p<0.05)

d)Statistically different from proximate control (p<0.01)

Fetal	Endpoints	 Soft Tissue 	Anomalies
-------	-----------	---------------------------------	-----------

Dose (mg/kg/day)	0 Re	0 Pro	8	30	125	250	"4"	125
	m.	х.						
Litters evaluated	10	10	9	7	2	0	10	0
Fetuses - live	74	68	62	19	1	0	71	0
Fetuses – dead	0	0	0	2	1	0	01	0
Total fetal soft tissue malformation s (fetal incidence; %)	0; 0.0	0; 0.0	0; 0.0	2; 9.5a	1; 50ac		0; 0.0	
Total fetal soft tissue malformation s (litter incidence; %)	0; 0.0	0; 0.0	0; 0.0	2; 29	1; 50		0; 0.0	

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
Conclusion:	a)Statistically different from remote control (p<0.05) b)Statistically different from remote control (p<0.01) c)Statistically different from proximate control (p<0.05) d)Statistically different from proximate control (p<0.01) The maternal NOAEL for dermal exposure to CSO during GD 0-19 was determined to be "4" mg/kg/day (LOAEL= 8 mg/kg/day based on vaginal discharge observations, decreased body weight; decreased food consumption, and atrophy of the thymus)
	The developmental NOAEL for dermal exposure to CSO during GD 0-19 was determined to be "4" mg/kg/day (LOAEL = 8 mg/kg/day based on increased number and percent resorptions; decreased fetal body weight and crown-rump length, and increased fetal anomalies)
	The authors also note that developmental toxicity was observed at concentrations that also produced overt maternal toxicity.
RELIABILITY/DATA QUALITY	
Reliability:	Valid Without Restrictions (KS=1)
Reliability Remarks:	Comparable to guideline study
Key Study Sponsor Indicator:	Кеу
REFERENCE	
Reference:	Mobil. 1987. Clarified Slurry Oil Developmental Toxicity Study in Rats. Mobil Environmental and Health Sciences Laboratory Report 50541.
	Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in Clarified Slurry = Oil. Mobil Environmental and Health Sciences Laboratory Report no. 64348 ZA
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009.

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

Category Chemical: Test Substance:

Test Substance Purity/Composition and Other Test Substance

Comments:

64741-62-4

64741-62-4; Clarified Slurry Oil (CSO) Clarified Slurry Oil (CRU No. 86001)

PAC (Polycyclic Aromatic Compound) Content – Report No. 64348 ZA (Mobil, 1991)

Sample #	DMS O wt.% 1	1- ARC (%) ²	2- ARC (%)	3- ARC (%)	4- ARC (%)	5- ARC (%)	6- ARC (%)	7- ARC (%)
86001	64.20	0.00	2.57	25.68	19.26	6.42	3.21	0.64

1) Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008).

2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
Category Chemical Result Type :	that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings. Measured
Unable to Measure or	
Estimate Justification : METHOD	
Route of Administration:	Oral; gavage
Other Route of Administration:	Chai, gavage
Type of Exposure:	Developmental toxicity study
Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	
Other Strain:	Sprague-Dawley (Charles River, Kingston, NY)
Gender:	Not applicable
Number of Animals per Dose:	Females, presumed pregnant (non treated males used for mating)
Concentration:	12 per dose
Dose:	
Year Study Performed :	0, 125, 500, 2000 mg/kg/day (per gestation days described in methods below)
Method/Guideline Followed:	1990 Similar to OECD 414 (Prenatal Developmental Toxicity Study). Main difference was that fewer females were used (12 group versus 20 and gestation day exposures were limited to single dose on specific days).
GLP:	No information
Exposure Period:	GD 11-14 (single doses on each day per method described below)
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The primary objectives of this study were to evaluate the effects of CSO on pregnant female rats during gestation (food consumption, body weight gain, and viability and development of the offspring and to compare those data with data previously obtained using the dermal route of exposure. This developmental toxicity study was designed to detect, in a relatively short period of time, both reproductive and developmental effects which might be related to a single oral exposure of CSO. The study also provides a means to evaluate viability and normal development of the fetus during specific periods of organogenesis. Selection of dose levels and the day chosen to examine dose-response (gestation day 12) were based on the results of a pilot study.
	Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of a vaginal plug (<u>in situ</u> or expelled), the individual, presumed pregnant females were randomly assigned to eight treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of a vaginal plug, and spermatozoa in the vaginal lavage fluid:
	 24. Control (0 mg/kg/day CSO-tap water at 2000 mg/kg) – GD 11-14 – 12 animals 25. CSO 2000 mg/kg/day – GD 11– 12 animals 26. CSO 125 mg/kg/day – GD 12 – 12 animals 27. CSO 500 mg/kg/day – GD 12 – 12 animals 28. CSO 2000 mg/kg/day – GD 12 – 12 animals 29. CSO 2000 mg/kg/day – GD 13 – 12 animals 30. CSO 2000 mg/kg/day – GD 14 – 12 animals 289 / 370

The test material was administered to groups 2-7 via oral gavage on one of GD 11-14, an interval during which the developing conceptus is believed to be sensitive to teratogenic insult by refinery streams. The test material dose, calculated from each rat's most recent body weight, was measured by weight. Controls were administered water on GD 11-14.

Each presumed-pregnant female was observed at least once a day throughout gestation until sacrifice for signs of pathosis, abortion, premature delivery and/or death. All unusual findings were noted.

Individual body weights were recorded on days 0, 6, 11-15, and 20 of gestation. Individual food consumption was measured during the study was calculated for GD intervals 0-6, 6-11, 11-15 and 16-20.

Each female was sacrificed by overexposure to ether on day 20 of its presumed gestation. Thoracic and abdominal organs were examined, and the reproductive organs were examined grossly for evidence of pathosis. Thymus and liver weights were measured to the nearest 0.001 gram, and preserved in neutral buffered formalin. The number of corpora lutea per ovary and the weight of the gravid uterus were recorded. The ovaries in nonpregnant females were grossly examined and then discarded. In the uterus, the number and location of implantations, early and late resorptions, and live and dead fetuses were recorded. The uterus of each female that appeared non-gravid was pressed between two glass slides and examined grossly for evidence of implantation.

Each live fetus was gendered, weighed and grossly examined. The following definitions and terminology were used in describing fetal findings:

- 11) Anomaly: Any deviation (malformation or variation) from "normal."
- 12) Malformation: A permanent structural deviation which generally is incompatible with, or severely detrimental to, normal postnatal survival or development. Absence structures which should have been present, as well as deviations in tail development, are also classified as malformations.
- 13) Variation: A variation is a divergence beyond the usual range of structural constitution. It has an indeterminate effect on health and generally has no effect on survival.
- 14) Incidental: An incidental finding is generally an accidental event, e.g., accidentally, tip of tail was cut off.

After gross evaluation, all fetuses in each litter were fixed in Bouin's solution for subsequent soft tissue evaluation using a modification of Wilson's technique. 'The head and thoracic regions were evaluated for palatal and esophageal anomalies, respectively; no other soft tissues were evaluated.

After gross evaluation, fetuses in each litter were equally distributed into two groups, and preparation began for either soft tissue or skeletal evaluations. Approximately one-half of the fetuses in each litter were randomly distributed to soft tissue (viscera) or skeletal evaluation groups. Fetuses assigned to the soft tissue analysis group were fixed in Bouin's solution and examined for anomalies using a modification of Wilson's technique. The other half were pooled, fixed in 95% ethanol, differentially stained for cartilage and bone, cleared in glycerin and examined for skeletal abnormalities.

Statistical analysis:

Data from the maternal biophase, caesarean section, and gross fetal examinations were evaluated by ANOVA, followed by group comparisons using Fisher's Exact or Dunnett's Test. Data from skeletal and visceral examination were evaluated by ANOVA followed by group comparisons using Fisher's Exact Test. Thymus and liver weights were evaluated using Tukey's

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	test. Differences between control and treated groups were considered

test. Differences between control and treated groups were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05).

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; Mobil, 1991)

TEST RESULTS

Concentration (LOAEL/L	OAEC/NOAEL/NG	JAEC) [*]
Value		Value or Lower	Unner

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	500		mg/kg/day
NOAEL- Dermal	Maternal	=	125		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	125		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	Not identified <125		mg/kg/day

*Determined by reviewer

Results Remarks:

The animals used in the study were approximately 9 weeks old at receipt and approximately 11 weeks old at exposure initiation.

One female in group 2 (2000 mg/kg/GD 11) died on gestation day 19. Gross necropsy revealed a hole in the left bronchus and fluid in the thoracic cavity. Although it appeared that the damage was a result of the dosing procedure, the source of the hole (mechanical damage during dosing or accidentally cut at the time of necropsy) was uncertain and no definite conclusions were reached. Data for this female have been excluded from the summaries.

Incidental findings included red nasal exudate and chromodacryorrhea. These observations are common signs of stress in rats and are not considered to be test material-related. One female in the 2000 mg/kg (GD 11) group exhibited scabs in the abdominal area. The cause of this finding is uncertain.

Findings attributable to CSO exposure included vaginal bleeding, perineal staining, and decreased stool. Red vaginal discharge is generally a sign of some degree of litter resorption and is probably the case in this study since the percentage of resorptions was high in animals which exhibited the discharge. One female in the 2000 mg/kg (GD 14) group was sacrificed moribund on gestation day 19. She had severe red vaginal discharge and was very pale. No gross findings were noted for this dam at the time of necropsy, however, upon uterine examination, her entire litter was found to be dead. Since this dam was sacrificed moribund prior to gestation day 20, and cesarean section data are excluded from the summary tables.

Mean body weights for the 500 and 2000 mg/kg groups were significantly reduced during the latter part of gestation. A significant reduction in overall maternal body weight gain (GD 0-20) and net body weight change was also observed for these same groups. A dose-response was observed for overall and net body weight gain for groups treated on gestation day 12. Mean maternal body weight changes indicate that all CSO-exposed groups began

to lose a significant amount of weight the day following CSO administration. Females exposed to CSO at dose levels of 500 mg/kg or greater consumed significantly less food than the control group during mid and/or late gestation. This period reflects the times at which these animals were administered CSO.

The thymus appeared small in females from the 500 and 2000 mg/kg groups, however, the incidence was higher in the 2000 mg/kg groups. A significant reduction in absolute and relative thymus weight was noted in animals exposed to CSO at dose levels of 500 mg/kg or greater. This finding appeared to be dose-related for those groups dosed on gestation day 12. Relative liver weights were significantly increased at the 2000 mg/kg (GD 13 and 14) dose levels.

Dose (mg/kg/day)	0 (GD 11-14)	2000 (GD 11)	125 (GD 12)	500 (GD1 2)	2000 (GD 12)	2000 (GD 13)	2000 (GD 14)
Body wt –at delivery (gr)	411	326	415	374	325	355	363
GD 0-6 wt gain (gr)	34	36	35	33	36	34	36
GD 6-11 wt gain (gr)	29	28	28	23	28	27	28
GD 11-12 wt gain (gr)	6	-16b	6	4	6	6	5
GD 12-13 wt gain (gr)	5	-11b	-8b	9b	15b	5	4
GD 13-14 wt gain (gr)	5	-7b	11	-2	-10b	-11b	7
GD 14-15 wt gain (gr)	8	10	9	16	-9b	-8b	-13b
GD 15-20 wt gain (gr)	76	41b	74	67	45b	51b	44b
GD 0-20 wt gain (gr)	163	80b	155	132b	80b	105b	112b
Gravid uterus (gr)	80.4	21.4 b	77.6	68.4	23.0 b	55.4 b	65.7a
Carcass (gr)	331	304a	337	305	302a	299b	297b
Net wt change from day 0 (g)	82.1	58.9 b	77.8	63.5b	57.3 b	49.8 b	46.4b
Thymus weight (g)- absolute	0.353	0.09 4b	0.285	0.196 b	0.08 4b	0.09 9b	0.091b
Thymus weight (g)- relative	0.106	0.03 1b	0.084	0.064 b	0.02 8b	0.03 8b	0.031b
Liver weight - absolute (g)	15.602	15.1 67	16.69 2	15.08 8	15.6 94	16.4 86	16.585
Liver weight (g)-relative	4.709	4.98 4	4.938	4.939	5.19 7	5.48 8b	5.705b

Summary of Selected Maternal Weight Parameters

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) = Carcass weight minus day 0 body wt

The following parameters appeared to be adversely affected by CSO exposure: The number and percent resorptions were significantly increased at 2000 mg/kg (GD 11 and 12). The greater than threefold increase at 2000 mg/kg on GD 13 is considered to be of biological significance. At 2000 mg/kg (GD 11 and 12), litter size was also decreased significantly, and the fetal sex

5. Toxicity

ratio was significantly altered in the 2000 mg/kg (GD 11) group. The biological significance of this finding is questionable since no other CSO-exposed group showed a similar pattern.

Dose (mg/kg/day)	0 (GD 11-14)	2000 (GD 11)	125 (GD 12)	500 (GD1 2)	2000 (GD 12)	2000 (GD 13)	2000 (GD 14)
Implantation sites – total	173	171	181	150	171	194	167
Implantation sites – mean	16.7	15.5	16.5	15.0	15.6	16.2	16.7
Preimplantati on loss (%)	6.9	6.1	6.1	4.2*	8.3	7.9	2.0
Viable fetuses - total	163	41	186	135	41	153	151
Litter size (c)	14.8	3.7b	15.1	13.5	3.8b	12.8	15.2
Viable male fetuses (%)	56	37	49	49	50	50	50
Resorptions (mean)	0.9	11.8b	1.4	1.5	11.7b	3.3	1.5
Resorptions (mean %)	6.2	75.9b	8.2	10.0	75.6b	20.4	8.9
Dams with resorptions (%)	64	100	73	70	100	92	70

Summary of Mean Selected Reproduction Data

*number of females evaluated =9; data from one female not available a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.05)

c) Number of viable fetuses/number of litters evaluated.

A significant decrease in mean fetal body weight was observed in male fetuses from dams exposed to CSG at dose levels of 500 mg/kg or greater and in all viable fetuses in the 2000 mg/kg groups.

A significant increase in fetal external anomalies was observed for all 2000 mg/kg groups. The most commonly noted malformations involved the mouth (cleft palate), the hind- and forepaws (brachydactyly), and the tail (kinked, fleshy tab at the tip of the tail). Two fetuses exposed in utero to 500 mg/kg (GD 12) had hindpaw malformations; one fetus had syndactyly and one fetus had brachydactyly. Although these findings were not statistically significant, they are consistent with those of the 2000 mg/kg groups and are considered to be CSO-related.

Fetal Endpoints – Weight and Gross Examination

Dose (mg/kg/day)	0 (GD 11-14)	2000 (GD 11)	125 (GD 12)	500 (GD1 2)	2000 (GD 12)	2000 (GD 13)	2000 (GD 14)
Fetal weights (gr)- mean	3.6	2.6b	3.4	3.3	2.5b	2.8b	2.9b
Litters evaluated	11	7	11	10	9	12	10
Fetuses - live	163	41	166	135	42	154	152

5. Toxicity

Faturas	0	0	0	0	4	4	
Fetuses – dead	0	0	0	0	1	1	1
Total gross exam anomalies (fetal incidence; %)	0;0.0	10; 24b	0;0.0	2; 1.5	18; 43b	75; 49b	34; 22b
Total gross exam anomalies (litter incidence; %)	0;0.0	5;71b	0;0.0	2; 20	9; 100b	11; 92b	9; 90b

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

A significant increase in skeletal malformations was noted for the 500 and 2000 mg/kg groups. The most commonly observed malformations included misshapen cervical and caudal vertebrae, misshapen clavicle and costal cartilage, and fore- and hindpaw phalanges absent, misshapen, or fused. CSO-exposed fetuses also had a significantly higher incidence of incompletely ossified skeletal structures.

Fetal Endpoints – Skeletal Malformations and Skeletal Variations

Dose (mg/kg/day)	0 (GD 11-14)	2000 (GD 11)	125 (GD 12)	500 (GD1 2)	2000 (GD 12)	2000 (GD 13)	2000 (GD 14)
Litters evaluated	11	7	11	10	9	12	10
Fetuses - live	84	23	86	70	24	79	79
Fetuses – dead	0	0	0	0	0	0	0
Total skeletal malformation s (fetal	1; 1.2	15; 65b	3; 3.5	31; 44b	18; 75b	46; 57b	30;38b
incidence; %) Total skeletal malformation s litter incidence; %)	1; 9.1	7; 100b	8; 27	10; 100b	9; 100b	11; 92b	10; 100b
Total skeletal variations (fetal incidence; %)	72; 86	23; 100	71; 83	66; 94	24; 100	79; 100b	70; 100b
Total skeletal variations litter incidence; %)	11; 100	7; 100	11; 100	10; 100	9; 100	12; 100	10; 100

a)Statistically different from control (p<0.05) b)Statistically different from control (p<0.01)

A significant increase in fetuses having cleft palate was observed for the 2000 mg/kg groups. This malformation was also observed in one fetus from the 125 mg/kg group and one fetus in the 500 mg/kg group. Although not detected at the time of external examination due to the location of the cleft palate (soft palate), this finding is consistent with the 2000 mg/kg groups and is probably a CSO-related effect. Other CSO-related findings included

5. Toxicity						d Heavy e Decer	v fuel oil mber 7, 2	2012
	diaphragmatic hernia at the 2000 mg/kg dose administered on GD 11, 12, and 13 and ectopic (right-sided) esophagus at 2000 mg/kg (GD 13).							
	Dose (mg/kg/day)	0 (GD 11-14)	2000 (GD 11)	125 (GD 12)	500 (GD1 2)	2000 (GD 12)	2000 (GD 13)	2000 (GD 14)
	Litters evaluated	11	7	11	10	6	12	10
	Fetuses - live	79	18	80	85	17	74	73
	Fetuses – dead	0	0	0	0	0	0	0
	Total fetal soft tissue (fetal	3; 3.8	7; 39	2; 2.5	6; 12	11; 65b	52; 70b	18; 25b
	incidence; %) Total fetal soft tissue (litter	2; 18	5; 71a	2; 18	5; 50	6; 100b	12; 100b	7; 70a
Conclusion: RELIABILITY/DATA QUALITY Reliability: Reliability Remarks: Key Study Sponsor Indicator:	incidence; %) a) Statistically different from control (p<0.05) b) Statistically different from control (p<0.01) Determined by reviewer: The maternal NOAEL for a single oral exposure to CSO on one of GD 11-14 was determined to be 125 mg/kg/day (LOAEL= 500 mg/kg/day based on significantly lower body weight gain, decreased net maternal weight gain, decreased food consumption, and decreased thymus weight) The developmental NOAEL for a single oral exposure to CSO on one of GD 11-14 could not be identified (<125 mg/kg); (LOAEL= 125mg/kg/day based on significantly increased soft tissue malformations and skeletal variations) A dose response for developmental toxicity was observed for those groups dosed on gestation day 12. Valid With Restriction (KS=2) Non guideline study; research protocol; adequate experimental details.						pased on gain, ne of GD ay based ations) groups	
REFERENCE	Key							
Reference:	 Mobil. 1990. Developmental Toxicity Study in Rats Exposed Orally to a Single Dose of Clarified Slurry Oil. Mobil Environmental and Health Sciences Laboratory Report 63122. Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in Clarified Slurry Oil. 1991. Mobil Environmental and Health Sciences Laboratory Report No. 64348 ZA. API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009 					Sciences atics in nd		

High Production Volume Information System (HPVIS)

5. T	oxicity
------	---------

DEVELOPMENTAL TOXICITY/TER	ATOGENICITY						
TEST SUBSTANCE							
Category Chemical: Test Substance: Test Substance	64741-62-4 64741-62-4; Syntower Bottoms (STB) Syntower Bottoms (CRU No 86484)						
Purity/Composition and Other Test Substance Comments:	PAC (Polycyclic Aromatic Compound) Content 64348 ZM (Mobil, 1991)						
October Chaminal Decult Turc	SampleDMS1-2-3-4-5-6-7-#OARCARCARCARCARCARCARCARCARCwt.% 1 $(\%)^2$ $(\%)^2$ $(\%)$ $(\%)$ $(\%)$ $(\%)$ $(\%)$ $(\%)$ $(\%)$ 8648448.800.000.989.7619.529.764.880.981) Percent of DMSO-extractable materials (mostly PACs), determined by the PAC2 method as described in API (2008).2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings.						
Category Chemical Result Type : Unable to Measure or	Measured						
Estimate Justification : METHOD							
Route of Administration:	Oral; gavage						
Other Route of Administration:							
Type of Exposure:	Developmental toxicity study						
Species:	Rat						
Other Species:	Not applicable						
Mammalian Strain:	Sprague-Dawley (Charles River, Kingston, NY)						
Other Strain:	Not applicable						
Gender:	Females, presumed pregnant (non treated males used for mating)						
Number of Animals per Dose:	11 per dose						
Concentration:							
Dose:	0, 125, 500, 2000 mg/kg/day (per gestation days described in methods below)						
Year Study Performed :	1990						
Method/Guideline Followed:	Similar to OECD 414 (Prenatal Developmental Toxicity Study). Main difference was that fewer females were used (11 group versus 20 and gestation day exposures were limited to single dose on specific days).						
GLP:	No information						
Exposure Period:	GD 11-15 (single doses on each day per method described below)						
Frequency of Treatment:	Once per day						
Post-Exposure Period:	None						
Method/Guideline and Test Condition Remarks:	The primary objectives of this study were to evaluate the effects of STB on pregnant female rats during gestation (food consumption, body weight gain, and viability and development of the offspring and to compare those data with data previously obtained using the dermal route of exposure. This developmental toxicity study was designed to detect, in a relatively short period of time, both reproductive and developmental effects which might be related to a single oral exposure of STB. The study also provides a means to evaluate viability and normal						
	296 / 370						

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	development of the fetus during specific periods of organogenesis (GD 11-15). Dose levels and days of administration were selected based on the results of a
	previously conducted study on clarified slurry oil.
	Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of a vaginal plug (in situ or expelled), the individual, presumed pregnant females were randomly assigned to eight treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of a vaginal plug, and spermatozoa in the vaginal lavage fluid:
	 Control (0 mg/kg/day STB –tap water at 2000 mg/kg) – GD 11-15 – 11 animals
	 32. STB 2000 mg/kg/day – GD 11– 11 animals 33. STB 125 mg/kg/day – GD 12 – 11 animals 34. STB 500 mg/kg/day – GD 12 – 11 animals 35. STB 2000 mg/kg/day – GD 12 – 11animals 36. STB 2000 mg/kg/day – GD 13 – 11 animals 37. STB 2000 mg/kg/day – GD 14 – 11 animals 38. STB 2000 mg/kg/day – GD 15 – 11 animals
	The test material was administered to groups 2-8 via oral gavage on one of GD 11- 15, an interval during which the developing conceptus is believed to be sensitive to teratogenic insult by refinery streams. The test material dose, calculated from each rat's most recent body weight, was measured by weight. Controls were administered water on GD 11-15.
	Each presumed-pregnant female was observed at least once a day throughout gestation until sacrifice for signs of pathosis, abortion, premature delivery and/or death. All unusual findings were noted.
	Individual body weights were recorded on days 0, 6, 11-18, and 20 of gestation. Individual food consumption was measured during the study was calculated for GD intervals 0-6, 6-11, 11-16 and 16-20.
	Each female was sacrificed by overexposure to ether on day 20 of its presumed gestation. Thoracic and abdominal organs were examined, and the reproductive organs were examined grossly for evidence of pathosis. Thymus and liver weights were measured to the nearest 0.001 gram, and preserved in neutral buffered formalin. The number of corpora lutea per ovary and the weight of the gravid uterus were recorded. The ovaries in nonpregnant females were grossly examined and then discarded. In the uterus, the number and location of implantations, early and late resorptions, and live and dead fetuses were recorded. The uterus of each female that appeared non-gravid was pressed between two glass slides and examined grossly for evidence of implantation.
	 Each live fetus was gendered, weighed and grossly examined. The following definitions and terminology were used in describing fetal findings: 15) Anomaly: Any deviation (malformation or variation) from "normal." 16) Malformation: A permanent structural deviation which generally is incompatible with, or severely detrimental to, normal postnatal survival or development. Absence structures which should have been present, as well as deviations in tail development, are also classified as malformations. 17) Variation: A variation is a divergence beyond the usual range of structural constitution. It has an indeterminate effect on health and generally has no effect on survival. 18) Incidental: An incidental finding is generally an accidental event, e.g., accidentally, tip of tail was cut off.

After gross evaluation, all fetuses in each litter were fixed in Bouin's solution for

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	subsequent soft tissue evaluation using a modification of Wilson's technique. 'The head and thoracic regions were evaluated for palatal and esophageal anomalies, respectively; no other soft tissues were evaluated.
	After gross evaluation, fetuses in each litter were equally distributed into two groups, and preparation began for either soft tissue or skeletal evaluations. Approximately one-half of the fetuses in each litter were randomly distributed to soft tissue (viscera) or skeletal evaluation groups. Fetuses assigned to the soft tissue analysis group were fixed in Bouin's solution and examined for anomalies using a modification of Wilson's technique. The other half were pooled, fixed in 95% ethanol, differentially stained for cartilage and bone, cleared in glycerin and examined for skeletal abnormalities.
	<u>Statistical analysis:</u> Data from the maternal biophase, caesarean section, and gross fetal examinations were evaluated by ANOVA, followed by group comparisons using Fisher's Exact or Dunnett's Test. Data from skeletal and visceral examination were evaluated by ANOVA followed by group comparisons using Fisher's Exact Test. Thymus and liver weights were evaluated using Tukey's test. Differences between control and treated groups were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05).
	PAC Analysis: The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; Mobil, 1991)
TEST RESULTS	
	Concentration (LOAEL / LOAEC/NOAEL /NOAEC)*

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	500		mg/kg/day
NOAEL- Dermal	Maternal	=	125		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	500		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	125		mg/kg/day

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)*

*Determined by reviewer

Results Remarks:

The animals used in the study were approximately 9 weeks old at receipt and approximately 11 weeks old at exposure initiation.

One female in Group 7 (2000 mg/kg/GD 14) was sacrificed moribund on gestation day 15. Gross necropsy revealed a small tear in the esophagus indicating a probable mis-dose. Data for this female have been excluded from all summary tables.

Incidental findings included red nasal exudate and chromodacryorrhea (red discharge around the eyes). These are common signs of stress in rats and are not attributed to STB-exposure. Two females in the STB-exposed groups had alopecia (hairloss) in the abdominal area.

Treatment-related findings included red vaginal discharge, perineal staining, and decreased stools, all of which occurred in a dose-related manner. Red vaginal discharge is usually indicative of some degree of litter resorption. In this study, this

5. Toxicity	ld Heavy fuel oil Date December 7, 2012
	was probably the case since the females with red vaginal discharge had large numbers of resorptions. Perianal staining was noted for three STB-exposed females.

In general, the mean body weights of the groups exposed the 2000 mg/kg were significantly less than that of the control group during the latter part of gestation; the effect became apparent for each group approximately 2-3 days post-dose. The mean maternal body weight changes indicate that all STB-exposed females actually began to lose weight immediately following STB exposure. This weight loss was statistically significant at all STB dose levels. Overall body weight gain (gestation days 0 to 20) was significantly reduced for all females exposed to STB at a dose level of 2000 mg/kg. Although all 2000 mg/kg groups had a lower mean net body weight gain than the control group, the reduction was only statistically significant for those groups dosed on gestation days 13, 14, or 15. Overall, the amount of food consumed by females exposed to STB at 2000 mg/kg was significantly lower than that consumed by the control group during the mid to late gestation period. This period reflects the time at which these animals were administered STB. Gravid uterine weight was significantly less than that of the control group at a dose level of 500 mg/kg and above. This may be attributed to resorption of fetuses as well as decreased fetal weights at those dose levels.

Both absolute and relative thymus weights of females exposed to STB at dose levels of 500 mg/kg or higher were significantly reduced. Liver weights did not appear to be adversely affected. No other STB-related findings were noted at the time of necropsy.

Dose	0 (GD	2000	125	500	2000	2000	2000	2000
(mg/kg/da	11-15)	(GD	(GD	(GD1	(GD	(GD	(GD	(GD
y)	100	11)	12)	2)	12)	13)	14)	15)
Body wt -	422	357	404	401	357	381	377	368
at								
delivery								
(gr) GD 0-6 wt	05	22	32	22	34	20	34	37
	35	33	32	33	34	36	34	31
gain (gr)	07	07	07	00	00	00	07	
GD 6-11	27	27	27	32	28	28	27	28
wt gain								
(gr)	-	4.01	_	_		_	-	_
GD 11-12	3	-10b	5	5	6	7	6	7
wt gain								
(gr)	-				1.01	-	_	_
GD 12-13	8	-12b	-3b	-11b	-12b	6	7	5
wt gain								
(gr)								
GD 13-14	5	-4a	10	-5b	-11b	-11b	5	8
wt gain								
(gr)								
GD 14-15	10	13	7	22b	-1b	-13b	-8b	7
wt gain								
(gr)								
GD 15-	8	12	10	9	14	0	-9b	-11b
160 wt								
gain (gr)								
GD 16-20	72	34b	66	60	50a	70	64	28b
wt gain								
(gr)								
GD 0-20	169	91b	153	146	108b	122b	125b	108b
Gravid	89.5	25.8	79.4	6S.7	47.9	66.6	71.8	61.0b
uterus				b	b	b	а	
							•	

Summary of Selected Maternal Weight Parameters

(gr)								
Carcass	332	332	324	333	309	314	306	307
(gr)								
Net wt	79.3	65.7	73.3	76.2	60.3	55.7	54.1	47.5b
change						а	b	
from day								
0 (g)								
Thymus	0.314	0.12	0.244	0.216	0.11	0.10	0.11	0.154
weight		9b		b	7b	6b	7b	b
(g)-								
absolute								
Thymus	0.094	0.03	0.075	0.065	0.03	0.03	0.03	0.049
weight		9b		b	8b	3b	8b	b
(g)-								
relative								
Liver	17.41	17.5	16.82	17.23	18.6	17.0	16.4	17.33
weight -	9	60	4	1	68	39	49	8
absolute								
(g)								
Liver	5.237	5.30	5.181	5.175	5.38	5.43	5.37	5.651
weight		5			7	0	1	
(g)-								
relative								

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) = Carcass weight minus day 0 body wt

Group 2 (2000 mg/kg/GD 11) had an unusually high percentage of preimplantation loss (14.6% \pm 25.8). This effect IS attributed to one female in the group who had only two implantation sites and sixteen corpora lutea. The cause of this is unknown, but since implantation occurs on or about gestation day 6, the finding is not STB-related. In general, live litter size was slightly decreased for all STB-exposed groups. Statistical significance was achieved for groups 2 and 5 (2000 mg/kg/GD 11 and 12, respectively). A corresponding (slight) increase in the number and percent resorptions was also seen in all STB-exposed groups with significance again being achieved for groups 2 and 5. The number of dams with resorptions was significantly higher at dose levels of 500 and 2000 mg/kg.

Summary of Mean Selected Reproduction Data

Dose (mg/kg/day)	0 (GD 11- 15)	2000 (GD 11)	125 (GD 12)	500 (GD1 2)	2000 (GD 12)	2000 (GD 13)	2000 (GD 14)	2000 (GD 15)
Implantation sites – total	185	1181	156	177	166	167	167	153
Implantation sites – mean	16. 8	16.5	15.6	16.1	15.1	16.7	16.7	15.3
Preimplanta tion loss (%)	1.6	14.6	4.1	10.6	11.5	5.5	4.9	12.0
Viable fetuses - total	182	49	147	150	109	149	154	125
Litter size (c)	16. 5	4.5b	14.8	13.6	9.9b	14.9	15.4	13.1
Viable male fetuses (%)	47	55	54	46	51	53	48	39

Resorptions	0.3	11.9	0.8	2.5	5.2b	1.8	1.3	2.2
(mean)		b						
Resorptions	1.6	69.7	5.0	15.7	34.2	11.2	7.7	13.7
(mean %)		b			b			
Dams with	27	100b	50	100b	100b	80a	70	80a
resorptions								
(%)								

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) Number of viable fetuses/number of litters evaluated.

A decrease in fetal weights was observed in fetuses from dams exposed to STB at a dose level of 500 mg/kg and above with significance being achieved at the 2000 mg/kg level. A significant increase in fetal external malformations was observed at 2000mg/kg/GDs 11-14. The malformations generally involved the mouth (cleft palate), the hindlimb (brachydactyly, adactyly) and the tail (fleshy tab at the tip of the tail and shortened tail). Adactyly and brachydactyly were noted in one fetus in the 500 mg/kg group and gastroschisis was noted in one fetus in the 125 mg/kg group. The adactyly/brachydactyly in the 500 mg/kg group was consistent with the findings in the 2000 mg/kg groups and is probably STB-related. Gastroschisis occurs spontaneously and has been seen in control animals at this facility. The incidence of hematomas (8 variation) on the forepaws and hindpaws of fetuses from dams exposed to STB at 2000 mg/kg/GD 15 was statistically significant. Other fetal variations, such as edema and

malrotated hindlimbs also occurred in fetuses from dams exposed to STB and were not observed in the fetuses from control dams.

Dose (mg/kg/da y)	0 (GD 11-15)	2000 (GD 11)	125 (GD 12)	500 (GD1 2)	2000 (GD 12)	2000 (GD 13)	2000 (GD 14)	2000 (GD 15)
Fetal weights (gr)- mean	3.6	2.7b	3.5	3.2	2.9b	3.0b	3.1a	2.9b
Litters evaluated	11	9	10	11	11	10	10	10
Fetuses - live	182	49	147	150	109	149	154	125
Fetuses – dead	0	1	1	0	0	0	0	6
Total gross exam anomalies (fetal incidence	0;0.0	6; 12b	1.0.7	1;0.7	15; 14b	40;6 0b	19; 29b	9; 6.9b
; %) Total gross exam anomalies (litter incidence ; %)	0;0.0	5; 56b	1; 10	1; 9.1	7; 64	8; 80b	8; 80b	4; 40a

Fetal Endpoints – Weight and Gross Examination

a)Statistically different from control (p<0.05) b)Statistically different from control (p<0.01)

There was a significant increase in malformations at 500 mg/kg and above when administered on gestation days 11-14. Malformations included misshapen cervical

transverse process, shortened tail, and hind paw phalanges fused, misshapen, or missing. Although there were no malformations noted for the 2000 mg/kg/GD 15 fetuses, there was a significant increase in incomplete ossification of many skeletal structures.									
Fetal Endpoints – Skeletal Malformations and Variations									
Dose (mg/kg/d	0 (GD 11-15)	2000 (GD	125 (GD	500 (GD1	2000 (GD	2000 (GD	2000 (GD	2000 (GD]

(mg/kg/d ay)	0 (GD 11-15)	(GD 11)	(GD 12)	(GD1 2)	(GD 12)	(GD 13)	(GD 14)	(GD 15)
Litters evaluate d	11	9	10	11	11	10	10	10
Fetuses - live	182	49	147	150	109	149	154	125
Fetuses – dead	0	1	1	0	0	0	0	6
Total skeletal malforma tions (fetal incidenc e; %)	1; 1.1	6; 22b	2; 2.7b	17; 22b	33; 58b	40; 53b	33; 41b	0.; 0.0
Total skeletal malforma tions litter incidenc e; %)	1; 9.1	4; 44	1; 10	7; 64a	11; 100b	10; 100b	9; 90b	0; 0.0

a)Statistically different from control (p<0.05) b)Statistically different from control (p<0.01)

There was a significant increase in visceral malformations at 2000 mg/kg regardless of the gestation day of administration. Among the findings were small and/or lobular lungs (gestation days 11, 12, and 13), small spleen (days 11 and 15), ectopic and small kidneys (days 11 and 14), cleft palate (days 12, 13, and 14), right-sided esophagus (days 12 and 13), heart anomalies (days 12 and 13), and diaphragmatic hernia (days 12 and 13). In addition, a few of the above mentioned malformations were noted as isolated occurrences at 500 mg/kg. Variations of the urinary tract (dilatation of renal pelvis and distended ureters) were seen significantly more often in the 125. 500 and 2000 (GD 15) mg/kg groups than in the controls.

Dose (mg/kg/d ay)	0 (GD 11-15)	2000 (GD 11)	125 (GD 12)	500 (GD1 2)	2000 (GD 12)	2000 (GD 13)	2000 (GD 14)	2000 (GD 15)
Litters evaluated	11	7	10	11	11	10	10	10
Fetuses - live	90	22	73	72	52	73	74	80
Fetuses – dead	0	0	0	0	0	0	0	0
Total fetal soft tissue (fetal incidence	5; 5.6	8; 36b	2; 2.7	7; 9.7	32; 62b	52; 71b	16;22 b	14; 23b

5. Toxicity

Id Heavy fuel oil Date December 7, 2012

Id Heavy fuel oil 5. Toxicity Date December 7, 2012 ; %)* 3: 27 3: 43 2:20` 5:45 7:70 Total 10: 9: 5:50 fetal soft 91b 90b tissue (litter incidence : %)* a)Statistically different from control (p<0.05) b)Statistically different from control (p<0.01) Conclusion: Determined by Reviewer: The maternal NOAEL for a single oral exposure to STB on one of GD 11-15 was determined to be 125 mg/kg/day (LOAEL= 500 mg/kg/day based on red vaginal discharge, significant weight loss at the time of exposure, a decrease in net body weight gain, and a decrease in absolute and relative thymus weight.) The developmental NOAEL for a single oral exposure to STB on one of GD 11-15 was determined to be 125 mg/kg. (LOAEL= 500 mg/kg/day based on the number and percent of dams with resorptions, and a significant increase in fetal skeletal and visceral anomalies) **RELIABILITY/DATA QUALITY Reliability:** Valid With Restriction (KS=2) **Reliability Remarks:** Non guideline study; research protocol; adequate experimental details. Key Study Sponsor Indicator: Kev REFERENCE **Reference:** Mobil. 1990. Developmental Toxicity Study in Rats Exposed Orally to a Single Dose of Syntower Bottoms. Mobil Environmental and Health Sciences Laboratory Report 63123. Mobil, 1991. Characterization and Quantitation of Polynuclear Aromatics in Syntower Bottoms. Mobil Environmental and Health Sciences Laboratory Report No. 64348 ZM. API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009.

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

Category Chemical: Test Substance:

Test Substance Purity/Composition and Other Test Substance Comments:

PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)

Sample	DMS	1-	2-	3-	4-	5-	6-	7-
#	0	ARÇ	ARC	ARC	ARC	ARC	ARC	ARC
	wt.% ¹	$(\%)^2$	(%)	(%)	(%)	(%)	(%)	(%)
091653		0.00	0.90	20.00	5.00	0.00	0.00	0.00
(F-200)								

64741-81-7; Heavy Coker Gas Oil (HCGO); Heavy Thermal Cracked Distillate

1) Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008).

64741-81-7

Heavy Coker Gas Oil (F-200)

E Tovicity	ld Heavy fuel oil
5. Toxicity	Date December 7, 2012
Category Chemical Result Type :	2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs with 2 aromatic rings, and so forth to 7 aromatic rings. Measured
Unable to Measure or Estimate Justification :	
METHOD	
Route of Administration:	Dermal, non-occluded
Other Route of Administration:	
Type of Exposure:	Developmental toxicity
Species:	Rat
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Kingston, NY)
Other Strain:	Not applicable
Gender:	Females (non treated males used for mating)
Number of Animals per Dose:	15 per dose level of HCGO 20 per dose for sham control
Concentration:	
Dose:	0, 0.1, 50, 250 mg/kg/day
Year Study Performed :	1994
Method/Guideline Followed:	Other
GLP:	Yes
Exposure Period:	Gestation day (GD) -7 to 20
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to determine the developmental toxicity of HCGO (F-200) following dermal administration to female rats daily for one week prior to mating through day 20 of gestation.
	 Females were randomly assigned to four treatment groups and dosing began one week prior to the start of mating (GD -7) and throughout mating. Males were not treated. Mating was confirmed by detection of sperm in a vaginal smear or a copulatory plug. Females that exhibited positive signs of mating (GD 0) also received the test article through presumed GD 20. The treatment groups and time exposure periods were as follows: 1. *Sham control (0 mg/kg/day) – 20 animals 2. HCGO 0.1 mg/kg/day – 15 animals (via solution of 1.0% concentration of test article in acetone) 3. HCGO 50 mg/kg/day – 15 animals (neat material) 4. HCGO 250 mg/kg/day – 15 animals (neat material)
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	The test material was administered to groups 2-4 on GD -7 through GD 20. The test article was applied to previously clipped, intact dermal sites on the backs of female animals. Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article was wiped from the application site. With the exception of test article application, control animals underwent the same procedure as the other treatment groups. The dose administered was based $304 / 370$

upon the day -7 body weight for the premating period and the GD 0 body weight for the gestation period.

Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill-health or abortion. All unusual findings were noted.

Individual body weights were recorded at receipt, near the end of the quarantine period, on days -7 and -1 (premating period), on days 0, 4, 8, 12, 16, and 20 of gestation, and on days 0 and 4 of lactation. Individual food consumption was measured for days -7 to -1 (premating); for GD intervals 0-4, 4-8, 8-12, 12-16, and 16-20; and for days 0-4 of lactation (postnatal period).

Each litter was observed daily during lactation day 0 (day of parturition) through 4 for signs of toxicity and mortality. On lactation days 0 and 4, the weight and sex of each live pup was recorded.

Each female that mated was sacrificed by overexposure to carbon dioxide and necropsied. Females that delivered a litter were necropsied on day 4 of lactation and those that did not deliver a litter were necropsied on presumed GD 25.

The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The ovaries were examined and the number of corpora lutea was determined for each female that delivered. The number of implantation sites was recorded for all females, including those that appeared non-gravid. Dead pups were removed, examined externally and discarded. On lactation days 0 and 4, the sex and weight of each pup were recorded. On day 4 of lactation, all surviving pups were examined externally, sacrificed with carbon dioxide, and discarded.

STATISTICAL ANALYSES: Data for female body weight and food consumption were evaluated by ANOVA. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1percent level of significance. If the variances were equal, the testing was done using parametric methods; otherwise, nonparametric techniques were used. For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model. For the nonparametric procedures: the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance.

For reproductive and litter data, i.e., the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at lactation day 0, pup alterations at lactation day 0,

5. Toxicity	ld Heavy fuel oil Date December 7, 2012
	male pups at days 0 and 4, survival of pups at lactation day 4) were analyzed by the "weighted" GLM, with litter size as the "weights" and as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the variances. For all proportions and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Concentration	(LOAEL/LOAEC/NOAEL/NOAEC))
---------------	---------------------------	---

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	50		mg/kg/day
NOAEL- Dermal	Maternal	=	0.1		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	50		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	0.1		mg/kg/day

Results Remarks:

The animals used in the study were between 12 and 13 weeks of age at exposure initiation.

One female in the 250 mg/kg/day dose group was found dead on GD 18. There were no other mortalities during the study.

Slight erythema was noted on day 2 for one female in the 0.1 mg/kg/day dose group. Because the erythema was slight, of limited duration, and was noted for only one animal in the dose group, it was not considered to be related to the test article. Erythema, edema, eschar, and dry skin were observed at site of administration at the two highest dose levels (50 and 250 mg/kg/day). Irritation ranged from slight to severe, and was believed to be related to test article administration. A higher incidence of vaginal discharge was noted for females in the 250 mg/kg/day dose group; vaginal discharge was observed as early as GD 13 and as late as GD 23 of gestation. There were no other clinical observations that were considered to be related to treatment with the test article.

There were no effects on body weights or body weight changes at a dose of 0.1 mg/kg/day. Mean body weights and body weight gains were significantly decreased in both the 50 and 250 mg/kg/day groups at various points during gestation per the table below. The 250 mg/kg/day group also had decreased body weights during the pre-mating period.

There were no effects on absolute or relative food consumption at doses of 0.1 and 50 mg/kg/day. Effects on absolute or relative food consumption were only apparent in the 250 mg/kg/day group, being significantly lower (p<0.01) than that of the controls during days -7 to -1 of the premating period. Absolute food consumption for pregnant females in the 250 mg/kg dose group was significantly lower (p<0.01) than that of the controls during most of gestation.

Necropsy evaluations indicate that dermal irritation related to administration of

the test article was noted for females in the 50 and 250 mg/kg/day dose groups. Decreased thymus size (no thymus weight data) was also noted for three females in the 250 mg/kg/day dose group. The uterus of two animals in this dose group also showed resorptions. There were no other necropsy findings that were considered to be related to the test article.

The total number of live pups and pup body weights were significantly lower (p<0.01) for those delivered from females dosed at 50 mg/kg/day. The number of implantation sites for females in the 250 mg/kg/day dose group was significantly lower (p<0.01) than that of the control group, suggesting increased pre-implantation loss at this dose. Only one of the pregnant females dosed at 250 mg/kg/day delivered a litter, and this litter did not survive to lactation day 4.

At 50 mg/kg/day, the number of total and live pups on lactation day 0 was decreased and pup body weights were lower on both lactation days 0 and 4. At 250 mg/kg/day, none of the pups in the one litter delivered survived to lactation day 4. For all dose groups, there were no significant differences in gestation length, external pup alterations, or the proportion of males on lactation days 0 and 4.

Dose	0	0.1	50	250
(mg/kg/day)				
Body wt day - 7	251.2	251.7	249.9	251.3
Body wt day - 1	257.4	260.7	256.7	246.1a
Body wt –final (g)	415.3	414.3	389.2a	276.6b
Body wt – lactation day 0	307.8	307.2	301.9	283.0
Body wt – lactation day 4	325.7	323.1	315.3	
Premating day -7 to -1 wt gain (g)	6.20	9.00	6.73	-5.20b
GD 0-4 wt gain (g)	26.00	23.87	17.15b	14.08b
GD 4-8 wt gain (g)	14.00	15.40	15.23	8.25a
GD 8-12 wt gain (g)	21.71	18.60	17.08	11.25b
GD 12-16 wt gain (g)	27.82	30.20	25.69	-1.45b
GD 16-20 wt gain (g)	66.78	65.93	54.38b	•3.40b
Lactation day 0-4 wt gain (g)	17.83	15.93	13.38	

Summary of Selected Maternal Weight Parameters

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

Summary of Mean Selected Reproduction and Litter Data

Dose (mg/kg/day)	0	0.1	50	250
Dams with	0	0	0	2
resorptions				
Implantation sites	16.8	16.7	15.7	12.6b

5. Toxicity			D	ld Heavy fu ate Decemb	
	Number of litters with live pups	18	15	13	1
	Total pups/litter (day 0)	15.6	15.9	12.8b	10.0c
	Live pups/litter (day 0)	15.2	15.3	12.8b	4.0c
	Pup weights (g) – mean, day 0	6.49	6.51	5.98a	6.06c
	Pup weights (g) – mean, day 4	9.67	9.77	8.68	С
Conclusion:	 b) Statistically differen c) Only one female de The maternal NOAEL determined to be 0.1 decreased body weigh The developmental No was determined to be decreased total and li 	livered a litter; for dermal exmg/kg/day (Lint and body w OAEL for derr 0.1 mg/kg/day	no pups surviv posure to HCC OAEL= 50 mg eight changes) mal exposure to y (LOAEL = 50	GO during GD g/kg/day base b HCGO durin b mg/kg/day l	o -7 to 20 was d on ng GD -7 to 20 based on a
RELIABILITY/DATA QUALITY	weights.)				
Reliability:	Valid Without Restric	ctions (KS=1)			
Reliability Remarks:	Non guideline study,	but with adequ	uate detail to m	nake NOAEL	determination.
Key Study Sponsor Indicator:	Key				
REFERENCE					
Reference:	ARCO. 1994. A Deve Rats Administered F- ATX-91-0134.				
	Mobil. 1994. Characte Mobil Environmental a ZR				
	API. 2008. PAC Analy ring class content and toxicity of high-boiling http://www.petroleumh	l selected end petroleum su	points of repea bstances."	at-dose and de	evelopmental
H	ligh Production Volume I	nformation S	ystem (HPVIS)	

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

Category Chemical: Test Substance:

Test Substance Purity/Composition and Other Test Substance Comments: 64741-81-7

64741-81-7; Heavy Coker Gas Oil (HCGO); Heavy Thermal Cracked Distillate Heavy Coker Gas Oil (CRU No. 83366)

PAC (Polycyclic Aromatic Compound) Content – report no. 64348 ZQ (Mobil, 1991)

Sample	DMSO	1-ARC	2-ARC	3-ARC	4-ARC	5-ARC	6-ARC	7-ARC
#	wt.% ¹	$(\%)^2$	(%)	(%)	(%)	(%)	(%)	(%)

5. Toxicity	ld Heavy fuel oil
	Date December 7, 2012
	83366 12.7 0.1 2.5 5.1 2.5 1.3 0.9 0.1 1) Percent of DMSO-extractable PACs, determined by the PAC 2 method as described in API (2008). 2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the percent of PACs
	with 2 aromatic rings, and so forth to 7 aromatic rings.
Category Chemical Result Type :	Measured
Unable to Measure or Estimate Justification :	
METHOD Route of Administration:	
Other Route of Administration:	Dermal, non-occluded
Type of Exposure:	Developmental toxicity screen
Species:	Rat Not applicable
Other Species:	Not applicable
Mammalian Strain:	Sprague-Dawley (Charles River, Raleigh, N.C.)
Other Strain:	Not applicable
Gender:	Females, presumed pregnant (non treated males used for mating)
Number of Animals per Dose: Concentration:	10 per dose, except for an additional group of 5 animals exposed at 125 mg/kg on GD 10-12 used to obtain bioavailability data
Dose:	Developmental study, GD 0-19 and GD 10-12: 0 (remote), 0 (proximate), 8, 30, 125, 250 mg/kg/day Bioavailability study, GD 10-12: 125 mg/kg/day
Year Study Performed :	1987
Method/Guideline Followed:	Similar to OECD 414 (Prenatal Developmental Toxicity Study). Main difference was that fewer females were used (10/group versus 20),.
GLP:	No information
Exposure Period:	GD 0-19 (6 groups); GD 10-12 (2 groups)
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to obtain data on the influence of HCGO on parameters of reproductive performance during gestation (implantation, litter size) and viability and development of the embryo/fetus. An additional experimental group was added in order to assess the bioavailability/bioaccumulation of HCGO in a select number of maternal tissues, fetuses and placentae.
	 Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of a vaginal plug (<u>in situ</u> or expelled), the individual, presumed pregnant females were randomly assigned to eight treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of a vaginal plug, and spermatozoa in the vaginal lavage fluid: *Remotely-housed dermal control (0 mg/kg/day) – GD 0-19 Proximately-housed dermal control (0 mg/kg/day) – GD 0-19 HCGO 8 mg/kg/day – GD 0-19 – 10 animals HCGO 125 mg/kg/day – GD 0-19 – 10 animals HCGO 250 mg/kg/day – GD 0-19 – 10 animals HCGO 125 mg/kg/day – GD 10-12 – 10 animals HCGO 125 mg/kg/day – GD 10-12 – 10 animals MCGO 125 mg/kg/day – GD 10-12 – 10 animals

the complete gestation period may result in a high incidence of fetal lethality. This is a period during which fetuses are susceptible to abnormal development.

 Radiolabeled HCGO 125 mg/kg/day – GD 10-12 – 5 animals; bioavailability group

*Because inhalation of the test material could not be ruled out, a separate control group was not housed in the same animal room (remote-housed control). Subsequent analyses of air samples indicated that no single compound was detected above the limit of detection of 0.2 mg/m3.

The exposure levels were based on results of a 13 week study previously conducted on the same material and on data obtained in a developmental study on a similar material; 8 mg/kg/day was selected as the lowest dose.

Developmental study (Groups 1-7):

The test material was administered to groups 3-6 on GD 0-19. Hair was clipped from the dorsal trunk of each animal on GD 0, and once weekly during the study. Each treatment day, animals were dosed by even application of the test material to their shaved backs, using the tip of a syringe. The test material dose, calculated from each rat's most recent body weight, was measured by weight. Rats were fitted with Elizabethan collars to minimize ingestion of the test material. Controls were handled in the same manner, minus application of the test material. Control animals were clipped and collared and the intact dorsal skin of each rat was stroked with the tip of a syringe, but no test material was applied.

Group 7 females were similarly treated but administration of test material was restricted to a period of gestation during which fetuses are susceptible to abnormal development (GD 10-12).

Each rat was observed at least once a day throughout gestation until sacrifice for 1) changes in appearance, behavior, and excretory function, and 2) signs of ill-health, mortality or abortion. All unusual findings were noted.

Individual body weights were recorded on days 0, 3, 6, 10, 13, 16, and 20 of gestation. Individual food consumption was measured during the study was calculated for GD intervals 0-3, 3-6, 6-10, 10-13, 13-16, and 16-20.

Each female was sacrificed by overexposure to ether on day 20 of its presumed gestation. Thoracic and abdominal organs were examined, and all organs were examined grossly for evidence of pathosis. The thymus and liver of each animal in groups 1-7 were removed, trimmed of excess tissue, weighed to the nearest 0.001 gram, and preserved in 10% formalin. The ovaries and uterus of each rat were excised and examined grossly. The number of corpora lutea per ovary and the weight of the gravid uterus were recorded. The ovaries in nonpregnant females were grossly examined and then discarded. In the uterus, the number and location of implantations, early and late resorptions, and live and dead fetuses were recorded. The uterus of each female that appeared non-gravid was pressed between two glass slides and examined grossly for evidence of implantation.

Blood samples were collected at the time of sacrifice from the aorta of each rat and serum was analyzed for alanine aminotransferase, albumin, alkaline phosphatase, aspartate aminotransferase, bilirubin, calcium, chloride, cholesterol, creatinine, globulin, glucose, lactate dehydrogenase, iron, inorganic phosphorus, potassium, sodium, sorbitol dehydrogenase, total protein, triglycerides, urea nitrogen, and uric acid. The globulin and albumin/globulin ratios were calculated.

Each fetus was gendered, weighed and grossly examined. Approximately half of the fetuses were randomly assigned for examination of soft tissues (viscera) following fixation in Bouin's solution, using a modification of the Wilson's

5. Toxicity

Id Heavy fuel oil Date December 7, 2012

technique. The other half were fixed in 95% ethanol, differentially stained for cartilage and bone, cleared in glycerin and examined for skeletal abnormalities.

Bioavailability Study (Group 8)

From GD 0-9, pregnant females were housed in stainless steel cages with wire bottoms and fronts. On GD 10, 11, and 12, the rats were housed in metabolism cages. The HCGO used in the bioavailability study contained two radioactive surrogates, carbon-14 radiolabeled carbazole and hydrogen-3 radiolabeled benzo(a)pyrene (BaP). On GD 10, the hair was clipped from the dorsal trunk of each animal and the radiolabeled test material was applied to the skin within a protective device designed to contain the administered dose. A mesh screen was attached to the protective device, and each rat was fitted with an Elizabethan collar. The same procedure was repeated on GD 11 and 12, except the needle tip with the test material was inserted through the mesh screen in order to apply the test material.

On GD 13, 24 hrs after the administration of the last HCGO dose, animals were sacrificed and maternal blood was collected. Necropsies were performed and the uterine contents located and examined for the number of normal and resorbed fetuses for each dam. The individual fetal units were removed, and the amniotic fluid was collected from the isolated placenta. The embryo was separated from the yolk sac and rinsed with water to remove residual amniotic fluid. Placentas, embryos, amniotic fluid and yolk sacs were pooled for each dam and the weights or volumes of the pooled samples determined. Maternal tissues collected for radioactivity analysis included the following: thymus, liver, heart, brain, small intestine, large intestine, kidneys, spleen, stomach, ovaries, urinary bladder, lungs, muscle, retroperitoneal fat, femur bone and residual carcass.

Determination of radioactivity in blood, urine and cage wash was accomplished by measuring the amount of carbon-14 labeled carbon dioxide and H-3 labeled water produced from direct combustion of duplicate samples. Samples were oxidized for three minutes and the carbon dioxide and water generated from the combustion were separated and trapped in a cocktail fluid. Carbon-14 and hydrogen-3 radioactivities were measured. Fecal samples were homogenized, combusted and the radioactivity measured.

The placentae, urteri, embryos, and yolk sacs were homogenized in an equivalent volume of water, and aliquots of the homogenate were combusted. Maternal tissues were treated in the same manner, although six tissues including the ovaries, urinary bladder, muscle, fat, bone and residual carcass were combusted directly without homogenization or dilution. In all cases, the trapped carbon dioxide and water were measured for radioactivity by liquid scintillation counting. Samples of the amniotic fluid were also combusted directly without dilution. Duplicate analyses were performed whenever possible. The sensitivity of the radioactivity allowed for the detection of 0.005% of the applied dose.

The systemic dermal absorption of the two radiolabeled surrogates was determined by summing the total carbon-14 or hydrogen-3 radioactivities found in the urine, urine/cage washings, feces and collected maternal and embryonic tissues at the end of 72 hours. Tissue concentrations of carbazole and benzo(a)pyrene (BaP) were calculated based on the radioactivity found per gram or per ml. The total amount of a radiolabeled surrogate in the tissues was calculated a s a percent of the total applied radioactive dermal dose over three days.

Statistical analysis:

Data from the maternal biophase, caesarean section, and gross fetal examinations were evaluated by ANOVA, followed by group comparisons using Fisher's Exact or Dunnett's Test. Data from skeletal and visceral examination were evaluated by ANOVA followed by group comparisons using Fisher's Exact Test. Thymus and liver weights were evaluated using Duncan's multiple range test. Statistical analyses of clinical chemistry data were performed separately on

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	individual serum components using SAS procedures. First the F-test was employed to do an analysis of variance on the serum data obtained from the

employed to do an analysis of variance on the serum data obtained from the control and exposed groups. Next the Student-Newman-Keul's multiple comparison test was employed to identify the specific group subsets within the serum data sets identified as having nonrandom variance. Differences between control and treated groups were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05).

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere . Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008 and Mobil, 1991)

TEST RESULTS

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	30		mg/kg/day
NOAEL- Dermal	Maternal	=	8		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	125		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	30		mg/kg/day

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

Results Remarks:

The animals used in the study were approximately 6 weeks old at receipt and approximately 8 weeks old at exposure initiation.

The majority of clinical observations were noted in both the control and treated groups and appear to be a

result of animals being collared and/or related to mating activity. Alopecia was observed in some of the animals exposed to HCGO. One female exposed to HCGO at a dose level of 125 mg/kg/day had swollen hind paws. Findings were not considered to be test material related due to the low incidence and lack of a dose response relationship.

Erythema and flaking of skin (with or without scabs) at the site of administration were observed in all of the groups exposed to HCGO. Eschar was observed at the two highest dose levels (125 and 250- mg/kg/day) and fissuring was observed in one animal from each of the 30, 125 and 250 mg/kg/day groups. Irritation ranged from moderate (low doses) to severe (high doses). Vaginal bleeding, a sign of some degree of litter resorption was observed in all exposed groups, GD 0-19, dosed greater than 30 mg/kg/day. Group 7, dosed on GD 10-12 at 125 mg/kg/day did not display vaginal bleeding.

Mean body weights, body weight gains uterine weights and net body weights decreased in a dose-related fashion at doses of 30 mg/kg/day or greater for animals exposed GD 0-19. In general, animals exposed to HCGO at a level of 125 mg/kg/day or greater consumed less food than the controls.

Maternal necropsy result showed a reduced size of the thymus at the 125 mg/kg/day (Groups 5 and 7) and 250 mg/kg/day level, later confirmed by thymus weight measurements (p<0.05). Pale lungs were observed in treated animals only; the significance is not known. In addition, there was a significant reduction (p<0.05) in liver weights in the high dose rats. Relative liver weights were higher in dams exposed to HCGO throughout gestation, but was significant (p<0.05)

5. Toxicity

only at the 125 mg/kg/day level. It was speculated that the liver weight profiles in animals that have a high incidence of resorptions (i.e., 250 mg/kg/day group) resemble nonpregnant animals which generally have lower liver weights.

	•	•	•	20	405	050	405
Dose (mg/kg/day)	0 Rem.	0 Prox.	8	30	125	250	125 (GD 10- 12)
Body wt –final (g)	417	432	415	403c	351b d	297bd	419
GD 0-3 wt gain (g)	14	15	20	15	9	9	16
GD 3-6 wt gain (g)	15	18	17	14	12	11	16
GD 6-10 wt gain (g)	22	21	17	14	12	11	16
GD 10-13 wt gain (g)	19	19	21	19	13	6bd	17
GD 13-16 wt gain (g)	26	30	24	23	15ad	0bd	24
GD 16-20 wt gain (g)	73	70	65	65	37bd	1bd	67
Gravid uterus (g)	91.1	84.4	82.3	79.1	39.6 bd	9.8bd	73.3a
Thymus weight (g)-absolute (relative weight not determined)	0.333	0.377	0.32 8	0.35 9	0.24 6ac	0.177 ac	0.306bd
Liver weight (g)- absolute	17.60 5	18.78 3	18.0 61	18.1 96	18.4 81	16.25 6ac	18.640
Liver weight (g)- relative	5.40	5.40	5.43	5.62	5.91 bd	5.66	5.40
Carcass (g)	326.7	347.2	333. 0	323. 8c	312. 6d	286.9 bd	345.7
Net wt change from day 0 (e)	77.0	89.3	81.4	74.6	63.8 d	33.2b d	87.8

Summary of Selected Maternal Weight Parameters

a)Statistically different from remote control (p<0.05)

b)Statistically different from remote control (p<0.01)

c)Statistically different from proximate control (p<0.05)

d)Statistically different from proximate control (p<0.01)

e) = Carcass weight minus day 0 body wt

For the GD 0-19 groups, HCGO exposures at 125 mg/kg/day and higher adversely affected the number of dams with all resorptions, the number of resorptions, and litter size in an apparent dose-related manner. All other parameters were not significantly different from the control animals. A significant decrease in litter size was also observed in Group 7 (125 mg/kg/day, GD 10-12) but only when compared to the remote control animals. No maternal toxicity was observed in this group at the dose level administered.

Summary of Mean Selected Reproduction Data

Dose (mg/kg/day)	0 Rem.	0 Prox.	8	30	125	250	125 (GD 10-12)
Implantation sites - total	157	168	148	168	163	169	154
Implantation sites – mean	17.4	16.8	16.4	16.8	16.3	16.9	15.4
Viable fetuses	154	155	140	150	74	7	129
Litter size (e)	17.1	15.6	15.6	16.0	7.4b d	0.8bd	12.9b
Viable male	94	86	72	72a	32a	5	61a
040 (0	70						

5. Toxicity

fetuses							
Viable female	60	69	68	78a	42a	2	68a
fetuses							
Resorptions	0.3	1.3	0.9	1.8	8.9b	16.1b	2.6
(mean)					d	d	
Resorptions (mean	18	7.8	5.3	10.5	54.6	95.6b	15.3
%)					bd	d	
Dams with	33	60	56	60	100b	100b	80
resorptions (%)							

a)Statistically different from remote control (p<0.05)

b)Statistically different from remote control (p<0.01)

c)Statistically different from proximate control (p<0.05)

d)Statistically different from proximate control (p<0.01)

e) Number of viable fetuses/number of litters evaluated.

For clinical chemistry parameters, statistical analyses were performed only between the remote control and HCGO-exposed groups. Differences were seen for eleven serum parameters, all of which demonstrated a dose response effect. There was an indication of dose-related hepatotoxicity as characterized by marked increases of serum aspartate aminotransferase and sorbitol dehydrogenase activities. There was equivocal evidence of an effect of the kidneys as shown by a significant increase in serum urea nitrogen concentration in animals at 250 mg/kg/day. It was concluded that the dose-related responses that were observed for serum triglycerides, iron, albumin and albumin/globulin ratio are likely a secondary effect of HCGO as a result of resorption, since it previously has been noted that dams that resorb their litters have a serum profile that is similar to nonpregnant animals.

Fetuses from animals exposed at doses of 125 and 250 mg/kg/day weighed significantly less than fetuses from the control groups. Crown-rump length was significantly decreased among the female fetuses (but not male fetuses) from dams exposed to HCGO at dose levels of 125 and 250 mg/kg/day in the GD 0-19 groups.

In the external fetal examination, a slight increase in external anomalies was observed at 125 and 250 mg/kg/day; the increase was statistically significant among fetuses, but not among litters. A single fetus with edema was observed at both 125 and 250 mg/kg/day. A single case of "slightly reduced lower jaw" was also noted at 125 mg/kg/day; one dead fetus had micrognathia at 250 mg/kg/day.

The soft tissue examination did not reveal any statistically significant increase in anomalies. One fetus in the 125 mg/kg/day group (GD 10-12, but not GD 0-19) demonstrated displacement of the esophagus from a left-sided to a right-sided position, which was classified as a malformation (not ever observed in control fetuses from any study conducted at the laboratory). Four fetuses from two dams exposed to 125 mg/kg/day (GD 0-19) had distended ureters, which was classified as a variation.

In the skeletal examination, there was no significant increase in skeletal malformations among the exposed groups compared to the control groups. One or two fetuses with vertebral malformations were observed among the litters of dams given 30 or 125 mg/kg/day, but no individual skeletal malformation was significantly increased compared to controls at any dose level. Some skeletal variations (mostly unossified or incompletely ossified bones) were seen at a higher incidence among the HCGO-exposed groups, particularly at 125 and 250 mg/kg/day.

Fetal	Endpoints -	- Weight	and Gross	Examination
-------	-------------	----------	-----------	-------------

Dose (mg/kg/day) 0 0 8 30 125 250 125 (GD

5. Toxicity

Rem.	Prox.					10-12)
3.5	3.6	3.5	3.5	3.1ad	2.9bd	3.7
9	10	9	10	10	5	10
154	155	140	150	74	7	129
0	0	0	0	0	1	0
0; 0.0	0; 0.0	2;	1:0.	4;5.4	2;25b	2; 1.6
		1.4	7	ac	d	
0; 0.0	0; 0.0	1;11	1;10	3;30	2;40	2; 20
	3.5 9 154 0 0; 0.0	3.5 3.6 9 10 154 155 0 0 0; 0.0 0; 0.0	3.5 3.6 3.5 9 10 9 154 155 140 0 0 0 0; 0.0 0; 0.0 2; 1.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5 3.6 3.5 3.1ad 9 10 9 10 10 154 155 140 150 74 0 0 0 0 0 0; 0.0 0; 0.0 2; 1:0. 4;5.4 1.4 7 ac 1.4 1.4	3.5 3.6 3.5 3.5 3.1ad 2.9bd 9 10 9 10 10 5 154 155 140 150 74 7 0 0 0 0 11 11 0; 0.0 0; 0.0 2; 1:0. 4;5.4 2;25b 1.4 7 ac d 14

a)Statistically different from remote control (p<0.05) b)Statistically different from remote control (p<0.01) c)Statistically different from proximate control (p<0.05) d)Statistically different from proximate control (p<0.01)

Fetal Endpoints – Skeletal Malformations and Skeletal Variations

Dose (mg/kg/day)	0	0	8	30	125	250	125
Dose (mg/kg/ddy)	Rem.	Prox.	U	50	125	230	(GD
	-	_					10-12)
Litters evaluated	9	10	9	10	10	3	10
Fetuses - live	77	80	74	77	39	4	66
Fetuses – dead	0	0	0	0	0	0	0
Total skeletal	0; 0.0	0; 0.0	0;	4 <u>;</u>	2; <u>5</u> .1	0;	0; 0.0
malformations			0.0	5.2		0.0	
(fetal incidence; %)							
Total skeletal	0; 0.0	0; 0.0	0;	1 <mark>;;</mark> 10	2 <mark>:;</mark> 20	0;	0; 0.0
malformations			0.0			0.0	
(litter incidence;							
%)							
Total skeletal	67 <mark>:;</mark>	72;	66;	73;	39;	4;10	57;_88
variations	87	90	89	95	100a	0	
(fetal incidence; %)							
Total skeletal	9;	10;	9;	10;	10;	3;	10;
variations	100	100	100	100	100	100	100
(litter incidence;							
%)							

a)Statistically different from remote control (p<0.05)

b)Statistically different from remote control (p<0.01)

c)Statistically different from proximate control (p<0.05)

d)Statistically different from proximate control (p<0.01)

Fetal Endpoints – Soft Tissue Anomalies

Dose (mg/kg/day)	0 Rem.	0 Prox.	8	30	125	250	125 (GD 10-12)
Litters evaluated	9	10	9	10	10	4	10
Fetuses - live	76	75	66	73	35	3	63
Fetuses – dead	0	0	0	0	0	1	0
Total fetal soft tissue (fetal incidence; %)	7;9.2	4;5.3	2;3. 0	3;4.1	7;20c	1;25	2;3.2
Total fetal soft tissue (litter incidence; %)	3;33	3;30	2;22	2;20	4;40	1;25	2;20

315 / 370

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	b)Statistically different from remote control (p<0.01) c)Statistically different from proximate control (p<0.05) d)Statistically different from proximate control (p<0.01)
	<u>Bioavailability/Bioaccumulation Analyses</u> The dermal penetration of C-14 carbazole occurred more extensively and rapidly than H-3 BaP absorption. In spite of the the dermal bioavailability of radiolabeled material, the amount found in the embryo was very low. This indicates that although radiolabeled carbazole and BaP are capable of reaching the embryo, they do not accumulate there to a significant degree. The results suggest that the placenta may be an effective barrier against the transplacental transport of thes HCGO components to the embryo.
Conclusion:	The maternal NOAEL for dermal exposure to HCGO during GD 0-19 was determined to be 8 mg/kg/day (LOAEL= 30 mg/kg/day based on vaginal discharge observations, decreased body weight; decreased food consumption)
	The developmental LOAEL for dermal exposure to HCGO during GD 0-19 was determined to be 30 mg/kg/day (LOAEL = 125 mg/kg/day based on increased number and percent resorptions; decreased fetal body weight and crown-rump length; increased fetal anomalies).
	The authors also note that developmental toxicity can occur even at concentrations that do not produce overt maternal toxicity based on reduced litter size in animals exposed during GD 10-12 only.
RELIABILITY/DATA QUALITY	
Reliability:	Valid Without Restrictions (KS=1)
Reliability Remarks:	Comparable to guideline study
Key Study Sponsor Indicator:	Кеу
REFERENCE	
Reference:	Mobil. 1987. Developmental Toxicity Screen in Rats Exposed Dermally to Heavy Coker Gas Oil. 1987. Mobil Environmental and Health Sciences Laboratory Report 50431.
	Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in Heavy Coker Gas Oil. Mobil Environmental and Health Sciences Laboratory Report no. 64348ZQ.
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009.
High Pr	oduction Volume Information System (HPVIS)
DEVELOPMENTAL TOXICITY/TERA	TOGENICITY
TEST SUBSTANCE	
Category Chemical: Test Substance:	64741-81-7 64741-81-7: Hoovy, Cokor Cos, Oil (HCCO)
Test Substance Purity/Composition and Other Test Substance Commen	
	316 / 370

5. Toxicity	
-------------	--

	64348 ZO			/cyclic A	romatic (Compou	nd) Con	itent – re	port no.
	Sample #	DMS O wt.%	1- ARC (%) ²	2- ARC (%)	3- ARC (%)	4- ARC (%)	5- ARC (%)	6- ARC (%)	7- ARC (%)
	86181	24.80	0.25	2.48	12.40	7.44	2.48	0.50	0.00
	 Percent of DMSO-extractable PACs, determined by the PAC 2 me as described in API (2008). ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of that have 1 aromatic ring within the total sample. "ARC 2 (%)" is the p of PACs with 2 aromatic rings, and so forth to 7 aromatic rings. 								
Category Chemical Result Type : Unable to Measure or Estimate Justification :	Measured								
METHOD									
Route of Administration:	Dermal, n	on-occlu	Ided						
Other Route of Administration:	Dermai, fi		ucu						
Type of Exposure:	Developm	ontal ta	vicity ctu	dv					
Species:	Rat		NCITY STU	uy					
Other Species:	Not applic	able							
Mammalian Strain:	Sprague-I		(Charlos	Divor k	lingston				
Other Strain:		-	(Chanes	rivei, r	tingston,	INT)			
Gender:	Not applic		d prog	aant (na	a tractad	malaa i	upped for	moting)	
Number of Animals per Dose:	Females,		ea pregi	hant (nor	n treated	males (ised for	mating)	
Concentration:	15 per do	se							
Dose:	0 0 00	105 050		dov					
Year Study Performed :	0, 8, 30, 1994???	125, 250	J mg/kg/	uay					
Method/Guideline Followed:	Similar to		•		•		•	• ·	n
GLP:	No inform			Cinaico		u (10/gi		303 20)	
Exposure Period:	GD 0-19								
Frequency of Treatment:	Once per	day							
Post-Exposure Period:	None								
Method/Guideline and Test Condition Remarks:	The prima JHCGO e exposure	xposure	on fema	ale rats d	uring ges	station a	and to de		
	40. H 41. H 42. H	ated ma by deter pregnar d dosing periods of a vagi ham cor CGO 8 r CGO 30 CGO 12	les (app ction of nt female began were as inal plug ntrol -0 n mg/kg/da mg/kg/da 5 mg/kg/c	roximate a vaginal es were for that a follows, , and spe	1:1 ratio plug (in randomly animal. The where de ermatozo γ – GD 0 0-19 0 0-19 D 0-19	b). Once situ or e assigne he treate esignation a in the	e mating expelled) ed to eig ment gro on as GI	occurre , the ind ght treatm oups and O 0 follow	d and lividual, nent time <i>v</i> ed

5. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	The exposure levels were based on results of a subchronic toxicity study using this material.
	The test material was administered to groups 2-5 on GD 0-19. Hair was clipped from the dorsal trunk of each animal on GD 0, and once weekly during the study. Each treatment day, animals were dosed by even application of the test material to their shaved backs, using the tip of a syringe. The test material dose, calculated from each rat's most recent body weight, was measured by weight. Rats were fitted with Elizabethan collars to minimize ingestion of the test material. Controls were handled in the same manner, minus application of the test material. Control animals were clipped and collared and the intact dorsal skin of each rat was stroked with the tip of a syringe, but no test material was applied.
	Each rat was observed at least once a day throughout gestation until sacrifice for 1) changes in appearance, behavior, and excretory function, and 2) signs of ill-health, mortality, abortion or premature delivery. All unusual findings were noted.
	Individual body weights were recorded on days 0, 3, 6, 10, 13, 16, and 20 of gestation. Individual food consumption was measured during the study was calculated for GD intervals 0-3, 3-6, 6-10, 10-13, 13-16, and 16-20.
	Each female was sacrificed by overexposure to ether on day 20 of its presumed gestation. The abdominal cavity was exposed and blood collected for hematology and serum chemistry analysis. Thoracic and abdominal organs were examined, and all organs were examined grossly for evidence of pathosis. The thymus and liver of each animal in groups 1-7 were removed, trimmed of excess tissue, weighed to the nearest 0.001 gram. Only the livers of pregnant females were preserved in 10% formalin. The ovaries and uterus of each rat were excised and examined grossly. The number of corpora lutea per ovary and the weight of the gravid uterus were recorded. The ovaries in nonpregnant females were grossly examined and then discarded. In the uterus, the number and location of implantations, early and late resorptions, and live and dead fetuses were recorded. The uterus of each female that appeared non-gravid was pressed between two glass slides and examined grossly for evidence of implantation.
	Blood samples were collected at the time of sacrifice from the aorta of each rat and analyzed for clinical chemistry and hematology analyses. Mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were calculated. A thin smear of blood was made for determination of red blood cell morphology, nucleated RBCs and white blood cell differentials [seven components including segmented neutrophils (SEG) and lymphocytes (LYM)].
	Whole blood from each dam was allowed to clot for approximately thirty minutes and centrifuged to obtain the serum. Samples were analyzed for the following biochemical parameters: alanine aminotransferase, albumin, alkaline phosphatase, aspartate aminotransferase, bilirubin, calcium, chloride, cholesterol, creatinine, globulin, glucose, lactate dehydrogenase, iron, inorganic phosphorus, potassium, sodium, sorbitol dehydrogenase, total protein, triglycerides, urea nitrogen, and uric acid. The globulin and albumin/globulin ratios were calculated.
	 Each fetus was gendered, weighed and grossly examined. The following definitions and terminology were used in describing fetal findings: 1. Malformation: A permanent structural deviation which generally is incompatible with, or severely detrimental to, normal postnatal 318 / 370

٦

survival or development. Absence structures which should have been present, as well as deviations in tail development, are also classified as malformations.

- 2. Variation: A variation is a divergence beyond the usual range of structural constitution. It has an indeterminate effect on health and generally has no effect on survival.
- 3. Incidental: An incidental finding is generally an accidental event, e.g., accidentally the tip of the tail was cut off.

After gross evaluation, fetuses were submerged in cold water until no response to stimuli was evident. Fetuses in each litter (except one litter in group 2 for which all fetuses were inadvertently prepared for skeletal exam) were distributed equally into two groups, and prepared for soft tissue (viscera) or skeletal evaluations. Fetuses assigned to the soft tissue analysis group were fixed in Bouin's solution. Fetuses assigned to the skeleton analysis group were fixed in ethanol. Although fetuses were not evaluated for abnormal visceral or skeletal development, they were, however, stored in the tissue archives of the laboratory should it be deemed necessary at a later date to evaluate them.

Statistical analysis:

Data from the maternal biophase, caesarean section, and gross fetal examinations were evaluated by ANOVA, followed by group comparisons using Fisher's Exact or Dunnett's Test. Data from skeletal and visceral examination were evaluated by ANOVA followed by group comparisons using Fisher's Exact Test. Thymus and liver weights were evaluated using analysis of variance and Tukey's Test. Statistical analyses of serum chemistry and hematology data were analyzed using "CLINPATH" (Grosse System). Differences between control and treated groups were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05).

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere . Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Report no. 64348 ZQ- how to reference??)

TEST RESULTS

5. Toxicity

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	8		mg/kg/day
NOAEL- Dermal	Maternal	=	Not identified <8		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	30		mg/kg/day
NOAEL - Dermal	Offspring (F1)	=	8		mg/kg/day

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)

Results Remarks:

The animals used in the study were approximately 7 weeks old at receipt and approximately 10 weeks old at exposure initiation.

Incidental observations were noted in both the control and treated groups and appear to be a result of animals being collared and/or related to mating activity. Scratches appeared on one female in the 250 mg/kg group during the latter part of gestation. She was probably scratching in response to the

5. Toxicity	Id Heavy fuel oil
,	Date December 7, 2012
	irritation of the treated skin, per the authors of the report. Several females developed neck lesions in spite of the protective soft rubber tubing that lined the inner surface of the cardboard collar.
	HCGO-related observations were also reported during gestation. Skin irritation was present in all groups exposed to JHCGO. The irritation ranged from slight at 8 mg/kg (erythema and flaking) to severe at 125 and 250 mg/kg (thickening of the skin, fissuring of the skin, and open sores). Clinical signs of maternal toxicity were evident and, in some cases, severe at 125 and 250 mg/kg. Red vaginal discharge was observed at 30 mg/kg and above; the incidence increased with increasing dose level. In all cases, the discharge could be attributed to resorption of offspring. Several females at the 125 and 250 mg/kg dose levels became pale and their skin became cool to the touch following the onset of the red vaginal discharge. One female in the high dose group (250 mg/kg) was sacrificed moribund on gestation day 16. She had no stool, was emaciated and cool to the touch, and had severe vaginal bleeding (red vaginal discharge). Uterine examination revealed 20 implantation sites, all of which were resorbed. Another female in this group exhibited decreased activity and labored breathing on gestation day 17.
	Mean body weights, body weight gains uterine weights and net body weights decreased in a dose-related fashion at doses of 30 mg/kg/day or greater for animals exposed GD 0-19. In general, animals exposed to HCGO at a level of 125 mg/kg/day or greater consumed less food than the controls.
	In general, the mean body weights of all groups treated with HCGO were significantly lower than the mean weights of the control group throughout most of gestation. It should be noted that on gestation day 0 there were no significant differences among the mean body weights for the groups. Overall mean body weight gain (gestation days 0-20) decreased with increasing dose level. Mean body weight gains were significantly reduced at 30, 125, and 250 mg/kg. At 30 mg/kg. the significance was apparent when overall body weight gain was calculated. The decrease in body weight gain was more severe at the 125 and 250 mg/kg dose levels and achieved statistical significance for nearly all intervals measured. Although not statistically significant, body weight gain was significantly reduced at 125 and 250 mg/kg. Net body weight gain was significantly reduced at 125 and 250 mg/kg. Statistical significance was not achieved for the mean net body weight changes at 8 and 30 mg/kg, however both were reduced compared to the control mean value.
	Food consumption was significantly decreased in all groups treated with JHCO during many of the intervals evaluated. The number of intervals during which food consumption was significantly reduced, as well as the amount of reduction, increased with increasing dose level.
	There were no remarkable maternal necropsy findings. The mean absolute liver weight for the high-dose group (250 mg/kg) was significantly reduced. Under normal conditions, liver weight increases during pregnancy. It was speculated that the liver weight profiles in animals that have a high incidence of resorptions (i.e., 250 mg/kg/day group) resemble nonpregnant animals which generally have lower liver weights. Calculation of relative weights shows that the mean relative liver weights were significantly increased at 125 and 250 mg/kg. Absolute thymus weights were significantly reduced at 30 mg/kg and above. Relative thymus weights decreased with increasing dose level, but statistical significance was achieved only at 125 and 250 mg/kg.
	Summary of Selected Maternal Weight Parameters
	320 / 370

	n	•			
Dose (mg/kg/day)	0	8	30	125	250
Body wt –final (g)	415.5	393.7	384.9a	314.6b	261. 9b
GD 0-3 wt gain (g)	15	8	3a	-2b	-15b
GD 3-6 wt gain (g)	14	9	16	13	13
GD 6-10 wt gain (g)	20	20	20	17	20
GD 10-13 wt gain	22	17	18	16a	10b
(g)					
GD 13-16 wt gain	25	24	20	3b	-22b
(g)					
GD 16-20 wt gain	66	67	61	22b	7b
(g)					
GD 0-20 wt gain (g)	163	145	138a	69b	14b
Gravid uterus (g)	80.6	77.7	70.2	21.6b	5.0b
Carcass (g)	334.9	316.0	314.7a	293.0b	256.9b
Net wt change	82.3	67.7	67.7	47.0b	8.5b
from day 0 (c)					
Thymus weight	0.292	0.259	0.218a	0.135b	0.069b
(g)-absolute					
Thymus weight	0.087	0.082	0.069	0.046b	0.026b
(g)-relative					
Liver weight (g)-	18.004	17.65	18.016	17.196	15.l35b
absolute		7			
Liver weight (g)-	5.382	5.586	5.729	5.869b	5.874a
relative					

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) = Carcass weight minus day 0 body wt

For the GD 0-19 groups, HCGO exposures at 125 mg/kg/day and higher adversely affected the number of dams with all resorptions, the number of resorptions, and litter size in an apparent dose-related manner. The incidence of resorption was also increased at 30 mg/kg and. although not statistically significant, is considered to be

biologically significant. All other parameters were not significantly different from the control animals. A significant decrease in litter size was also observed in Group 7 (125 mg/kg/day, GD 10-12) but only when compared to the remote control animals. No maternal toxicity was observed in this group at the dose level administered.

Viable litter size was significantly reduced at 125 and 250 mg/kg. Both mean number and percent resorptions were significantly increased at these same dose levels as was the number of dams with resorptions. Overall, resorption increased with increasing dose level. The increase at 30 mg/kg is considered to be biologically significant since approximately one-half of the females in this group had between 14 and 39 percent fetal resorption (the mean for the control group was 4.9 percent resorption). The biological significance of the increase in percent

resorption for the 8 mg/kg group is uncertain. The statistical significance achieved at 30 mg/kg for the number of male and female fetuses is not considered to be biologically significant and can be attributed to the unusually high number of males and low number of females in the control group.

Summary	of Mean	Selected	Reproduction	Data
---------	---------	----------	--------------	------

Dose (mg/kg/day)	0	8	30	125	250
Implantation sites - total	231	205	231	233	187
Implantation sites – mean	15.4	15.8	15.4	15.5	14.4

5. Toxicity

5. Toxicity

Vichle fetures	220	107	200	50	
Viable fetuses –	220	187	200	52	3
total					
Litter size (c)	14.7	14.4	13.3	3.5b	0.2b
Viable male fetuses	61	55	49	58	33
(%)					
Viable female	39	45	51	42	67
fetuses (%)					
Resorptions (mean)	0.7	1.4	2.1	12.1b	14.2b
Resorptions (mean	4.9	8.6	13.4	78.0b	98.6b
%)					
Dams with	67	69	93	100	100
resorptions (%)					

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) Number of viable fetuses/number of litters evaluated.

Statistically significant differences (p<0.05) were found between the untreated and treated animals for red blood cell count, hemoglobin, mean corpuscular volume, hematocrit, mean corpuscular hemoglogin, platelet count, segmented neutrophils, lymphocytes and monocytes. A linear relationship (>99% confidence level, Pearson's correlation coefficient) was found between the dose and blood level for all of the above except segmented neutrophils. lymphocytes and monocytes. When the historical hematology reference values are taken into consideration. the dose response curves for all the affected parameters fell outside the normal range as defined by the 10th and 90th percentiles of the historical data.

Statistically significant differences were found between the untreated and treated animals for glucose. urea nitrogen, creatinine. triglycerides. total protein, bilirubin. albumin, sodium, inorganic phosphorus. calcium. Sorbitol dehydrogenase and chloride. A linear relationship (>99% confidence level. Pearson's correlation coefficient) was found between the dose and blood level for all the above components except bilirubin. The dose response curves for all the above except creatinine fell above the normal range as defined by the 10th and 90th percentiles of the historical data. The levels of serum glucose, triglycerides, albumin and *A/G* ratio are noticeably different between non-pregnant and pregnant rats on gestation day 20. Serum data indicates that with the exception of *A/G* ratio, the above serum components in rats treated at 125 and 250 mg/kg/day are comparable with the normal range of non-pregnant animals.

Fetal body weights, a parameter of body growth and development, were significantly decreased for all viable fetuses at the 125 and 250 mg/kg dose levels.

Gross external fetal examinations indicated isolated incidences of variations and malformations at 8, 30, and 125 mg/kg. Kinked tail was noted in two fetuses; one in the 8 mg/kg dose group and one in the 125 mg/kg dose group. One fetus (30 mg/kg) had gastroschisis (protrusion of the intestines through a fissure in the abdominal wall). These scattered findings did not appear to be related to test material administration.

Fetal skeletal evaluations showed a statistically significant increase in incompletely ossified or unossified sternebrae at dose level of 8 mg/kg/day. This indicates significant growth retardation at 8 mg/kg. The fetal visceral evaluations showed isolated incidences of variations and malformations. These scattered findings were not dose related and did not appear to be related to test material administration.

Fetal Endpoints – Weight and Gross Examination

Id Heavy fuel oil Date December 7, 2012

Dose (mg/kg/day)	0	8	30	125	250
Fetal weights (g)	3.6	3.5	3.4	2.9b	2.9a
Litters evaluated	15	13	15	13	2
Fetuses - live	220	187	200	52	3
Fetuses – dead	0	0	0	0	0
Gross exam anomalies (fetal incidence; %)	0; 0.0	2; 1.1	1; 0.5	2a; 3.8	0;0.0
Gross exam anomalies (litter incidence; %)	0; 0.0	1; 7.7	1; 6.7	2; 15	0; 0.0

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

Fetal Endpoints – Skeletal Malformations and Skeletal Variations

Dose (mg/kg/day)	0	8	30	125	250
Litters evaluated	15	13	15	13	2
Fetuses - live	113	103	103	30	2
Fetuses – dead	0	0	0	0	0
Total skeletal	36; 32	48a; 47	38; 37	11; 37	2;
observations (fetal					100
incidence; %)					
Total skeletal	8; 53	8; 62	9; 60	7; 52	2;
observations (litter					100
incidence; %)					

a)Statistically different from (p<0.05)

b)Statistically different from control (p<0.01)

Fetal Endpoints – Soft Tissue Anomalies

Dose (mg/kg/day)	0 Rem.	8	30	125	250
Litters evaluated	15	0	15	9	1
Fetuses - live	106	0	96	22	1
Fetuses – dead	0	0	0	0	0
Total fetal soft tissue	8; 7.5		8; 8.3	3; 14	0; 0.0
(fetal incidence; %)					
Total fetal soft tissue	7; 47		5; 33	3; 33	0; 0.0
(litter incidence; %)					
a)Statistically different fro	om remote	control (p	<0.05)		

Conclusion:

b)Statistically different from remote control (p<0.03)

The maternal NOAEL for dermal exposure to HCGO during GD 0-19 was not identified (<8 mg/kg/day). (LOAEL= 8 mg/kg/day based on increased thymus weights (absolute and relative) and liver weights (relative).

The developmental NOAEL for dermal exposure to LCO during GD 0-19 was determined to be 8 mg/kg/day (LOAEL = 30 mg/kg/day, based on increased number and percent resorptions.)

RELIABILITY/DATA QUALITY

Reliability:

Reliability Remarks:

Key Study Sponsor Indicator:

REFERENCE

Reference:

Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in

Mobil. 1994. Developmental Toxicity Study in Rats Exposed Dermally to

Heavy Coker Gas Oil. Mobil Environmental and Health Sciences

Laboratory Report 64168.

Valid Without Restrictions (KS=1)

Comparable to guideline study

Key

Id Heavy fuel oil Date December 7, 2012

Heavy Coker Gas Oil. Mobil Environmental and Health Sciences Laboratory Report no. 64348ZO.

API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

Category Chemical: Test Substance:

Test Substance Purity/Composition and Other Test Substance Comments:

64741-81-7

64741-81-7; Visbreaker Gas Oil (VGO); V.B. Mittelol Heavy Coker Gas Oil (CRU No. 86193)

PAC(Polycyclic Aromatic Compound) Content - report no. 64348 ZT (Mobil, 1991)

	Sample	DMSO	1-	2-	3-	4-	5-	6-	7-	
	#	wt.% ¹	ARC	ARC	ARC	ARC	ARC	ARC	ARC	
			$(\%)^2$	(%)	(%)	(%)	(%)	(%)	(%)	
	86193	4.20	0.84	2.94	0.38	0.00	0.00	0.00	0.00	
	1) Percer					etermine	ed by th	e PAC 2	2	
	method as described in API (2008).									
	2) ARC is "aromatic ring class". "ARC 1 (%)" is the weight percent of PACs that have 1 aromatic ring within the total sample. "ARC 2 (%)" is									
	the percer	nt of PACS	s with 2	aromati	c rings,	and so	forth to	/ arom	atic	
Category Chemical Result Type :	rings.									
	Measured									
Unable to Measure or Estimate Justification:										
METHOD										
Route of Administration:	Dermal, n	on-occlud	ed							
Other Route of Administration:										
Type of Exposure:	Developme	ental toxic	city stud	ly						
Species:	Rat									
Other Species:	Not applic	able								
Mammalian Strain:	Sprague-E	Dawley (C	Charles	River, k	Kingston	, NY)				
Other Strain:	Not applic	able								
Gender:	Females,	presumed	pregna	ant (nor	n treated	d males	used fo	or mating	g)	
Number of Animals per Dose:	15 per dos	se								
Concentration:										
Dose:	GD 0-19:									
	0, 30, 125	, 250 mg/	kg/day							
Year Study Performed :	1994									

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Method/Guideline Followed: GLP:	Similar to OECD 414 (Prenatal Developmental Toxicity Study). Main difference was that fewer females were used (15/group versus 20). No information
Exposure Period:	GD 0-19
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The primary objectives of this study were to assess the potential of VBO to produce maternal and/or developmental toxicity when applied dermally to pregnant rats throughout gestation, and to obtain additional data (primarily on resorptions and fetal body weights). Dose levels were chosen based on the chemical composition of the material and the results of a previous subchronic dermal study conducted with VBO.
	Prior to the initiation of dosing with the test material, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of a vaginal plug (<u>in situ</u> or expelled), the individual, presumed pregnant females were randomly assigned to eight treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of a vaginal plug, and spermatozoa in the vaginal lavage fluid: 44. Control (0 mg/kg/day) – GD 0-19 – 14 animals 45. VBO 30 mg/kg/day – GD 0-19 – 15 animals 46. VBO 125 mg/kg/day – GD 0-19 – 15 animals 47. VBO 250 mg/kg/day – GD 0-19 – 15 animals
	The test material was administered to groups 2-4 via dermal application on GD 0-19. Hair was clipped from the dorsal trunk of each animal on GD 0, and once weekly during the study. Each treatment day, animals were dosed by even application of the test material to their shaved backs, using the tip of a syringe. The test material dose, calculated from each rat's most recent body weight, was measured by weight. Rats were fitted with Elizabethan collars to minimize ingestion of test material. Controls were handled in the same manner, minus application of the test material. Control animals were clipped and collared and the intact dorsal skin of each rat was stroked with the tip of a syringe, but no test material was applied.
	Each rat was observed at least once a day throughout gestation until sacrifice for 1) changes in appearance, behavior, and excretory function, and 2) signs of ill-health, mortality, abortion or premature delivery. All unusual findings were noted. Effects of the test material on the skin at the site of application were scored weekly. Erythema and edema were evaluated using the Draize scales. The skin was also examined and scored for chronic deterioration, flaking, thickening, stiffening, cracking, and sloughing.
	Individual body weights were recorded on days 0, 3, 6, 10, 13, 16, and 20 of gestation. Individual food consumption was measured during the study was calculated for GD intervals 0-3, 3-6, 6-10, 10-13, 13-16, and 16-20.
	Each female was sacrificed by overexposure to ether on day 20 of its presumed gestation. Thoracic and abdominal organs were examined, and all organs were examined grossly for evidence of pathosis. The number of corpora lutea per ovary and the weight of the gravid uterus were recorded. The ovaries in nonpregnant females were grossly examined and then discarded. In the uterus, the number and location of implantations, early and late resorptions, and live and dead fetuses were

recorded. An "early resorption" was defined as a reabsorbed dead conceptus in which it was not grossly evident that organogenesis had occurred; a "late resorption" was defined similarly but as one in which it was evident that organogenesis had occurred. A "live fetus" was defined as a fetus which responded to a stimulus, such as touch; a "dead fetus" did not respond to stimuli, nor did it demonstrate the autolysis characteristic of late resorptions. The uterus of each female that appeared non-gravid was pressed between two glass slides and examined grossly for evidence of implantation

Each fetus was gendered, weighed and grossly examined. The following definitions and terminology were used in describing fetal findings:

- 4. Malformation: A permanent structural deviation which generally is incompatible with, or severely detrimental to, normal postnatal survival or development. Absence structures which should have been present, as well as deviations in tail development, are also classified as malformations.
- 5. Variation: A variation is a divergence beyond the usual range of structural constitution. It has an indeterminate effect on health and generally has no effect on survival.
- 6. Incidental: An incidental finding is generally an accidental event, e,g., accidentally the tip of the tail was cut off.

Following gross examination, fetuses in each litter were distributed equally into two groups, and prepared for soft tissue (viscera) or skeletal evaluations. Fetuses assigned to the soft tissue analysis group were fixed in Bouin's solution. Fetuses assigned to the skeleton analysis group were fixed in ethanol. Although fetuses were not evaluated for abnormal visceral or skeletal development, they were, however, stored in the tissue archives of the laboratory should it be deemed necessary at a later date to evaluate them.

Statistical analysis:

Data from the maternal biophase, caesarean section, and gross fetal examinations were evaluated by ANOVA, followed by group comparisons using Fisher's Exact or Dunnett's Test. Differences between control and treated groups were considered statistically significant only if the probability of the differences being due to chance was less than 5% (p<0.05).

PAC Analysis:

The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC species, so that highly alkylated PACs are excluded from measurement. (API, 2008; Mobil, 1991)

TEST RESULTS

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)*

Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:
LOAEL – Dermal	Maternal	=	250		mg/kg/day
NOAEL- Dermal	Maternal	=	125		mg/kg/day
LOAEL - Dermal	Offspring (F1)	=	Not identified (>250)		mg/kg/day

5. Toxicity

5. Toxicity							avy fuel oil cember 7,	
							,	-
				050				(L
NOAEL - Dermal	Offspring (F1)	=		250			mg/	/kg/day
*Determined by revie	ewer							
Results Remarks:				als used in the stund ad approximately 1				
			the sched from the s gestation No clinica the study. neck irrita not consid Skin irrita ranged fro 125 mg/kg and open Final body from the c (250 mg/k 20. Mean significan There wer	Is associated with uled necropsy. Tw study. The reason day 0 date based Il signs indicative of Most clinical sign tion, chromodacry dered to be test m tion was present in om slight at 30 mg g and 250 mg/kg (sores). / weights for the th controls. Mean boo g) were significant body weight char thy different from the re no significant d ed animals relative	vo animals f for the excli- on higher the of systemic is were loca yorrhea, red laterial related in all groups g/kg (eryther (scabbing of reated animed dy weight changes of the he control g lifferences in	from group usion was han average toxicity we l effects fr dish nasal ed. exposed for an and fla f the skin, als did nor hanges for an the con 125 and 30 roup.	2 were ex a miscalcinge fetal boore observe om the col discharge to VBO. The king) <i>to</i> se fissuring of t significant the high-o trol group 0 mg/kg we	Accluded ulated dy weights. ed during llars (e.g., e), and are he irritation evere at f the skin htly differ dose group for GD 0- ere not
			·	e no significant m			ings.	
			S	ummary of Selec	cted Materr	nal Weigh	t Paramet	ers
			Dose (m	ng/kg/day)	0	30	125	250
				t –final (gr)	407.1	414.8	409.9	388.7
				vt gain (gr)	8	7	7	0
				wt gain (gr)	18	17	12	16
				wt gain (gr)	17	20	17	15
				3 wt gain (gr)	21	19	22	18
				6 wt gain (gr)	29	19	25	23
				0 wt gain (gr)	56	63	60	50 122a
				wt gain (gr) Iterus (gr)	149 81.9	146 85.1	1441 86.3	71.7
			Carcass		325.2	329.7	323.6	317.0
				hange from day		61.0	57.2	50.1
		(a)Statistic o)Statistic c) = Carca Even thou	ally different from ally different from ass weight minus igh it was not stati is with increasing	n control (̈p< day 0 body istically sign	0.01) wt iificant, an		n
				Summary of Mea	an Selected	d Reprodu	uction Dat	a
		[Dose (m	ng/kg/day)	0	30	125	250

Implantation sites

5. Toxicity

– total		1		
Implantation sites	14.8	15.7	16.3	14.1
– mean				
Preimplantation loss	1.2	0.4	0.5	13.3
(%)				
Viable fetuses - total	186	176	231	179
Litter size (c)	14.3	14.7	15.4	12.8
Viable male fetuses	53	50	48	51
(%)				
Resorptions (mean)	0.5	1.0	1.1	1.4
Resorptions (mean %)	4.2	6.9	6.7	8.8
Dams with resorptions	38	67	80	71
(%)				

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

c) Number of viable fetuses/number of litters evaluated.

There were no significant differences in fetal body weights from exposed animals relative to control fetal body weights.

There were isolated incidences of variations and malformations observed at the time of external examination of fetuses. Hematoma on tip of the tail was noted in one fetus and missing eye bulge was found in another one in the control group. Fleshy tab tip of tail was noted in two fetuses, one in the 125 mg/kg group and one in 250 mg/kg group. Protruding tongue was noted in one fetus in the 250 mg/kg group. Due to this low incidence of seemingly unrelated observations and the lack of a dose response, the observed external anomalies are not considered to be treatment related.

Fetal Endpoints – Weight and Gross Examination

Dose (mg/kg/day)	0	25	50	125
Fetal weights (gr)- mean	3.7	3.8	3.7	3.8
Litters evaluated	13	12	15	14
Fetuses - live	186	176	230	179
Fetuses – dead	0	0	0	0
Total gross exam	2; 1.1	0; 0.0	1; 0.4	2; 1.1
anomalies				
(fetal incidence; %)				
Total gross exam	2; 15	0; 0.0	1; 6.7	2; 14
anomalies				
(litter incidence; %)				
Total skeletal changes	*	*	*	*
(fetal incidence; %)				
Total skeletal changes	*	*	*	*
(litter incidence; %)				
Total soft tissue	*	*	*	*
anomalies				
(fetal incidence; %)				
a)Statistically different from co				
b)Statistically different from co				
*not examined; tissues saved	in archives	6		
Determined by Reviewer:				
The maternal NOAEL for derr				
was determined to be 250 mg/		UAEL= 2	250 mg/kg/	day based
on significantly lower body wei	gnt gain)			
The developmental NOAEL fo				
19 was determined to be 250	mg/kg/day	(LOAEL	= not ider	ntified (>

Conclusion:

Id Heavy fuel oil

5. Toxicity Date December 7, 2012 250 mg/kg/day) **RELIABILITY/DATA QUALITY Reliability:** Valid Without Restrictions (KS=1) **Reliability Remarks:** Comparable to guideline study Key Study Sponsor Indicator: Kev REFERENCE **Reference:** Mobil. 1994. Developmental Toxicity Study in Rats Exposed Dermally to V.B. Mittelol. Mobil Environmental and Health Sciences Laboratory Report 64643. Mobil. 1991. Characterization and Quantitation of Polynuclear Aromatics in Visbreaker Gas Oil. Mobil Environmental and Health Sciences Laboratory Report no. 64348 ZT.

API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE									
	00440.00								
Category Chemical:	68410-00-								
Test Substance:	68410-00-	4; Distillat	es, Cruc	e Oil (DC	CO); VDF	Diesel			
Test Substance	Distillates,	Crude O	il (F-215)						
Purity/Composition	PAC Content – report no. 65726-ZA-ZR (Mobil, 1994)								
and Other Test Substance					o. 65726-	ZA-ZR (I	Mobil, 19	94)	
Comments:	Distillates, Crude Oil (F-215)						7 4 0 0		
	Sample #	DMSO wt.% ¹	1-ARC (%) ²	2-ARC (%)	3-ARC (%)	4-ARC (%)	5-ARC (%)	6-ARC (%)	7-ARC (%)
	091681 (F-215)	VVI. 70	0.20	4.00	4.00	0.00	0.00	0.00	0.00
	/	t of DMS	D-extract	able mate	erials (m	ostlv PA	Cs), deter	mined by	/ the PAC
	 Percent of DMSO-extractable materials (mostly PACs), determined by the PAC 2 method as described in API (2008). 								
	2) ARC is					s the wei	ght perce	ent of PA	Cs that
	have 1 arc	matic ring	g within t	ne total s	ample. "/	ARC 2 (%	6)" is the	percent o	of PACs
	with 2 aror	natic ring	s, and sc	forth to	7 aromati	c rings.			
Category Chemical Result Type :	Measured								
Unable to Measure or Estimate Justification:									
METHOD									
Route of Administration:	Dermal, no	on-occlud	ed						
Other Route of Administration:									
Type of Exposure:	Developmental toxicity								
Species:	Rat								
Other Species:	Not applica	able							
		32	9 / 370						

5. Toxicity

Mammalian Strain:	Sprague-Dawley (Charles River, Portage, MI)
Other Strain:	Not applicable
Gender:	Females (non treated males used for mating)
Number of Animals per Dose:	25 per dose for level
Concentration:	
Dose:	0, 50, 250, 500 mg/kg/day
Year Study Performed :	1993
Method/Guideline Followed:	Similar to OECD 414 (Prenatal Developmental Toxicity Study)
GLP:	yes
Exposure Period:	Gestation day (GD) 0-19
Frequency of Treatment:	Once per day
Post-Exposure Period:	None
Method/Guideline and Test Condition Remarks:	The study was designed to evaluate the developmental toxicity (embryo-fetal toxicity and teratogenic potential) of DCO (F-215) administered percutaneously to presumed pregnant rats.
	 Prior to the initiation of dosing with the test substance, females were placed with untreated males (approximate 1:1 ratio). Once mating occurred and confirmed by detection of sperm in a vaginal smear or a copulatory plug, the individual, presumed pregnant females were randomly assigned to four treatment groups and dosing began for that animal. The treatment groups and time exposure periods were as follows, where designation as GD 0 followed detection of evidence of mating: 1. Vehicle control (acetone) 0 mg/kg/day – 25 animals (GD 0-19) 2. DCO 50 mg/kg/day – 25 animals (GD 0-19) 3. DCO 250 mg/kg/day – 25 animals (GD 0-19) 4. DCO 500 mg/kg/day – 25 animals (GD 0-19)
	At the completion of mating, all males and those females that did not exhibit positive evidence of mating were sacrificed.
	Suspensions of F-215 were prepared daily at concentrations of 0 (vehicle, acetone), 50, 100 and 250 mg/mL such that doses of 0, 50, 100, and 250 mg/kg/day, respectively, were administered at a volume of 1 mL/kg. Animals in all groups were treated on GD 0 through GD 19. Each treatment day, animals were dosed by even application of the test substance to their shaved backs, using a blunt-tipped glass syringe. The test substance dose was calculated from each rat's most recent body weight. Rats were fitted with Elizabethan collars to minimize ingestion of test substance. Controls were handled in the same manner but with application of the vehicle only. Elizabethan collars were applied just prior to dosing and were removed after a 6 hour exposure period. At the time of collar removal, any excess test article was wiped off with a cloth dipped in acetone and dried with a clean cloth.
	Upon initiation of treatment, each female was observed twice daily for viability. Each rat was observed at least once a day throughout gestation until sacrifice for changes in appearance, behavior, excretory function, and general signs of ill- health or abortion. All unusual findings were noted. Skin reactions were graded using the Draize and National Research Council standards.
	On GD 9, the post-dosing observation for one rat in the 250 mg/kg/day dose group was inadvertently performed at 6 hours, rather than at 60 minutes, post- dosing. On GD 0, the post-dosing observations for eight rats in the 500 mg/kg/day dose group were inadvertently performed at 8 hours, rather than 60 minutes post- dosing. These deviations did not affect the outcome of the study because no
	330 / 370

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	adverse clinical observations occurred other than skin reactions, and are documented in the raw data.
	Individual body weights and food consumption were recorded daily during presumed gestation.
	All rats were sacrificed by carbon dioxide asphyxiation on day 20 of presumed gestation, and a gross necropsy of the thoracic and abdominal viscera was performed. The abdomen of each rat was opened, and the intact uterus was excised and examined for pregnancy. To confirm the pregnancy status, uteri from rats that appeared non-pregnant were examined while transilluminated and pressed between two glass plates. Tissues with gross lesions were preserved in neutral buffered 10% formalin for possible future evaluation; all other maternal tissues were discarded.
	One rat (GD 1) died as the result of an accident and was necropsied on the day the event occurred using the procedures described for rats that survived to GD 20. Pregnancy status was not confirmed because death occurred before implantation.
	Corpora lutea in each ovary were recorded. The number and distribution of implantations, early and late resorptions, and live and dead fetuses were noted. An early resorption was defined as one in which organogenesis was not grossly evident. A late resorption was defined as one in which the occurrence of organogenesis was grossly evident. A live fetus was defined as a term fetus that responded to mechanical stimuli. Nonresponding term fetuses were considered to be dead. Dead fetuses and late resorptions were differentiated by the degree of autolysis present; marked to extreme autolysis indicated that the fetus was a late resorption.
	Each fetus was removed from the uterus, placed in an individual container, weighed, and examined for weighed and examined for sex and gross external alterations. Live fetuses were sacrificed.
	Approximately one-half of the fetuses in each litter were fixed in Bouin's solution and examined for soft tissue alterations by using an adaptation of Wilson's sectioning technique. The remaining fetuses in each litter were eviscerated, cleared, stained with alizarin red, and examined for skeletal alterations.
	STATISTICAL ANALYSES: Maternal and fetal incidence data were analyzed using the Variance Test for Homogeneity of the Binomial Distribution. Maternal body weights, body weight changes, feed consumption values, and litter averages for fetal body weights, percent male fetuses, fetal ossification sites and percent fetal alterations were analyzed using Bartlett's Test and ANOVA, when appropriate [i.e., Bartlett's Test was not significant (P>0.05)]. If the analysis of variance was significant (P<0.05), Dunnett's Test was used to identify the statistical significance of the individual groups. If the analysis of variance was not appropriate [i.e., Bartlett's Test was significant (P<0.05)], the Kruskal-Wallis test was used, when less than or equal to 75% ties were present. When more than 75% ties were present, Fisher's Exact Test was used. In cases in which the Kruskal-Wallis Test was statistically significant (P<0.05), Dunn's Method of Multiple Comparisons was used to identify the statistical significance of the radiational procedures described for the Kruskal-Wallis Test.
	PAC Analysis: The percent of each ring class was conducted in a separate study and determined by the PAC 2 method as described elsewhere. Briefly the PAC 2 is a single analytical method that involves solvent extraction (DMSO) and an analysis of the DMSO-extracted concentrate of PACs by gas chromatography with an FID or MS detector. The DMSO extraction procedure is selective for the less polar PAC

Id Heavy fuel oil Date December 7, 2012

species, so that highly alkylated PACs are excluded from measurement. (API, 2008; and Mobil, 1994)

TEST RESULTS

Results Remarks:

Concentration (LOAEL/LOAEC/NOAEL/NOAEC)								
Туре	Population:	Value Description:	Value or Lower Concentration:	Upper Concentration:	Units:			
LOAEL – Dermal	Maternal	=	250		mg/kg/day			
NOAEL- Dermal	Maternal	=	50		mg/kg/day			
LOAEL - Dermal	Offspring (F1)	=	Not determined >500		mg/kg/day			
NOAEL - Dermal	Offspring (F1)	=	500		mg/kg/day			

The animals used in the study were between 12 and 13 weeks of age at exposure initiation.

No deaths were caused by the test substance. One control group rat died as the result of an accident (necropsy revealed extensive hemorrhage present ventral to the cervical vertebrae and surrounding the esophagus and trachea, observations compatible with trauma).

Skin reactions related to administration of the test substance occurred in the 250 and 500 mg/kg/day dose groups.

Increased or significantly increased (P<0.01) erythema (grades 1 and 2) edema (grade 1), atonia (grades 1 and 2), desquamation (grades 1 and 2), fissuring (grade 1), exfoliation and eschar occurred in the 250 and 500 mg/kg/day dose group rats. Increased or significantly increased (P<0.01) numbers of 500 mg/kg/day dose group rats also had erythema (grade 3), atonia (grade 3) and fissuring (grade 2).

Vocalization occurred in eight 500 mg/kg/day dose group rats. This clinical observation was considered an effect of the test substance because it occurred in the high dose group. The only other clinical observation (localized alopecia) was considered unrelated to administration of F-215 because the sign occurred in only one 250 rat in the mg/kg/day dose group. The only necropsy observation occurred in the control group rat that died, as described previously.

Maternal body weights and body weight gains were significantly reduced in the 250 and 500 mg/kg/day dose groups at various points and during gestation, per the table below. No effects were seen at the 50 mg/kg/day dose level.

Feed consumption was not affected at dose levels of 50 mg/kg/day. Absolute feed consumption values were significantly reduced (P<0.05) in the 500 mg/kg/day dose group on GD 3 to 6. Relative feed consumption values in this group were significantly reduced (P<0.05) on GD 0 to 3 and significantly increased (P<0.05) on GD days 12 to 15. Percutaneous administration of doses as high as 250 mg/kg/day on days GD 0 through 19 did not significantly affect absolute or relative feed consumption values.

All other Caesarean-sectioning and litter parameters were unaffected by doses of the test substance as high as 500 mg/kg/day. Litter averages for implantations and sex ratios did not demonstrate any significant or biologically important differences. The average number of corpora lutea was significantly reduced (P<0.0I) in the 250 mg/kg/day dose group. This event was considered unrelated to the test substance because the incidence was not dose-dependent. No dam resorbed all conceptuses, and the numbers of dams with viable fetuses were comparable

among the four dose groups.

Percutaneous administration of F-215 at doses as high as 500 mg/kg/day did not affect Caesarean-sectioning or litter observations. There were 24, 20, 20 and 22 rats pregnant and Caesarean sectioned in the 0 (vehic1e), 50, 250 and 500 mg/kg/day dose groups, respectively, on GD 20. There were no biologically important differences in litter averages for corpora lutea, implantations, litter sizes, live fetuses, resorptions (early and late), fetal body weights, percent resorbed conceptuses and sex ratios. No dam resorbed all conceptuses, and the numbers of dams with resorptions and viable fetuses were comparable among the four dose groups.

Male fetal body weights were significantly increased (P<0.05) in the 50 and 250 mg/kg/day dose groups. These effects were not dose-dependent observations and were judged to be unrelated to the test substance and interrelated with differences in litter sizes among the four dose groups. When values for litters of less than ten fetuses were excluded from analyses, fetal body weights did not significantly differ.

Fetal alterations were classified as: 1) malformations (irreversible changes which occur at low incidences in this species and strain); or 2) variations (relatively common developmental changes in this species and strain, including minor reversible delays or accelerations in development).

No gross external, soft tissue or skeletal alterations in the fetuses were caused by test article administration at doses as high as 500 mg/kg/day. The significant increases (P<0.01) in fetuses with any alteration observed and in the fetal incidences of incompletely ossified pubes and ischia in the 50 mg/kg/day dose group were unrelated to the test substance because: 1) the values were not dosedependent; and 2) the litter incidences were not significant.

Dose (mg/kg/day)	0	50	250	500
Body wt –final (gr)	414.7	409.8	387.6b	365.2b
GD 0-3 wt gain (gr)	12.2	11.8	12.5	7.4a
GD 3-6 wt gain (gr)	16.4	16.0	13.6	9.2 b
GD 6-9 wt gain (gr)	18.5	16.4	17.0	15.2
GD 9-12 wt gain (gr)	21.2	21.3	20.8	21.1
GD 12-15 wt gain (gr)	25.3	22.4	16.3a	16.6b
GD 15-18 wt gain (gr)	45.5 1	42.4	38.8a	21.1b
GD 18-20 wt gain (gr)	34.5	32.9	27.0b	25.7b
GD 0-20 wt gain (gr)	173.8	163.2	146.0b	122.4b
a)Statistically different from co	ontrol (n-0.05	5)		

Summary of Selected Maternal Weight Parameters

a)Statistically different from control (p<0.05) b)Statistically different from control (p<0.01)

Summary of Mean Selected Reproduction and Litter Data

Dose (mg/kg/day)	0	50	250	500
Corpora lutea	20.4	19.0	19.2	19.3
Implantation sites - mean	16.0	14.4	15.0	15.0
Live fetuses – total	366	277	290	318
Live fetuses - mean	15.2	13.8	14.5	14.4
Litter size	15.2	13.8	14.5	14.4
Viable male fetuses (%)	51.9	49.7	50.4	49.8
Total resorptions (mean)	0.8	0.6	0.4	0.6
Dams with resorptions	13	8	8	9

a)Statistically different from control (p<0.05)

b)Statistically different from control (p<0.01)

Fetal Endpoints

5. Toxicity			lc	Heavy fu	el oil		
			Date	e Decembe	er 7, 2012		
	Dose (mg/kg/day)	0	50	250	500		
	Fetal weights (gr)	3.73	3.83c	3.87c	3.75		
	Litters evaluated	24d	20	20	22		
	Live fetuses - total	366	277	290	318		
	Dead fetuses – dead	0	0	0	0		
	% Resorbed conceptuses per litter	4.9	3.8	3.6	3.7		
	Litters with any alteration (N;%)e	4(16.7)	7(35.0)	5(25.0)	4(18.2)		
	Fetuses with any alteration (N;%)e	4(1.1)	13(4.7)b e	8(2.8)	4(1.1)		
	Fetuses with any alteration per litter (mean %)e	1.18	4.43	3.02	1.49		
Conclusion:	 presumed gestation. e) See text for discussion of results. The maternal NOAEL for dermal exposure to DCO during GD 0-19 was determined to be 50 mg/kg/day (LOAEL = 250 mg/kg/day based on skin irritation decreased body weight and body weight gains). The developmental NOAEL for dermal exposure to DCO during GD 0-19 was determined to be 500 mg/kg/day. (LOAEL = not determined, >500 mg/kg/day; the highest dosage tested did not result in effects on embryo-fetal viability or fetal 						
RELIABILITY/DATA QUALITY	body weights or morphology.)						
Reliability:	Valid Without Restrictions (KS	S=1)					
Reliability Remarks:	Non guideline study, but with a	adequate d	etail to make	NOAEL de	termination.		
Key Study Sponsor Indicator:	Кеу						
REFERENCE							
Reference:	ARCO. 1993. Developmental Toxicity (Embryo-Fetal Toxicity and Teratogenic Potential) Study of F-215 Administered Percutaneously to Crl:CD®BRK VAF/Plus® Presumed Pregnant Rats. Report ATX-92-0155.						
	Mobil. 1994. Characterization and Quantitation of Polynuclear Aromatics. Mobil Environmental and Health Sciences Laboratory Report no. 65726-ZA-ZR						
	API. 2008. PAC Analysis Task Group, "The relationship between the aromatic ring class content and selected endpoints of repeat-dose and developmental toxicity of high-boiling petroleum substances." http://www.petroleumhpv.org/pages/pac.html, accessed 31 Dec 2009						

High Production Volume Information System (HPVIS)

DEVELOPMENTAL TOXICITY/TERATOGENICITY

TEST SUBSTANCE

Category Chemical:

64741-62-4

5. Toxicity

Test Substance:	64741-62-4;					ified Slurr	y Oil [CS0	[C	
Test Substance Purity/Composi	Catalytic Cr			`	,				
tion			· · · ·		•	und) Cont			
and Other Test Substance	Sample #	DMSO wt.% ¹	1-ARC (%) ²	2-ARC (%)	3-ARC (%)	4-ARC (%)	5-ARC (%)	6-ARC (%)	7-ARC (%)
Comments:	010929	52.0	0.0	1.0	15.6	15.6	10.4	5.2	2.6
	1) Percent			-			-	-	-
	API (2008).				(0())) (1)				
	2) ARC is " aromatic rin								
	rings, and s				KC Z (%)	is the per-			aromatic
Category Chemical Result	Measured			, ingoi					
Type : Unable to									
Measure or									
Estimate Justification :									
METHOD									
Route of Administration:	Dermal, non-	occluded							
Other Route of Administration:	Not applicable	e							
Type of Exposure:	Development	al toxicity s	study						
Species:	Rat								
Other Species:	Not applicable	e							
Mammalian Strain:	Sprague-Daw	vley Charle	s River La	boratories,	Raleigh, N	IC			
Other Strain:	Not applicable	е							
Gender:	Females, pre	sumed pre	egnant (noi	n treated m	ales used	for mating)			
Number of Animals per Dose:	25/group								
Controls	Untreated [SI	ham} contr	ols, vehicle	control –	Acetone 1	.5mL/kg			
Doses:	0, 5, 25, 50 m	ng/kg/day							
Year Study Performed :	2012								
Method/Guideli ne Followed:	OECD 414 P Toxicity Test		velopmenta	al Toxicity	Test; EPA	OCSPP 87	70.3700 Pr	enatal Dev	elopmental
GLP:	Yes								
Exposure Period:	Gestation da	ay 0-19, 6 h	nours/day						
Frequency of Treatment:	Once per day	/							
Post-Exposure Period:	None								
Method/Guideli	Crl:CD(SD) s	exually ma	ture female	e rats [appi	ox. 79 day	s old at red	ceipt] were	received in	n good health
ne and Test	from Charles	River Labo	oratories, Ir	nc., Raleigh	n, NC. The	e day follow	ving receipt	, all animal	s were
Condition	weighed and ear tag displa								
Remarks:	acclimation p	eriod, the i	ats were o	bserved tw	vice daily fo	or mortality	and chang	es in genei	ral
	appearance a incremental b								
	acclimation, s								
	housed indivi	dually exce	ept during I	preeding in	a room wi	th a 12 hou	ır light/12 h	our dark c	ycle and
	received food	and water	· ad libitum	. The room	i temperatu	ire and hur	nidity contr	ols were s	et to maintair
	AUXILAND AUXA	al condition	s of 71 + 5	⁰ F (22 + 2 ⁰	C) and 50	± 20%, res	nectively		

male rats of same strain and source. Positive evidence of mating was confirmed by the presence of a vaginal copulatory plug or the presence of sperm in a vaginal lavage and verified by a second biologist. Each mating pair was examined daily. The day on which evidence of mating was identified was termed gestation day 0 and the animals were separated. The bred females were assigned to groups using a computer program which randomized the animals based on stratification of the gestation day 0 body weights in a block design. Animals not assigned to study were euthanized by carbon dioxide inhalation and discarded. Body weight values ranged from 224g to 284g on gestation day 0.

On the day prior to the initiation of dose administration, and as often as necessary thereafter, the hair was clipped (in a manner that would not abrade the skin) from the dorsal scapular area; repeated clippings were performed prior to or at least 2-4 hours after dose administration. A different set of clippers was used for each group to avoid the potential for cross-contamination. Catalytic cracked clarified oil in acetone was applied once daily from gestation days 0 through 19 for 6 hours each day. Exposure levels were 5, 25, and 50 mg/kg/day administered at a dosage volume of 1.5 mL/kg. The vehicle or test substance was applied evenly to the clipped, unabraded skin and spread evenly using a glass rod (to ensure contact with an area of approximately 10% of the total body surface area). At the end of the 6-hour exposure period, the test sites were gently patted using a disposable paper towel in an effort to remove any remaining test substance or vehicle from the skin. If needed, the test site could be gently patted with gauze moistened with mineral oil and then patted again with dry gauze or a dry disposable paper towel.

All animals were observed twice daily for mortality and moribundity and clinical observations recorded. Body weights and food consumption were recorded at GD 0, 3, 6, 9, 12, 15, 18, and 20. Mean body weight changes were calculated for each interval and GD 0-20. Collars were removed during weighing. Gravid uterine weight was collected and net body weight (the gestation day 20 body weight exclusive of the weight of the uterus and contents) and net body weight change (the gestation day 0-20 body weight change exclusive of the weight of the uterus and contents) were calculated and presented for each gravid female at the scheduled laparohysterectomy.

Pathology Maternal and developmental: On gestation day 20, females were euthanized by carbon dioxide inhalation and a laparohysterectomy was performed on each surviving female. The cranial. thoracic, abdominal, and pelvic cavities were opened and the contents examined. The uteri, placentae, and ovaries were examined, and the numbers of fetuses, early and late resorptions, total implantations, and corpora lutea were recorded. All implantation sites, including resorptions, were numbered in consecutive order beginning with the left distal to the left proximal uterine horn, noting the position of the cervix, and continuing from the right proximal to the right distal uterine horn. Tissue retained were treated skin, untreated skin (right hind limb), liver, thymus, brain and all gross lesions. Gravid uterine weights were recorded, and net body weights and net body weight changes were calculated. Females that died or were euthanized (by carbon dioxide inhalation) in extremis during the course of the study were similarly examined and tissue retained in 10% neutral-buffered formalin. The number and location of implantation sites, corpora lutea, and viable fetuses were recorded. Recognizable fetuses were examined externally and preserved in 10% neutral-buffered formalin for possible future analysis. Remaining tissue was discarded. The liver, brain, and thymus were weighed from all animals euthanized in extremis or at the scheduled necropsy. Organ to brain weight ratios were calculated.

Intrauterine data were summarized using 2 methods of calculation. An example of each method of calculation follows:

1. Group Mean Litter Basis:

	Postimplantation Loss/Litter =	No. Dead Fetuses, Resorptions (Early/Late)/Group No. Gravid Females/Group
2.	Proportional Litter Basis:	
	Summation Per Group (%) =	Sum of Postimplantation Loss/Litter (%) No. Litters/Group
where	Postimplantation Loss/Litter (%) =	No. Dead Fetuses, Resorptions (Early/Late)/Litter No. Implantation Sites/Litter x 1
technique each fetus	to include the heart and major blood ves was confirmed by internal examination.	o a visceral examination using a fresh dissection sels [Stuckhardt and Poppe, 1984]. The sex of Fetal kidneys were examined and graded for ately one-half of the fetuses in each litter were

5. Toxic	city			ld	Heavy fuel oil
				Date	December 7, 2012
	The heads for carcasses we Following fix Alizarin Recovariations. External, vis anatomic stra body conformalformation	puin's fixative for subseque from the remaining one-h ere eviscerated and fixed i ation in alcohol, each fe d S and Alcian Blue ar ceral, and skeletal finding ructure that are considere mity and/or occur at hig is (those structural anoma function, or may be incom	alf of the fetuses of in 100% ethyl alcoho tus was macerated and examined for s gs were recorded ed to have no sign th incidence, repre- alies that alter gener	were examined by a bl. in potassium hydro keletal malformation as developmental va ificant biological effect senting slight deviat	midcoronal slice. All exide and stained with s and developmental ariations (alterations in ct on animal health or ions from normal) or
	both as the considering t	velopmental findings were number of fetuses and the the litter as the basic unit a proportional basis as foll	e number of litters a for comparison and	vailable for examination	on in the group; and 2)
	Wł	Summation per o nere: Viable Fetuses Affecte	Group (%) =	um of Viable Fetuses No. Litters/ <u>No. Viable Fetuses</u> No. Viable Fetu	Group Affected/Litter
	and net), and and viable for subjected to revealed sig appropriate, the vehicle of prenatal data postimplanta (external, via malformation intergroup di was used to	<u>halysis</u> : Mean maternal body d food consumption, gravit etuses, fetal body weights o a parametric one-way gnificant (p<0.05) intergrow was used to compare the control group to the shan a (viable and nonviable fet tion loss, and fetal sex dis sceral, skeletal, and cor o or variation were subjected fferences. If the ANOVA o compare the test substate to the sham control group	d uterine weights, n s (separately by se ANOVA to determine oup variance, Dun test substance-treat n control group. Metuses, early and la tribution), total fetal nbined) and each ed to the Kruskal-Wa revealed significan nce-treated groups	umbers of corpora lu x and combined), an ne intergroup differe nett's test or a t ated groups to the ve lean litter proportions ate resorptions, total malformations and de particular external, allis nonparametric Al t (p<0.05) intergroup	ttea, implantation sites, d organ weights were ences. If the ANOVA two-sample t-test, as hicle control group and a (percent per litter) of resorptions, pre- and evelopmental variations visceral, and skeletal NOVA test to determine variance, Dunn's test
TEST RES	SULTS				
		Concentration (LOAEL	/LOAEC/NOAEL/N	IOAEC)	
	Population:	Value Description:	Value or Lower Concentration:	Upper Concentratio	n: Units:
EL dermal	Maternal	=	25		mg/kg/
EL dermal	Maternal	=	5		mg/kg/

					5. 5.
EL dermal	Offspring	=	5		mg/kg/d
Results Rema	rks:		<u>:</u> The analyzed dosinge for suspensions (
		on GD18 and the oth treatment-related bu were noted with yell eyes and decreased throughout the treat material in the uroge dose administration.	es in the 50 mg/kg/da her on GD19. These it the causes of death ow and/or red materia defecation at the da ment period until the initial area were noted On the day prior to o females in all groups	deaths were assum was not determined al around the uroger ily examinations into day of death; single d for each female 1 death, both females	hed to have been d. Both females nital area, nose, and ermittently occurrences of red to 2 hours following were noted with a
		all groups, including the treatment period	ed and/or yellow mate the sham and vehicle (gestation days 0-20 t substance-treated g	e control groups, ge)) but occurred at a l	nerally throughout much greater

=

25

EL dermal

Offspring

mg/kg/d

5. Toxicity				ld	Heavy	fuel oil
				Date	Decem	ber 7, 2012
	16-19 at 1 to 2 ho females in the 50	ours following dos mg/kg/day group	e 50 mg/kg/day gro e administration. I were noted with a ns. There were no	n addit a pale l	tion, 2 sur body durir	viving gestation
	Maternal Body W mean body weigh start of the treatm (p<0.01) at 50 m groups were sim and 9-12. Lower mg/kg/day groups days 12-20). As a were noted at 25 days 0-20) was e groups were sign than the vehicle of respectively. A lo mean net body w noted; the differe	nt losses were not nent period (gesta g/kg/day. Mean bo ilar to the vehicle mean body weigh s throughout the r a result, significan and 50 mg/kg/da evaluated. Mean b ificantly (p<0.01) control group durin wer mean net boo reight changes in nces were signific	as and Gravid uter ted in the 25 and 5 tition days 0-3); the ody weight gains in control group durin th gains were note remainder of the tr tly (p<0.01) lower y when the entire body weights in the lower (up to 10.6% ing gestation days dy weight in the 50 the 25 and 50 mg/ cant (p<0.01). Mea- e vehicle control gives the second sec	50 mg/l e different in the 2 ing gest d in the eatment treatment 25 an 6 and 2 18-20 0 mg/kg/day an net	kg/day gro ence was 5 and 50 tation day e 25 and ht period body weig ent period d 50 mg/ł 22.3%, re and 12-20 g/day grou groups v	bups at the significant mg/kg/day s 3-6, 6-9, 50 (gestation ght gains (gestation kg/day spectively) 0, up and lower vere also
	(p<0.01) lower decreased numb exposure The de 25 and 50 mg/kg	than the vehicle er of viable fetuse creased number y/day groups also duced body weigh	and 50 mg/kg/d e control group es and lower mea of viable fetuses a contributed to the ht gains in these	and wind fetal and low lower	vere attri weights r ver fetal v body weig	buted to the noted at these veights in the ghts and body
		Sham control	Acetone control	5mg/k	kg	25mg/kg
	Gravid Uterine Weight	84.0 <u>+</u> 9.0	76.8 <u>+</u> 17.3	76.1 -	<u>+</u> 8.6	46.7 <u>+</u> 22.4**
	Net Extra- Uterine Wt Gain	48.2 <u>+</u> 12.9	49.7 <u>+</u> 10.3	46.4 -	<u>+</u> 14.2	37.3 <u>+</u> 11.1**
	weight gain, and the vehicle contro and not statistica 50mg/kg/day gro gain. Maternal fo to the vehicle cor significantly (p<0 noted in the 5 mg 0-20) was evalua consumption, me group; therefore, not considered te <u>Maternal organ w</u> gestation day 20, at any dosage lev lower mean thym and 50 mg/kg/day gro	gravid uterine wei ol group. Differen Ily significant. Lov ups corresponded od consumption in throl group through .05) lower mean f g/kg/day group wh ted. However, no ean body weights, the difference in n east substance-relative veights and macro no test substance vel. Test substance us weights (abso y groups compare ative to brain) wei pups were similar d effects on organ	y weight gains, neight in the 5mg/kg, ces from the vehic wer mean food co to the changes in the 5 mg/kg/day hout the treatment food consumption the overall treat corresponding eff or mean body we mean food consur- ted. <u>bscopic findings</u> : A e-related gross int ce-related gross int ce-related gross int ce-related gross int ce-related gross int ce-related consult te to the vehicle con- tights and absolute to the vehicle con- to weights (absolute	/day gr cle con nsump body group perioc value (tarment ects or ight ga nption At the s cernal fi antly (p o brain ontrol gro	roup were trol group tion in the weight an was gene d. Howeve g/kg/day period (gun g/anima ins were at 5 mg/kg scheduled indings w b<0.05 or) were no group. Me weights in oup. No te	similar to were slight 25and d weight erally similar er, a only) was estation days l/day food noted in this g/day was necropsy on ere observed p<0.01) ted in the 25 an liver the 25 and est
	uteri revealed tha There were no st implantation sites increased, and th and 50 mg/kg/da the 25 and 50 mg significantly (p<0 increase in postir proportion of earl	at the number of g catistically significa s. However, the n ne number of viabl y groups. The me g/kg/day groups (4 .01) higher than the nplantation loss w	fetal weights [Table gravid females was ant differences in r number of early res le fetuses was sig ean litter proportion 42.8% and 82.8% he vehicle control vas the result of ar 5 mg/kg/day and i	s simila number sorptior nificant ns of p per litte group	r across (rs of corpons was signary thy decreat ostimplanter, respect (6.5% pertased meating)	groups. ora lutea or gnificantly sed in the 25 tation loss in tively) were f litter). This n litter

proportions of early and late resorptions at 50 mg/kg/day. Corresponding significantly (p<0.01) lower mean litter proportions of viable fetuses were noted in the 25 and 50 mg/kg/day groups (57.2% and 17.2% per litter, respectively) when compared to the vehicle control group (93.5% per litter). The mean numbers of viable fetuses at 25 and 50 mg/kg/day (8.5 and 2.7 per litter, respectively) were also significantly (p<0.01) lower than the vehicle control group (13.4 per litter). One and 8 females in the 25 and 50 mg/kg/day groups, respectively, had 100% post-implantation loss (0.0% viable fetuses). Additionally, in the 25 and 50 mg/kg/day groups, significantly (p<0.01) lower mean male (3.4 g and 2.7 g, respectively), female (3.1 g and 2.6 g, respectively), and combined (3.2 g and 2.7 g, respectively) fetal weights were noted compared to the vehicle control group values (3.8 g, 3.6 g, and 3.7 g, respectively). Intrauterine growth and survival were unaffected at 5mg/kg/day

Table 1 Results of laparahysterectomy and fetal examination from dams treated dermally with CSO

Parameter	Sham control	Acetone Control	5 mg/kg/day
Number of Gravid Females	24	24	25
Corpora Lutea: Total	381	370	390
Mean <u>+</u> SD	15.9 <u>+</u> 1.54	15.4 <u>+</u> 2.89	15.6 <u>+</u> 1.83
Implantation Sites Total	374	346	372
Mean <u>+</u> SD	15.6 <u>+</u> 1.69	14.4 3.12	14.9 <u>+</u> 1.62
Viable fetuses Mean + SE)		
Male	7.8 <u>+</u> 2.5	7.0 <u>+</u> 2.4	6.6 <u>+</u> 2.6
Female	6.7 <u>+</u> 2.5	6.4 <u>+</u> 2.6	7.0 <u>+</u> 2.4
Total	14.4 <u>+</u> 1.47	13.4 <u>+</u> 3.0	13.6 <u>+</u> 1.4
Dead Fetuses	• =		
Combined Sexes	0.0	0.0	0.0
Resorptions Totals/group:	Mean <u>+</u> SD		
Early	28 1.2 <u>+</u> 1.6	24 1.0 <u>+</u> 1.2	29 1.2 <u>+</u> 1.1 3
Late	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0.1 <u>+</u> 0.3
Postimplantation losses	28	24	32
Total/group; Mean <u>+</u> SD	1.2 <u>+</u> 1.6	1.0 <u>+</u> 1.2	1.3 <u>+</u> 1.2
Fetal weight Mean + SD			
Male fetuses (g)	3.8 <u>+</u> 0.32	3.8 <u>+</u> 0.31	3.5 <u>+</u> 0.26
Female fetuses (g)	3.7 <u>+</u> 0.35	3.6 <u>+</u> 0.32	3.5 <u>+</u> 0.25
Combined Fetal weight (g)	3.7 <u>+</u> 0.29	3.7 <u>+</u> 0.28	3.6 <u>+</u> 0.29

** p = 0.01

<u>Fetal Examinations</u>: Few malformations were observed in 4(2), 0(0), 3(2), 0(0), and 1(1) fetuses (litters) in sham control, vehicle control and 5, 25, 50mg/kg/day groups, respectively (Table 2).

Table 2: Summary of Malformations of fetuses from dams treated with CSO

Observation	Sham control	Acetone Control	5 mg/kg/day
Number fetuses examined (no. of litters)	346 (24)	322 (24)	340 (25)
Localized fetal edema	1	0	0
Micropthalmia and/or anopthalmia	0	0	1
Visceral examination – situs inversis	1	0	1
Skeletal examination			
Vertebral anomaly with or without associated rib anomaly	0	0	2
Sternebrae misaligned	1	0	0
Sternoschisis	2	0	0
Total Number fetuses with malformations	4	0	3

5. Toxicity

			-	
	External Soft Tissue	1	0	1
	Soft Tissue Skeletal	1 3	2	0
	A significantly (p<0.01) higher in observed in the 50 mg/kg/day gr control group (33.0% per litter). percent per litter of skeletal varia the vehicle control group). Incre 5 and/or 6 unossified, reduced o ossification of the skull, and pub group. In addition, a decreased ossified was noted at 50 mg/kg/or reduced ossification of the skull These findings were considered the 25 and 50 mg/kg/day groups fetal malformations or developmen mg/kg/day group fetuses.	roup (82.9% per I This was due to t ations (82.9% per ased mean litter is sification of the is unossified were mean litter propor day. An increased was also noted ir secondary to the (Table 3). No sign ental variations w	itter) compared t he significantly (litter versus 32. proportions of st vertebral arches e noted in the 50 tion of cervical of d mean litter prop the 25 mg/kg/d e reduced fetal w gnificant test sub vere observed in	o the vehicle p<0.01) higher 6% per litter in ernebra(e) nos. , reduced o mg/kg/day centrum no. 1 portion of ay group. eights noted in estance-related the 5
	Table 3: Skeletal variations in	fetuses from da Acetone Control	ms treated der 5 mg/kg/day	25 mg/kg/day
	Developmental Variations-			
	Sternebrae #5 and/or 6 unossified	48 (14.6)	40 (11.8)	35 (14.7)
	Cervical centrum # 1 ossified	33 (9.8)	63 (18.5)	15 (11.3)
	Reduced ossification of vertebral arches	2 (0.5)	1 (0.3)	3 (1.1)
	Reduced ossification of the skull	1 (0.2)	2 (0.6)	5 (1.8)
	Pubis unossified * p =0.05 Dunnett's test	1 (0.3)	0 (0.0)	0 (0.0)
Conclusion:	The NOAEL for both maternal and = 25mg/kg based on decreased consumption and organ weight of survival and fetal weight and and Developmental delays were also but the frequency of malformation toxicant at levels which also pro- unique result of CSO exposure. malformations were observed.	maternal weight changes and sign increased incider observed secon ons was not increa- duce maternal to:	and weight gain, nificant reduction nce in early reso idary to reduced ased. CSO acte kicity; fetal effect	food s in fetal rptions. fetal weights, ed at a fetal s were not a
RELIABILITY/DATA QUALITY				
Reliability:	1 - Reliable without restrictions			
Reliability Remarks:	Conforms to standard US and C provided in appendices and table		and GLPs. Suffi	cient detail
Key Study Sponsor Indicator:	Yes			
REFERENCE				
Reference:	WIL Laboratories 2012. A Derm Clarified Oils, Catalytic Cracked Laboratories, LLC. 1407 George	in Rats. WIL Stu	dy # 402016. W	

Species	:	Rat
Sex	:	Female
Strain	:	Sprague-Dawley
Route of admin.	:	Dermal
Exposure period	:	Days 0-20 incl. of gestation

340 / 370

Frequency of treatm.	:	Daily
Doses	:	50, 333 & 1000 mg/kg/day
Control group	:	Yes
NOAEL maternal tox.	:	= 333 mg/kg bw
NOAEL teratogen.		= 333 mg/kg bw
Year	:	1994
GLP	:	Yes
Test substance	:	CAS RN 64741-45-3

Method

: Groups of 12 presumed-pregnant rats (approximately 11-12 weeks old) were distributed into the following groups:

Group	Dose level (mg/kg/day)	Gestation days of administration
1	0	0-20
2	50	0-20
3	333	0-20
4	1000	0-20

The control animals received the carrier, corn oil, at a dose of 2 ml/kg. With the exception of test article application, these animals underwent the same procedures as the other treatment groups.

The test material was applied daily to the shorn dorsal skin at the dose levels shown above and for the duration indicated. The rats were fitted with collars to prevent oral ingestion of the applied material.

Observations of the dams were made daily for clinical signs and body weights and food consumption were recorded regularly throughout the study. Each litter was observed daily during Days 0 (day of parturition) through 4 of lactation for signs of toxicity and mortality. Each pup was examined externally for abnormalities. On lactation Days 0 and 4, the weight and sex of each live pup was recorded.

Each female that mated was sacrificed with carbon dioxide and necropsied; one female was sacrificed moribund and necropsied. Females that delivered a litter were necropsied on Day 4 of lactation, and those that did not deliver a litter or if all pups were dead by Lactation Day 4 or delivered all dead pups were necropsied on presumed Gestation Day 25. The necropsy included a gross examination of the external body surfaces, orifices, and the cervical, thoracic and abdominal viscera. The number of implantation sites within the uterine horns was recorded. Uteri that appeared non-gravid were placed in 10% ammonium sulfide in an attempt to reveal any implantation sites. If no implantation sites were observed, the animal was considered to be non pregnant. Dead pups were removed and examined externally. If there were no external abnormalities, the pups were discarded. On Day 4 of lactation, all surviving pups were sacrificed with an intraperitoneal injection of euthanasia solution and discarded.

Statistical evaluation of female body weight and food consumption data equality of means was done by an appropriate one way analysis of variance and a test for ordered response in the dose groups. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1 percent level of significance. If the variances were equal, the testing was done using parametric methods, otherwise, non-parametric techniques were used.

For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	groups was performed. The regression also tested for linear lack of fit in the model.
	For the non-parametric procedures, the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed.
Result	 The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance. During the gestation and lactation periods slight to moderate (primarily slight) erythema and eschar and slight edema and dry skin were observed, both on treated and untreated skin in the carrier control group. There were no other clinical observations (including dermal irritation) that were considered to be related to treatment with the test article.
	One dam in the 333.0 mg/kg dose group was unsuccessful in delivering her litter and was sacrificed moribund. The study directors did not consider this death to be related to test article exposure. No other mortality occurred in this phase of the study.
	Body weight changes for pregnant females in the 1000 mg/kg/day dose group were significantly lower (p<0.05) than those of the control females between Gestation Days 16 to 20. The laboratory report notes that the changes in female body weights appear to be influenced by two females which had reduced litter sizes. The study directors considered this finding to be treatment related; however, it may be significantly influenced by a decrease in fetal mass. There were no other effects on body weight or body weight changes at any of the dose levels.
	There were no compound-related effects on either absolute (g/animal/day) or relative (g/kg body weight/day) food consumption in the dams.
	At necropsy, no lesions related to administration of the test article were noted for dams in any of the dose groups. Developmental data
	Dose (mg/kg) Parameter 0 50 333 1000
	Number + evidence mating 15 12 12 12
	Number pregnant 15 12 10 11
	Gestation Length (Days) 22.1 22.1 22.4 22.8**
	Number of Implantation sites 16.4 17.2 14.0* 17.0
	Number litters w/ live pups 15 12 9 11
	Mean number live pups - Day 0 13.9 15.9 12.9 10.9 - Day 4 (87%) (95%) (94%) (84%)
	Proportion males 342 / 370

Toxicity	Id Heavy fuel o Date December 7,	
		2012
	- Day 0 0.49 0.49 0.53 0.55	
	- Day 4 0.54 0.47 0.54 0.54	
	Mean wt (g) live pups	
	- Day 0 6.68 6.28 6.64 6.13* - Day 4 8.96 7.74* 9.06 7.62*	
	,	
	* (p<0.05) ** p<0.01	
	For all dose groups, there were no significant differences for the total per litter, proportion dead Lactation Day 0, proportion surviving to Lac Day 4, proportion males Lactation Days 0 and 4 or external pup altera	tation
	The study directors considered decreased body weight changes and increase in gestation length at a dose of 1,000.0 mg/kg to be signs of compound-related maternal toxicity.	
	Signs of developmental toxicity considered by the study directors to be compound-related included decreased pup body weights on Lactation 0 and 4 at a dose of 1,000.0 mg/kg. The study directors did not think reduced number of implantation sites seen in the 333 mg/kg/day grou- were treatment-related since the number of implantation sites were n significantly lower at the higher dose of 1000.0 mg/kg/day. Similarly, reduced live pup weights on Lactation Day 4 in the 50 mg/kg/day grou- were not considered to be related to treatment with the test article sin two higher doses were normal. In addition, the report notes that exce pup survival was observed at this dose level, which would not be expe if the decreased body weight was, in fact, biologically relevant.	n Days the up ot the up ice the ellent
Test substance	 The authors concluded that for maternal toxicity and signs of developmental toxicity the no-observable-adverse-effect level (NOAE was 333.0 mg/kg/day. CASRN 64741-45-3 Residues (petroleum), atm. Tower A complex residuum from the atmospheric distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly great than C20 and boiling above approximately 350 °C (662°F). This streat likely to contain 5 wt % or more of 4- to 6-membered condensed ring 	ater Im is
	aromatic hydrocarbons.	
Reliability	: (1) valid without restriction	(124
		(124
Species Sex	: Rat : Female	
Strain	: Sprague-Dawley	
Route of admin.	: Dermal	
Exposure period Frequency of treatm.	Days 0 to 19 of gestation Daily	
Doses	: 8, 30, 125 & 500 mg/kg/day	
Control group	: Yes -30 mg/kg bw	
NOAEL maternal tox. NOAEL teratogen.	: = 30 mg/kg bw : = 30 mg/kg bw	
Year	: 1991	
GLP	: No data	
Test substance	: CAS RN 68915-97-9 Gas Oil Category Heavy Atmospheric Gas Oil Compositionally similar to Heavy Fuel CAS RN 68783-08-4	
Method	: Prior to dosing, females approximately 13 weeks old were paired. The subsequent appearance of a vaginal plug or the presence of spermate in vaginal lavage fluid was taken to indicate that mating had occurred	ozoa

5. Toxicity				Id Heavy fuel oil	
-				Date December 7, 2012	
	was taken to be day (The presumed-pregna each of 12 animals:			ributed into the following groups	
		Dose lev (mg/kg/			
	Prenatal groups Group 1	0 (sham		D	
	Group 2 Group 3	8 30		7	
	Group 4 Group 5	125 500			
	Postnatal groups Group 6	0 (sham	control	Ν	
	Group 7	125	CONTION	<i>י</i>	
	shorn dorsal skin at t	he dose lev I ingestion	vels sho	m days 0 to 19 of gestation to the own above. The rats were fitted with applied material. Observations were	
	of pathosis and/or dea for external malforma milk in their stomachs Body weights and foo	ath. On po tions. Pup and abse od intakes	ostpartu os were ence of i were re	on post partum days 0 to 4 for signs um day 0 pups were also examined also examined daily for presence of milk was recorded. acorded throughout the study except stpartum. Offspring were weighed	
	reproductive organs eremaining organs were weighed. The liver weighed. The number of corpor- ovaries of non-pregnation ovaries of non-pregnation ovaries of non-pregnation ovaries of the number and the of the number and the number a	examined. re examine as fixed fo ra lutea pe ant females terus weigh of each pro- and locatio amples wer the following	The ut ed gross or subse er ovary s were egnant on of all re taker ng hema	rat were exposed and a record implantations. In from all the animals assigned to atological and clinical chemical	
	<u>Hematology</u> Hematocrit Mean corpuscular vol Mean corpuscular he Mean corpuscular he	moglobin (Hemoglobin Platelet count RBC count RBC morphology	
	concentration (MCHC			WBC count	
	<u>Clinical chemistry</u> Alanine aminotransfer Albumin			dehydrogenase	
	Albumin/globulin ratic Alkaline phosphatase Aspartate aminotrans	ferase	Potassi Sodium	1	
	Bilirubin (total) Calcium Chloride Cholesterol		Sorbitol Total pi Triglyce Urea ni	erides	
	Cholesterol Creatinine		Urea ni Uric aci		
	344 /	370			

Globulin

	tissue abnormalities, the examination. Animals in the Postnat if they had surviving of birth. The reproductive thymus was weighed a	ne remainder be al groups were fspring or day 2 e organs were e and the liver pre- acrificed on posi	preserved for examination of soft sing differentially stained for skeletal sacrificed either on day 4 postpartum 5 of gestation if they had not given xamined grossly, the liver and served for histological examination. tpartum day 4 and no further
		by analysis of va	ion data and fetal data were ariance followed by group ounnet's test.
	Thymus and liver weig test.	ht data were sta	tistically evaluated using Tukey's
	Hematology and serur variance followed by c		a were analyzed for analysis of ng Tukey's test.
Result :	were considered to be due to chance was les Skin irritation which ra animals in each of the obvious dose response A red vaginal discharg observed in 7/11 anim was also observed in of mg/kg. The report cor control animals and the observation was relate The dams in the 8 and	significant if the s than 5% (p< 0 nged from slight groups exposed e effect. le (normally indic als in the 500 m one female of the nments that suc erefore in this st d to the adminis	to moderate occurred in a few I to gas oil. However, there was no cative of litter resorption) was g/kg group. A red vaginal discharge e pre- and postnatal groups at 125 h an observation has been noted in udy it is unclear as to whether the
	Parameter	125 mg/kg	500 mg/kg
	Body weight Overall weight gain Food consumption Thymus weight (abs.) Thymus weight (rel.) Liver weight (rel.) Platelets Segmented neutrophils Triglycerides Total protein Albumin Calcium Blood urea nitrogen Alkaline phosphatase	Reduced -20% * Reduced ** first 13 days s-30% *	Reduced -65% ** Reduced ** throughout -53% ** -46% ** +16% ** -25% * -68% ** +20% ** +27% ** +8% ** +38% * +95% **
	Aikaime prosphatase		+90%
	* P< 0.0	-	

Toxicity		ry fuel oil ember 7, 2012
	Reproductive evaluations No effects were recorded in the 8 and 30 mg/kg groups.	
	Preimplantation losses in both the 125 and 500 mg/kg groups	8
	were more than twice that of controls; the difference, however	
	statistically significant. Two females in each of these two gro	ups had few
	implantation sites relative to the number of eggs ovulated. Three of these four animals also had a reduced number of co	vrnora lutea
	However, since ovulation had occurred prior to the start of tre	
	gas oil this was not regarded as a treatment-related effect.	
	There was a significant increase in the mean number/percent	resorptions in
	the 500 mg/kg group.	
	Fetal evaluations Mean fetal body weights were significantly decreased for all v	<i>i</i> able fetuses
	in the 500 mg/kg prenatal group and in the males pups of the	
	group. There was one dead fetus in the 125 mg/kg prenatal	group and two
	dead fetuses in the 500 mg/kg group. The fetus in the 125 m	
	group was severely malformed while the two fetuses in the 50 group were not malformed. However, these findings were co	
	incidental.	
	There was a significant increase in incomplete ossification of	
	skeletal structures (nasal bones, thoracic centra, caudal cent	
	metatarsal and pubis) in the 125 and 500 mg/kg groups. The treatment-related abnormalities found in the soft tissues.	
	Postnatal group findings	
	At necropsy, the absolute and relative liver weights of the 125	5 mg/kg
	females were significantly increased.	
	Litter data	
	Exposure to gas oil did not adversely affect pup survival or de Pups from gas oil exposed females were significantly smaller	
	pups but the gas oil exposed females had significantly larger	
	and pups in larger litters tend to be smaller than pups from sr	naller litters.
Reliability	: (1) valid without restriction	(74)
Test substance	: Vacuum residues	()
Remark	: No data	
Species	: Rat	
Sex	: Female	
Strain	: Sprague-Dawley	
Route of admin.	: Dermal : Daily	
Frequency of treatm. Duration of test	Daily Days 0-19 incl. of gestation	
Doses	: 30, 125, 500 & 1000 mg/kg/day	
Control group	: Yes	
NOAEL maternal tox.	= 125 mg/kg bw	
NOAEL teratogen. GLP	: = 125 mg/kg bw : No data	
Test substance	: CAS RN 64741-57-7 Heavy vacuum gas oil	
Method	: Groups of 10 presumed-pregnant rats (approximately 9-10 we distributed into the following groups:	eeks old) were
	Group Dose level Gestation days of (mg/kg/day) administration	
	1 0 (remote control) 0-19	
	2 0 (proximate control) 0-19	
	246 / 270	

346 / 370

5. Toxicity	Id Heavy fuel oil
•	Date December 7, 2012
	3 30 0-19 4 125 0-19 5 500 0-19
	6 1000 0-19 7* 500 (bioavailability) 10-12
	* Group size was 5 at start but increased to 8 after study initiation.
	The test material was applied daily to the shorn dorsal skin at the dose levels shown above and for the duration indicated. The rats were fitted with collars to prevent oral ingestion of the applied material. Since it was believed that inhalation of test material could be a confounding factor a second group of controls (remote controls) were housed in an area in which they could not inhale gasoil that had been applied to other animals.
	Observations were made daily for clinical signs and body weights and food consumption were recorded regularly throughout the study.
	Each female was sacrificed on day 20 of presumed gestation and the thoracic and abdominal cavities were examined grossly. The thymus and liver were removed from each animal and weighed and then preserved in formalin but not examined further. The uterus and ovaries were removed and examined grossly. The number of corpora lutea per ovary for each rat was recorded. The ovaries of non-pregnant females were examined and then discarded. Uterus weights were also determined. The uterine contents of each pregnant rat were exposed and a record made of the number and location of all implantations. At necropsy, blood samples were taken from all the animals and a range of clinical chemical measurements were made of the following: Alanine aminotransferase (ALT) Glucose Albumin Iron Albumin/globulin ratio Phosphorus, inorganic Alkaline phosphatase (ALP) Potassium Sorbitol dehydrogenase (SDH). Chloride Calcium Sorbitol dehydrogenase (SDH). Chloride Total protein Triglycerides Creatinine Urea nitrogen Urea nitrogen Globulin Uric acid.
	examination of soft tissue abnormalities, the remainder were being differentially stained for subsequent skeletal examination. Statistical analysis
	Maternal biophase and cesarean section data and fetal data were evaluated statistically by analysis of variance followed by group comparisons using Fisher's Exact or Dunnet's Test. Fetal skeletal and visceral data were evaluated statistically by ANOVA followed by group comparisons using Fisher's Exact test. Thymus and liver weights were evaluated statistically using Student- Newman-Keul's test. Statistical analyses of clinical chemistry data were performed separately on individual serum components using SAS procedures. First the F-test was employed to do an analysis of variance on the serum data obtained from control and exposed groups. Next, the Student-Newman-Keul's multiple comparison test was employed to identify the specific group subsets within the serum data sets identified as having nonrandom variance. In general, for all statistical tests, differences between control and treated 347/370

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
Result	groups were considered statistically significant if the probability of the difference being due to chance was less than 5% (P<0.05).Parental animals.
	There were no clinical signs attributable to exposure to HVGO other than in the highest dose group in which 2 rats had a red vaginal discharge, one animal was pale in color and six had decreased stool. The latter observation was probably associated with smaller food consumption in this group. Although food consumption was generally also less associated body weight decrease. At doses in excess of 125 mg/kg/day there was a decrease in mean body weights of the dams which reflected the decreased litter sizes for these groups. At gross necropsy it was noted that the lungs appeared pale in a few animals; 4 animals were affected at the highest dose and only one in the 500 mg/kg/day group. Mean thymus weights of animals in the highest dose group were approximately half those of the control groups. Although absolute liver weights were unaffected by exposure to HVGO, mean relative liver weights were increased (approximately 15%) in groups exposed to doses greater than 125 mg/kg/day.
	Observations of Dams at Caesarean section. Parameters with treatment-related effects are shown below.
	Dose group (mg/kg/day) 0(R) 0(P) 30 125 500 1000
	Dams with viable fetuses 9/9 10/10 10/10 8/10 10/10 6/10 Dams with all resorptions
	0 0 0 0 0 3
	Mean litter size of viable fetuses 13.9 14 13.8 14.4 10 5.8
	Resorptions Mean 1.1 0.6 1.1 1.1 5.6 9.9
	% Dams with resorptions 56 50 70 63 100 100
	Parameters unaffected were: No. premature births Female mortality No. corporea lutea No. implantation sites Pre-implantation losses Viable male fetuses Viable female fetuses No. dead fetuses
	Fetal evaluations
	Fetal body weights were significantly reduced in fetuses exposed in utero to HVGO at doses in excess of 125 mg/kg/day. Although there were differences between control and treated crown-rump lengths they were not statistically significant. At the time of external examination, malformations were observed in one fetus in the 1000 mg/kg/day group. The fetus was edematous and pale in color. Both hindpaws were malformed; the digits were reduced in size with a subcutaneous hematoma located at the distal most aspect of each of the digits.

Malformations of the vertebral column were restricted to the 500 mg/kg/day

. Toxicity	Id Heavy fuel oil
	Date December 7, 2012
	group. Although a variety of skeletal malformations were observed in treated and control groups the degree of aberrant development in control fetuses was not as severe as in the HVGO-exposed groups. Visceral malformations were restricted to two fetuses in the 500 mg/kg/day group. One fetus had microphthalmia and the other fetus had a diaphragmatic hernia which displaced the heart from the left to right hand side.
Test substance	 The authors concluded that the maternal NOAEL was 125 mg/kg/day and that the fetal NOAEL was also 125 mg/kg/day The sample of Heavy vacuum gas oil (CAS 64741-57-7) was produced by the vacuum distillation of crude oil. It was a dark amber liquid with a boiling range of approximately 657 to 1038 °F and density 0.93 g/ml. The sample (CRU #85244) originated from the Beaumont crude unit B and
	contained: 54% paraffins 35% polycyclic aromatic hydrocarbons 2% nitrogen-containing polycyclic aromatic hydrocarbons 9% residuals
Reliability	 9% residuals (2) valid with restrictions The report evaluated was incomplete but nevertheless was sufficient to identify the relevant effects of exposure to the test material.
Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test Doses Control group NOAEL maternal tox. NOAEL teratogen. Method Year GLP Test substance	 Rat Female Crl:CD(SD)BR VAF/Plus Dermal Days 0-19 gestation Daily 0.05, 1, 10, 50 & 250 mg/kg/day Yes = 0.05 mg/kg bw = 0.05 mg/kg bw 1995 Yes CAS RN 64741-62-4 Clarified slurry oil
Method	 Undiluted test material was applied to the shorn skin of groups of 24 presumed-pregnant rats at doses of 0.05, 1, 10, 50 or 250 mg/kg. Application was made daily on days 0 through 19 of gestation. The application sites were not covered and to prevent ingestion of the test material, the animals were fitted with collars throughout the study. A group of 24 presumed-pregnant rats were shaved only and served as negative controls. Daily observations were made for clinical signs and local skin reactions were assessed before each application of test material. Body weights were recorded on days 0, 6, 9, 12, 15, 18 and 20 of gestation and food consumption was recorded daily. On day 20 of gestation the animals were sacrificed with carbon dioxide and examined for gross lesions. The gravid uterus was weighed and examined for: number and placement of implantation sites, signs of early or late resorptions, live and dead fetuses. The number of corpora lutea were was identified in each ovary. Uteri from non pregnant rats were examined while pressed between two glass slides for confirmation of the status of pregnancy.

5. Toxicity	Id Heavy fuel oil Date December 7, 2012
	gross external alterations. Approximately half the fetuses from each litter were examined for soft tissue alterations using Wilson's sectioning technique. The remaining fetuses were stained with Alizarin red S and examined for skeletal alterations.
	 Fetal alterations were defined as: Malformations (irreversible changes which occur at low incidences in the species and strain used. Variations (common findings in the species/strain used, and/or reversible delays or accelerations in development.
	Statistical analysis Comparisons were made with the concurrent control group. Continuous data and litter averages were analyzed for homogeneity and, if homogenous were further analyzed by analysis of variance or covariance. Dunnett's test was used to identify the statistical significance for individual groups. If the data were not homogenous, analyses were made using Kruskal-Wallis test. If this was significant, Dunn's method of multiple comparison was used to identify the statistical significance of individual groups. For count data with greater than 75% ties, Fisher's exact test was used. Proportion data were analyzed using the variance test for homogeneity of
Remark	 the binomial distribution. This study also included groups of animals that were given CSO in a pulsed dosing regime. This was included to ascertain whether there wee any critical gestational phases for developmental effects. The results of this portion of the study demonstrated that the effects on embryo-fetal development were due to early death and not to death of malformed conceptuses.
Result	 This aspect of the study has not been summarized here. There were no signs of skin irritation in the study; no deaths occurred and no dam aborted or prematurely delivered a litter. With the exception of the 0.05 mg/kg/day group there were significant reductions in food consumption. This was accompanied by significant dose-related reductions in maternal body weight in the same groups. Gravid uterine weights and corrected maternal body weight averages (Day 20 body weight - gravid uterine weight) were also significantly reduced in a dose-related manner. Clinical and necropsy observations are summarized in the following table. Numbers shown are No. affected/No. examined.
	0.05 1 10 50 250
	Clinical observations Red vaginal exudate 9/24* 5/24 14/24** 19/24** Emaciation 6/24** Swollen dark anogenital area 2/24 Slight dehydration 1/24
	Necropsy observations2/24One placenta2/24Two placentas1/24Three placentas1/24Uterus contained one placenta1/24*P<0.05
	The fetal litter data are summarized in the following table. The values given are mean values. The data show that effects occurred in a dose-related manner and that the 0.05 g/kg/day was unaffected by treatment. Dose level (mg/kg/day)
	350 / 370

5. Toxicity

	(10	50	250
		aesarean se 100 96	ectioned (9 100	%) 100	95.8	95.8
	Live fetu		100	100	90.0	JJ.U
		4.3 15.1	9.3	4.9	0.9*	0*
		sorptions				
).6 0.8	5.0*	9.4*	14*	14.3*
		sorptions).6 0.8	4.7*	9.2*	13.9*	14.1*
		or resorbed			10.0	17.1
		4.1 4.6	33.8*	43.6*	67.6*	-
		dy weights				
	3	3.52 3.54	2.94*	3.02*	2.62*	-
	* F	P<0.01				
	There w	ere no treat	ment-relat	ed incide	ences o	f fetal malformations.
						ons that are generally
	interpret	ed as rever	sible delay	s in deve	elopmer	t associated with significant
			•			tuses from the 1 to 50
						luded moderate dilation of th
						les of the brain, bifid thoracion nbers of ossified caudal
						es. No fetal alterations
						n the 0.05 mg/kg/day group.
	L			1	- ا-	nalatad incorrect in the l
						-related increase in maternal
						so caused fetal c doses. At 0.05 mg/kg/day,
					•	developmental effects on the
	fetus.					
Reliability	: (1) valid	without res	triction			
						(50
Species	: Rat					
Sex	: Male					
	: Crl:CD(SD)BR VAF	/Plus			
	```					
Route of admin.	: Dermal					
	: Dermal : 70 days					
Route of admin. Exposure period Frequency of treatm.	: Dermal : 70 days : Daily	0. 50 & 250	mg/kg/da	v		
Route of admin. Exposure period Frequency of treatm. Doses	: Dermal : 70 days : Daily	0, 50 & 250	mg/kg/da	у		
Route of admin. Exposure period Frequency of treatm. Doses Control group	: Dermal : 70 days : Daily : 0.1, 1, 1		mg/kg/da	y		
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox	: Dermal : 70 days : Daily : 0.1, 1, 1 : Yes : = 1 mg/ł	kg bw	mg/kg/da	у		
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox other: Male	: Dermal : 70 days : Daily : 0.1, 1, 1 : Yes	kg bw	mg/kg/da	у		
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox other: Male reproductive	: Dermal : 70 days : Daily : 0.1, 1, 1 : Yes : = 1 mg/ł : > 250 m	kg bw	mg/kg/da	y		
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox other: Male reproductive Year	: Dermal : 70 days : Daily : 0.1, 1, 1 : Yes : = 1 mg/ł	kg bw	mg/kg/da	y		
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox other: Male reproductive Year GLP	: Dermal : 70 days : Daily : 0.1, 1, 1 : Yes : = 1 mg/ł : > 250 m : 1992 : Yes	kg bw			I	
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox other: Male reproductive Year GLP Test substance	<ul> <li>Dermal</li> <li>70 days</li> <li>Daily</li> <li>0.1, 1, 1</li> <li>Yes</li> <li>= 1 mg/ł</li> <li>&gt; 250 m</li> <li>1992</li> <li>Yes</li> <li>CAS RN</li> </ul>	(g bw g/kg bw I 64741-62-4	4 Clarified	slurry oi		11-12 weeks old) were
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox other: Male reproductive Year GLP Test substance	: Dermal : 70 days : Daily : 0.1, 1, 1 : Yes : = 1 mg/k : > 250 m : 1992 : Yes : CAS RN : Groups	(g bw g/kg bw I 64741-62-4	4 Clarified	slurry oi s (approx		11-12 weeks old) were
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox other: Male reproductive Year GLP Test substance	: Dermal : 70 days : Daily : 0.1, 1, 1 : Yes : = 1 mg/k : > 250 m : 1992 : Yes : CAS RN : Groups	kg bw g/kg bw I 64741-62-4 of 10 prover ed into the f	4 Clarified	slurry oi s (approx		11-12 weeks old) were
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox other: Male reproductive Year GLP Test substance	<ul> <li>Dermal</li> <li>70 days</li> <li>Daily</li> <li>0.1, 1, 1</li> <li>Yes</li> <li>= 1 mg/ł</li> <li>&gt; 250 m</li> <li>1992</li> <li>Yes</li> <li>CAS RN</li> <li>Groups distribute</li> </ul>	kg bw g/kg bw I 64741-62-4 of 10 prover ed into the f Dos (mg/	4 Clarified n breeders ollowing g	slurry oi s (approx		11-12 weeks old) were
	: Dermal : 70 days : Daily : 0.1, 1, 1 : Yes : = 1 mg/ł : > 250 m : 1992 : Yes : CAS RN : Groups distribute Group	kg bw g/kg bw I 64741-62-4 of 10 prover ed into the f <b>Dos</b> (mg, 0	4 Clarified n breeders ollowing g se level	slurry oi s (approx		11-12 weeks old) were
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox other: Male reproductive Year GLP Test substance	<ul> <li>Dermal</li> <li>70 days</li> <li>Daily</li> <li>0.1, 1, 1</li> <li>Yes</li> <li>= 1 mg/l</li> <li>&gt; 250 m</li> <li>1992</li> <li>Yes</li> <li>CAS RN</li> <li>Groups distribute</li> <li>Group</li> <li>1</li> <li>2</li> </ul>	kg bw g/kg bw I 64741-62-4 of 10 prover ed into the f Dos (mg 0 0.1	4 Clarified n breeders ollowing g se level	slurry oi s (approx		11-12 weeks old) were
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox other: Male reproductive Year GLP Test substance	<ul> <li>Dermal</li> <li>70 days</li> <li>Daily</li> <li>0.1, 1, 1</li> <li>Yes</li> <li>= 1 mg/ł</li> <li>&gt; 250 m</li> <li>1992</li> <li>Yes</li> <li>CAS RN</li> <li>Groups distribute</li> <li>Group</li> <li>1</li> <li>2</li> <li>3</li> </ul>	kg bw g/kg bw I 64741-62-4 of 10 prover ed into the f <b>Dos</b> (mg/ 0 0.1 1.0	4 Clarified n breeders ollowing g se level	slurry oi s (approx		11-12 weeks old) were
Route of admin. Exposure period Frequency of treatm. Doses Control group other: NOAEL paternal tox other: Male reproductive Year GLP Test substance	<ul> <li>Dermal</li> <li>70 days</li> <li>Daily</li> <li>0.1, 1, 1</li> <li>Yes</li> <li>= 1 mg/l</li> <li>&gt; 250 m</li> <li>1992</li> <li>Yes</li> <li>CAS RN</li> <li>Groups</li> <li>distribute</li> <li>Group</li> <li>1</li> <li>2</li> </ul>	kg bw g/kg bw I 64741-62-4 of 10 prover ed into the f Dos (mg 0 0.1	4 Clarified n breeders ollowing g se level	slurry oi s (approx		11-12 weeks old) were

5.	То	xic	ity
----	----	-----	-----

The male rats were given appropriate percutaneous dosages of the test substance for 70 days before a seven-day cohabitation period with untreated virgin female rats. Two female rats were assigned to cohabitation with each male rat. Day 0 of presumed gestation was identified on the basis of the presence of spermatozoa in a smear of the vaginal contents or a copulatory plug in situ.

The male rats were examined daily for viability, adverse clinical observations and/or effects of the test substance. During the dosage period, the rats were examined once daily for skin reactions, immediately before application of the test substance. During the post-dosage period, skin reactions were evaluated weekly. Body weights and feed consumption values were recorded daily during the dosage period. The male rats were sacrificed by carbon dioxide asphyxiation after completion of the cohabitation period. The testes, epididymides (right and left whole and the left cauda epididymis), seminal vesicles (with and without their fluid contents), prostate gland, pituitary gland and brain were excised and individually weighed. The left testis and epididymis were used for evaluation of the spermatozoa, which included determination of testicular spermatid count and concentration, and cauda epididymal spermatozoa count, concentration and motility, and evaluation of the epididymal fluid for debris and unexpected cell types. The right testis and epididymis (caput, corpus and cauda regions), seminal vesicles, prostate gland, pituitary gland and gross lesions were retained in neutral buffered 10% formalin for possible future histological evaluation.

The female rats were not administered the test substance, but were examined daily for viability and clinical observations, and body weights were recorded on days 0, 6 and 14 of presumed gestation. On day 14 of presumed gestation, the female rats were sacrificed by carbon dioxide asphyxiation, and a gross necropsy of the thoracic and abdominal viscera was performed. Gross lesions were preserved in neutral buffered 10% formalin; all other tissues were discarded. The uterus of each rat was examined for pregnancy, number and distribution of implantations, early resorptions and live and dead embryos. Uteri of apparently nonpregnant rats were examined while pressed between two glass plates to determine pregnancy status. The number of corpora lutea in each ovary was recorded. All embryos were discarded.

All proportion data was analyzed using the Variance Test for Homogeneity of the Binomial Distribution. Body weight and feed consumption data, as well as male reproductive organ weights, spermatid count, sperm count, motility and morphology were analyzed using Bartlett's Test of Homogeneity of Variance and the Analysis of Variance. If the Analysis of Variance was significant and appropriate [i.e., Bartlett's Test was not significant (P>0.05)], Dunnett's Test was used to identify the statistical significance of individual groups. If the Analysis of Variance was not appropriate [i.e., Bartlett's Test was significant (P=0.05)], the Kruskal-Wallis Test was used if less than or equal to 75% ties were present. In cases where statistical significance occurred, Dunn's method of multiple comparison was used to identify statistical significance of individual groups. If there were greater than 75% ties, Fisher's Exact Test was used. Sperm motility data that was expressed as percentages was initially subjected to arcsine transformation and then analyzed, as indicated above, by parametric methods. Data obtained at Caesarean-sectioning was evaluated by the Kruskal-Wallis Test.

Result

: No deaths and no skin reactions were caused by the test material.

The 50 and 250 mg/kg/day dosages increased the numbers of pale rats in these dosage groups. No other clinical or necropsy observations were caused by the test substance. One rat in the 250 mg/kg/day dosage group had small, pale seminal vesicles and prostate and a small pituitary.

5. Toxicity	Id Heavy fuel of <b>Date</b> December 7,	
	All organ weights and their body and brain weight ratios were compar among the six dosage groups. The 10, 50 and 250 mg/kg/day dosag the test substance reduced the absolute prostate weights and tended reduce the ratios of prostate weights to brain weights in these dosage groups. These observations were interrelated with the reduced body weights in these dosage groups; the ratios of prostate weights to term body weights were unaffected.	es of to
	Administration of 10, 50 and 250 mg/kg/day dosages caused initial box weight losses that were generally followed by reduced body weight ga and resulted in reduced body weight gains for the entire dosage perior Reflecting these reductions in body weight gains, body weights in the mg/kg/day dosage group tended to be reduced after day 22 of dosage body weights in the 10, 50 and 250 mg/kg/day dosage groups tended reduced on day 70 of dosing.	ains od. 250 e, and
	Absolute (g/day) feed consumption values tended to be reduced in the mg/kg/day dosage group and were significantly reduced (P<0.05 to P<0.01) in the 50 and 250 mg/kg/day dosage groups during the first the weeks of dosage. Absolute feed consumption values in the 250 mg/kg/day dosage group were also reduced on days 57 to 70 of dosing. Relative (g/kg/day) feed consumption value tended to be reduced in the 10 mg/kg/day dosage group and were significantly reduced (P<0.05 to P<0.01) in the 50 and 250 mg/kg/day dosage groups during the first word dosage. Relative feed consumption values were also reduced uning the first word dosage. Relative feed consumption values were also reduced during the first word dosage. Relative feed consumption values were also reduced during the first word dosage in the 50 mg/kg/day dosage group and through third week of dosage in the 250 mg/kg/day.	hree g/day e week ng the
	Mating and fertility parameters were unaffected at any of the dose lev Mating incidences were comparable among the dosage groups. All m rats sired at least one litter, and seven to nine male rats in each dosa group sired two litters.	ale
	The female rats assigned to cohabitation with male rats dosed with te material had no biologically important differences in clinical and necro observations or the averages for body weights, body weight changes absolute and relative feed consumption values. Litter averages for co- lutea, implantations, and live embryos and resorptions did not signific differ among the six dosage groups. There were no dead embryos, a dam resorbed all conceptuses.	opsy , or orpora antly
	The study directors concluded that the paternal no-observable-advers effect-level (NOAEL) was 1 mg/kg/day. The 10, 50 and 250 mg/kg/da doses reduced body weights and feed consumption values; the 50 an mg/kg/day dosages also caused clinical observations.	ау
	The reproductive NOAEL for the male rats was higher than 250 mg/kg (no mating, fertility or testicular parameters in the male rats were affe by the highest dosage tested).	
Reliability	(1) valid without restriction	(24)
Species Sex Strain Route of admin. Exposure period Frequency of treatm. Duration of test	Rat Female Sprague-Dawley Dermal Daily 1 week prior to mating through Day 20 of gestation 353 / 370	

353 / 370

## 5. Toxicity

Doses Control group NOAEL maternal tox. other: NOAEL repro/dev. tox.	<ul> <li>0.05, 10, 250 mg/kg/day</li> <li>Yes</li> <li>= 0.05 mg/kg bw</li> <li>= 10 mg/kg bw</li> </ul>
Method	:
Year	: 1994
GLP	: Yes
Test substance	: Carbon black oil (CAS RN 64741-62-4)

Method

Group <u>Number</u>	Treatment	Dose Level (mg/kg)	Number of Females
1	Sham Control	0.00	20
2	CBO	0.05	15
3	CBO	10.00	15
4	CBO	250.00	15

Female Sprague-Dawley rats (approximately 13-14 weeks old) were administered carbon black oil dermally (clipped) once per day beginning one week prior to the initiation of mating, throughout mating, and through Day 20 of gestation. Elizabethan collars were applied just prior to dosing and were removed no sooner than 6 hours later. At the time of collar removal, any excess test article noted was wiped from the site. Male rats to which the females were mated were not administered test compound. Each female was cohabited with one male nightly and was examined daily for positive evidence of mating (presence of sperm in a vaginal smear or a copulatory plug). On the day a female showed evidence of mating (considered to be Day 0 of gestation), cohabitation with the male ceased. The mating procedure was continued daily until at least eight females in each group showed evidence of mating.

Each female was observed twice daily for viability and once daily for signs of toxicity. Body weights were recorded for each female at receipt; near the end of the quarantine period; on Days -7 and -1 (premating); on Days 0, 4, 8, 12, 16, and 20 of gestation; and on Days 0 and 4 of lactation. Food consumption was similarly measured beginning on Day -7. On Day 4 of lactation or on Gestation Day 25 for females that did not deliver a litter, each female was sacrificed and subjected to a gross necropsy including an examination of the uterine horns. The ovaries and uterine horns of each female were examined to determine the number of corpora lutea and implantation sites, respectively.

Each litter was observed daily during Days 0 (day of parturition) through 4 of lactation for signs of toxicity and mortality. Pups were examined daily for external abnormalities. On Days 0 and 4 of lactation, each pup was weighed and its sex was determined. Dead pups were removed, examined externally and discarded. On Day 4 of lactation, all surviving pups were examined externally, sacrificed and discarded.

Female body weight and food consumption data were analyzed by an appropriate one way analysis of variance and a test for ordered response in the dose groups. First, Bartlett's test was performed to determine if the dose groups had equal variance at the 1 percent level of significance. If the variances were equal, the testing was done using parametric methods, otherwise, nonparametric techniques were used.

For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett's test was used to determine which treatment groups differed significantly from control. In addition to the ANOVA, a standard regression analysis for linear response in the dose groups was performed. The regression also tested for linear lack of fit in the model.

For the nonparametric procedures, the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means were indicated, Dunn's Summed Rank test was used to determine which treatment groups differed significantly from control. In

5. Toxicity	ld Heavy fuel oil Date December 7, 2012
	addition to the Kruskal-Wallis test, Jonckheere's test for monotonic trend in the dose response was performed. The test for equal variance (Bartlett) was conducted at the 1% level of significance. All other tests were conducted at the 5% and 1% level of significance. For the number of implantation sites, gestation length, total number of pups per litter and number of live pups per litter, normal probability plots of the residuals and plots of residuals by treatment group were used to judge whether or not departure from the assumptions of normality and homogeneous variance were sufficient to invalidate the usual ANOVA analysis. If the usual analysis was invalid, a "weighted" General Linear Model (GLM) analysis was used, where the weights were proportional to the reciprocal of the variance. If the usual analysis was valid, the data were analyzed with a non-weighted GLM. All proportions (dead pups at Day 0, pup alterations at Day 0, male pups at Days 0 and 4, survival of pups at Day 4) were analyzed by the "weighted" GLM with the litter size as the "weights." Average live pup weight at Days 0 and 4 was analyzed by the "weighted" GLM, with litter size as the "weights" and as a covariate in the model. The assumption was made that these weights were proportional to the reciprocal of the variances.
Result	<ul><li>For all proportions and mean pup weight data, values were first derived within the litter, and group mean values were derived as a mean of the individual litter mean values.</li><li>No deaths occurred during the study.</li></ul>
	A higher incidence of vaginal discharge was noted during Days 13 through 22 of gestation for females in the 250 mg/kg dose group. There were no other clinical observations that were considered to be related to treatment with the test article.
	Body weights of females dosed at 250 mg/kg were significantly lower $(p<0.01)$ than those of the controls on Day -1 of the premating period. Body weights of pregnant females in the 250 mg/kg dose group were also significantly lower $(p<0.01)$ than those of the control females throughout most of gestation.
	Body weight changes for females dosed at 10 or 250 mg/kg were significantly lower ( $p$ <0.01) than those of controls between Days -7 and -1 of the premating period. Body weight changes for pregnant females in the 250 mg/kg dose group were also lower ( $p$ <0.01) than those of the control females between Gestation Days 0 to 4, 12 to 16, and 16 to 20.
	Absolute and relative food consumption for females in the 10 and 250 mg/kg dose groups were significantly lower (p<0.01) than controls during Days -7 to -1 of the premating period. At the 10 mg/kg dose level, absolute and relative food consumption for pregnant females was significantly lower (p<0.05) than that of the controls during Gestation Days 0 to 4; relative food consumption was also significantly lower (p<0.05) than that of controls during Gestation Days 0 to 4; relative food consumption by a low significantly lower (p<0.05) than that of controls during Gestation Days 4 to 8. Absolute food consumption for pregnant females in the 250 mg/kg dose group was significantly lower (p<0.01) than that of the control females throughout gestation; relative food consumption was significantly lower (p<0.05) than that of controls during Gestation Days 0 to 4, 4 to 8, 8 to 12, and 12 to 16.
	Decreased thymus size was noted at necropsy for all females in the 250 mg/kg dose group. There were no other necropsy findings that were considered to be related to the test article.
	None of the pregnant females dosed at 250.00 mg/kg delivered a litter (Pregnancy was confirmed through examination of the uterine horns at necropsy).

5. Toxicity	Id Heavy fuel oil
-	Date December 7, 2012
	There were no significant differences between the dose groups that delivered a litter and the control group with respect to gestation length, total and live pups delivered, external pup alterations, pup body weights, proportion of pups dead on Lactation Day 0, proportion of pups surviving to Lactation Day 4, or the proportion of males on Lactation Days 0 and 4. None of the dose groups exhibited a significant difference from the control group for number of implantation sites.
	There were no significant differences between the dose groups that delivered a litter and the control group with respect to gestation length, total and live pups delivered, external pup alterations, pup body weights, proportion of pups dead on Lactation Day 0, proportion of pups surviving to Lactation Day 4, or the proportion of males on Lactation Days 0 and 4. None of the dose groups exhibited a significant difference from the control group for number of implantation sites.
	The study directors considered the following signs of maternal toxicity to be related to administration of the test material: a higher incidence of vaginal discharge at a dose of 250 mg/kg; decreased body weights, body weight changes, and food consumption at doses of 10 and 250 mg/kg; and decreased thymus size at a dose of 250 mg/kg. Signs of developmental toxicity considered to be compound-related were limited to the 250 mg/kg dose group; none of the females in this dose level delivered a litter.
Reliability	<ul> <li>The study directors concluded the no-observable-adverse-effect levels (NOAEL) were 0.05 mg/kg for maternal toxicity and 10 mg/kg for signs of developmental toxicity.</li> <li>(1) valid without restriction</li> </ul>
-	(125)
Species Sex Strain Route of admin. Frequency of treatm. Duration of test Doses Control group Year GLP Test substance	<ul> <li>Rat</li> <li>Female</li> <li>Sprague-Dawley</li> <li>Dermal</li> <li>Daily</li> <li>Days 0-9 of gestation</li> <li>8, 30, 125 and 250 mg/kg/day</li> <li>Yes</li> <li>1987</li> <li>No data</li> <li>CAS RN 64741-81-7 Coker heavy Gas Oil,</li> </ul>
Method	: Presumed-pregnant rats were distributed into the following groups each of 10 animals:
	Prenatal groupsDose level (mg/kg/day)Days of administrationGroup 10 (sham control, remote)Group 20 (sham control, proximate)Group 38Group 430Group 5125Group 6250Group 7*12510 12
	Group 8*12510-12*Groups 7 and 8 were used for a bioavailability study. Results of this portion of the study are not included in this robust summary.
	The test material was applied daily to the shorn dorsal skin at the dose levels and days of gestation shown above.
	356 / 370

5. Toxicity	Id Heavy fuel oil Date December 7, 2012	
	Date       December 7, 2012         The rats were fitted with collars to prevent oral ingestion of the applied material.       Observations were made daily for clinical signs.         Body weights were recorded on days 3, 6, 10, 13, 16 and 20 of gestation.       Food consumption was also determined for gestation day intervals 0-3, 3-6, 6-10, 10-13, 13-16 and 16-20.         Each female rat was sacrificed on its 20th day of gestation. The thoracic and abdominal cavities and all organs were examined grossly. The thymus and liver of each animal in groups 1-7 were removed, weighed and preserved in fixative although these organs were not examined microscopically.         The ovaries and uterus of each rat were excised and examined grossly. The number of corpora lutea per ovary of each pregnant female was counted and recorded. The ovaries of non-pregnant females were examined and then discarded.         The weight of the intact uterus was recorded and the uterine contents were exposed and the number and location of implantations (early or late) and live and dead fetuses was recorded.         At necropsy, blood samples were taken from all animals and the following clinical chemical measurements/calculations were made.         Albumin       Iron         Albumin/globulin ratio       Lactate dehydrogenase         Albumin/globulin ratio       Lactate dehydrogenase         Alkaline phosphatase       Inorganic phosphorus	
	Akaine prospriataseInorganic prospriotsAspartate aminotransferasePotassiumBilirubin (total)SodiumCalciumSorbitol dehydrogenaseChlorideTotal proteinCholesterolTriglyceridesCreatinineUrea nitrogenGlobulinUric acid	
Result	<ul> <li>Fetal evaluations</li> <li>Each live fetus was identified as to sex, weighed and examined for external anomalies. Half the fetuses were preserved for examination of soft tissue abnormalities, the remainder being differentially stained for skeletal examination.</li> <li>Treatment-related clinical observations consisted of erythema, flaking, scabbing, edema, eschar and fissuring and the occurrence of a red vaginal discharge.</li> <li>Erythema and flaking was observed in all animals in all treatment groups. Scabbing occurred in fewer animals but nevertheless occurred in all treatment groups. Eschar and fissuring occurred in the highest two dose groups only.</li> <li>Vaginal bleeding was observed in all dose groups exposed to test material at doses of 30 mg/kg/day and higher. The incidences (incidence/group of</li> </ul>	
	10 animals) are shown below Dose (mg/kg) 0 Prox. 0. Rem. 8 30 125 250 Group	
	Dermal effectsErythema00101010Flaking00101010Scabs0035610Edema001434Eschar00027Fissuring000111	
	Non-dermal effects Red vaginal discharge 0 0 0 3 6 9 357 / 370	

There was a dose related decrease in mean body weight gains over the period day 0 to day 20. The authors determined the net body weight change from day 0 to day 20 by subtracting the gravid uterus weight from the body weight at day 20 and subtracting the day 0 body weight from this value. Thus, the net body weight change for each group was calculated as follows:

Dose group	Net body weight gain
Proximate control	77
Remote control	89.3
8 mg/kg	81.4
30 mg/kg	74.6
125 mg/kg	63.8*
250 mg/kg	33.2*

* significantly different from control.

Food consumption was slightly reduced in the groups exposed to test material at doses of 125 and 250 mg/kg/day.

At necropsy, the only treatment-related observation was an apparent reduction in thymus size which was noted at all treatment levels. Organ weight measurements, confirmed that thymus weights were reduced and in addition, liver weights were also increased. These changes, expressed as percentages of the value for the remote controls are summarized below.

Group	Absolute Thymus weight	Absolute Liver weight	Relative Liver <u>weight</u>
8 mg/kg	-1.5%	+3%	-2%
30 mg/kg	+8%	+3%	-4%
125 mg/kg	-26%*	+5%	-9%
250 mg/kg	-47%*	-8%	-5%

Clinical chemical values were affected only at the highest dose of 250 mg/kg as follows: Triglycerides decreased by 52% Albumin increased by 36%

A/G ratio increased by 33%

Inorganic phosphorus increased by 43%

Iron 2.5 times higher than control.

The only reproductive parameters adversely affected were: Number of dams with all resorptions: 50% at 250 mg/kg/day Number of resorptions: increased ≥125 mg/kg/day Litter size decreased ≥125 mg/kg/day Fetal body weights decreased ≥125 mg/kg/day Crown rump length reduced ≥125 mg/kg/day

Abnormal external development was observed in viable and non-viable fetuses exposed to test material at 125 and 250 mg/kg/day. The anomalies observed included reduced (shortened) lower jaw and edema. Visceral anomalies included displacement of esophagus from a left-sided to a right-sided position and distension of the ureturs. Malformations of the vertebral column were restricted to fetuses of dams exposed to the test material. Although there was a variety of skeletal malformations in the study, the degree of aberrant development observed was not as severe in the control groups as the groups exposed to test material.

The authors concluded that the NOAEL for maternal and fetal toxicity was 30 mg/kg/day.

- Reliability
- : (1) valid without restriction

358 / 370

5. Toxicity		Id Heavy fuel oil
		Date December 7, 2012
		(66)
Test substance	: Reformer residues	
Remark	: No data	
Test substance	: Heavy fuels	
Remark	: No data	

9. Refere	encesIdHeavy fuel oilDateDecember 7, 2012
(1)	(1) RR spreadsheet data
(2)	Anderson, J.W., J.M. Neff, B.A. Cox, H.E. Tatem, and G.M. Hightower (1974) Characteristics of dispersions and water-soluble extracts of crude oil and refined oils and their toxicity to estuarine crustaceans and fish. Marine Biology. 27:75-88.
(3)	API (1980) Acute toxicity tests API 78-6 #6 Heavy fuel oil (API gravity 11.7/2.7%S American Petroleum Institute Report 27-32814
(4)	API (1980) Acute toxicity tests API 78-7 #6 Heavy fuel oil (API gravity 17.1/0.8%S American Petroleum Institute Report 27-32774
(5)	API (1980) Acute toxicity tests API 78-8 #6 Heavy fuel oil (API gravity 23.1/0.2%S American Petroleum Institute Report 27-32816
(6)	API (1980) Acute toxicity tests API 79-2 #6 Heavy fuel oil (API gravity 5.2/1.2%S American Petroleum Institute Report 27-32813
(7)	API (1982) Acute toxicity studies catalytically cracked clarified oil Sample 81-15 American Petroleum Institute Med.Res.Publ. 30-31854
(8)	API (1983) 28-day dermal toxicity study in the rabbit catalytic cracked clarified oil API sample 81-15 American Petroleum Institute Med. Res. Publ. 30-32854
(9)	API (1984) Dermal sensitization study in guinea pigs closed patch technique Catalytic cracked clarified oil API sample 81-15 American Petroleum Institute Med. Res. Publ. 31-31417
(10)	API (1985) CHO/HGPRT Mammalian cell forward gene mutation assay of API 81-15 American Petroleum Institute HESD Publ. 32-3218
(11)	API (1985) Evaluation of the potential of RO-1, 81-15 and PS8-76D5-SAT to induce unscheduled DNA synthesis in primary rat hepatocyte cultures American Petroleum Institute Med. Res. Publ. 32-32407
(12)	API (1985) Evaluation of the potential of RO-1, 81-15, and PS8-76D-SAT to induce unscheduled DNA synthesis in the in vivo-in vitro hepatocyte DNA repair assay. American Petroleum Institute Med. Res. Publ. 32-32406

9. Referenc			Heavy fuel oil December 7, 2012
(13)	API (1985) In vivo sister chromatid exchange assay API 81-15, catalytically cracked clarified oil (CAS 64741-62-4) American Petroleum Institute HESD Publ. 32-32254		
(14)	API (1985) Mutagenicity evaluation studies in the rat bone marrow cytogenetic assay in the mouse lymphoma forward mutation assay catalytic cracked clarified oil API sample 81-15 American Petroleum Institute Med. Res. Publ. 32-30534		
(15)	API (1985) Sister chromatid exchange assay in Chinese Hamster Ovary (CHO) cells. Catalytic cracked clarified oil. API sample 81-15 CAS 64741-62-4 American Petroleum Institute Report No. 32-32750		
(16)	API (1985) Thirteen week dermal toxicity study of a petroleum derived hydrocarbon in rats (API 81-15) catalytically cracked clarified oil (CAS 64741-62-4) American Petroleum Institute Med. Res. Publ. 32-32753		
(17)	API (1986) Four-week dermal range-finding toxicity study in rats API 81-15, catalytically cracked clarified oil (CAS 64741-62-4) American Petroleum Institute HESD Publ. 33-30442		
(18)	API (1986) Morphological transformation of BALB/3T3 Mouse embryo cells API 81-15, Catalytically cracked clarified oil (CAS 64741-62-4) American Petroleum Institute HESD Publ. 33-32638		
(19)	API (1986) Salmonella/Mammalian-microsome plate incorporation mutagenicity assay (Ames test) American Petroleum Institute Med. Res. Publ. 33-30599		
(20)	API (1987) Comprehensive Analytical Analysis of API generic petroleum strea American Petroleum Institute, Washington, DC.	ims.	
(21)	API (1989) Lifetime dermal carcinogenesis/chronic toxicity screening bioassay C3H/HeJ mice (AP-135r) American Petroleum Institute HESD report No. 36-31364	∕ of re	finery streams in
(22)	API (2003) Test Plan for HPV Category: Kerosene/Jet Fuel. Submitted to the U. S. Environmental Protection Agency for the Hig (HPV) program. American Petroleum Institute, Washington, DC.	gh Pr	oduction Volume

9. Referen	ces		Heavy fuel oil December 7, 2012
(23)	API (2003) The Petroleum HPV Testing Group's Gas Oils Category HPV Te 16, 2003. EPA High Production Volume (HPV) Challenge Prog http://www.epa.gov/opptintr/chemrtk/viewsrch.htm		Posted December
(24)	Argus Research Laboratory (1992) Screening Test for Reproductive Toxicity of F-179 Administered Crl:CD®BR VAF/Plus® Male Rats Protocol 1001-002 Report No. ATX-91-0040 Argus Research Laboratory, Horsham, PA	Percut	aneously to
(25)	ASTM (1999) Standard Test Method for Pour Point of Petroleum Oils. ASTM West Conshohocken, PA.	D97, Vo	olume 05.01, ASTM,
(26)	Atkinson, R. (1990) Gas-phase tropospheric chemistry of organic compounds: a rev Atmos. Environ. 24A(1):1-41.	view.	
(27)	Bartha, R. and R.M. Atlas. (1977) The microbiology of aquatic oil spills. Adv. Appl. Microbiol. 22:225-266.		
(28)	Bingham, E., Trosset, R. P. and Warshawsky, D. (1980) Carcinogenic potential of petroleum hyrocarbons A critical review of the literature J. Env. Pathology and Toxicology, Vol 3, pp 483-563		
(29)	CONCAWE (1998) Heavy fuel oils Product dossier No. 98/109		
(30)	CONCAWE (2001) Environmental Classification of Petroleum Substances - Summa Report No. 01/54, CONCAWE, Brussels.	ary Data	and Rationale.
(31)	Connell, D.W., and G.J. Miller. (1980) Petroleum hydrocarbons in aquatic ecosystems - Behavior and concentrations: Part 1. In: Critical reviews in environmental cont CRC Press, Boca Raton, Florida. 104 pp.		
(32)	CONSCI, (1992) Certificate of Analysis No. 21012010 Consolidated Sciences Inc. Pasadena, Texas		
(33)	CONSCI, (1992) Certificate of Analysis No. 21012014 Consolidated Sciences Inc. Pasadena, Texas		
(34)	CONSCI, (1993) Certificate of Analysis No. 30330004 Consolidated Sciences Inc. Pasadena, Texas		
(35)	CONSCI, (1993) Certificate of Analysis No. 30330008 Consolidated Sciences Inc. Pasadena, Texas		
(36)	CONSCI, (1993) Certificate of Analysis No. 30330013 Consolidated Sciences Inc. Pasadena, Texas		

9. Referei	nces	Id Heavy fuel oil Date December 7, 2012
(37)	CONSCI, (1993) Certificate of Analysis No. 30330016 Consolidated Sciences Inc. Pasadena, Texas	
(38)	Cretney, W.J., C.S. Wong, D.R. Green, and C.A. Ba Long-term fate of a heavy fuel oil in a spill-contamina J. Fish. Res. Board Can. 35:521-527.	
(39)	Cruzan, G., Low, L. K., Cox, G. E., Meeks, J. R., Ma C. R., Craig, P. H., Singer, E. J. and Mehlman, M. A Systemic toxicity from subchronic dermal exposure, characterization, and dermal penetration of catalytic cracked clarified slurry oil Tox. and Ind. Health Vol 2, No. 4, pp 429-444	. (1986) chemical
(40)	Dutta, T.K., and S. Harayama (2000) Fate of crude oil by the combination of photooxidatio Environ. Sci. Technol. 34:1500-1505.	n and biodegradation.
(41)	ECB (2000) European Chemical Substances Information System Fuel Oils (CAS No. 64741-62-4). Web version URL:	
(42)	EPA (2001) EPI (Estimation Programs Interface) Suite, V3.10, S U.S. Environmental Protection Agency, Office of Pol Washington, DC.	
(43)	EPA, (2004) Substance registry system (SRS) Data base U.S. Environmental Protection Agency http://www.epa.gov/srs/index.htm	
(44)	European Chemicals Bureau (2000) European Chemical Substances Information System IUCLID Dataset, Residual Fuel Oils (CAS No. 64741 Web version URL: http://ecb.jrc.it/.	
(45)	Fasnacht, M.P. and N.V. Blough (2002) Aqueous photodegradation of polycyclic aromatic hy Environ. Sci. Technol. 36:4364-4369.	rdrocarbons.
(46)	Feuston, M. H., Low, L. K., Hamilton, C. E. and Mac Correlation of systemic and developmental toxicities chemical component classes of refinery streams. Fundamental and Applied Toxicolgy Vol 22 pp 622-	with
(47)	Garrett, R.M., Haith, C.E., Prince, R.C., and Pickerir Photooxidation of polycyclic aromatic hydrocarbons 21st Arctic and Marine Oil Spill Program. (AMOP) Technical Seminar. Environment Canada, (	in crude oils. In: Proceedings of the
(48)	Garrett, R.M., S.J. Rothenburger, and R.C. Prince. ( Biodegradation of fuel oil under laboratory and arctic Spill Sci. Technol. Bull. 8(3):297-302.	
(49)	Harris, J.C. (1982) Rate of Hydrolysis. In Handbook of Chemical Prope Lyman, Reehl and Rosenblatt, eds. McGraw-Hill Book Co., New York.	erty Estimation Methods.

9. Referen	ices	Id Heavy fuel oil
		Date December 7, 2012
(50)	Hoberman, A. M., Christian, M. S., Lovre,S., Roth, R. and Koschier, F. (1995) Developmental toxicity study of clarified slurry oil (CSO) in the rat. Fundamental and Apllied Toxicology, vol. 28, pp 34-40	d
(51)	IARC (1989) IARC Monographs on the evaluation of the carcinogenic of chemicals to humans. Volume 45: Occupational exposures in petroleum refining crude oil and major petroleum fuels. International Agency for Research on Cancer, Lyon, Fran	g;
(52)	Jezequel, R., L. Menot, FX. Merlin, and R.C. Prince. (20 Natural cleanup of heavy fuel oil on rocks: an in situ expe Mar. Pollut. Bull. 46:983-990.	
(53)	Jokuty, P., S. Whiticar, Z. Wang, M. Fingas, B. Fieldhous (2002) Properties of Crude Oils and Oil Products. Environmental Protection Service, Environment Canada, Internet Version 2002, URL: http://www.etcentre.org/spills	Ottawa, Ontario.
(54)	Keizer, P.D., T.P. Ahern, J. Dale, and J.H. Vandermeuler Residues of Bunker C oil in Chedabucto Bay, Nova Scot J. Fish. Res. Board Can. 35:528-535.	
(55)	Leahy, J.G., And R.R. Colwell. (1990) Microbial degradation of hydrocarbons in the environmen Microbiol. Rev. 54:305-315.	t.
(56)	Lee, K., R.C. Prince, C.W. Greer, K.G. Doe, J.E.H. Wilso Wohlgeschaffen, D. Alroumi, T. King, and G.H. Tremblay Composition and toxicity of residual Bunker C fuel oil in in Spill Sci. Technol. Bull. 8(2):187-199.	. (2003)
(57)	Mackay, D. (1991) Multimedia Environmental Models: The Fugacity Approa Raton, Florida.	ch. Lewis Publ. CRC Press, Boca
(58)	MacLean, M.M. and K.G. Doe (1989) The comparative toxicity of crude and refined oils to Dap Manuscript Report EE-111, Environment Canada, Ottawa, On. 72 pp.	hnia magna and Artemia.
(59)	Mc Kee, R.H., Nicolich, M.J., Scala, R. A., Lewis, S.C. e Estimation of epidermal carcinogenic potency. Fundamental and Applied Toxicology, vol. 15, pp 320-32	
(60)	Mobil (1985) A modified ames pre-incubation mutagenesis assay for determination od specific mutagenicity of the DMSO extra of heavy vacuum gas oil. Study No. 52261 Mobil Environmental and Health Science Laboratory	act
(61)	Mobil (1985) Thirteen-week dermal administration of Paulsboro Heavy Study No. 50391 Mobil Environmental and Health Sciences Laboratory	coker gas oil to rats

9. Refer	encesIdHeavy fuel oilDateDecember 7, 2013
(62)	Mobil (1985) Thirteen-week toxicity study by dermal application of clarified slurry oil (CSO) to rats Study No. 20525 Mobil Environmental and Health Science Laboratory
(63)	Mobil (1987) A Static 48-hour Acute Toxicity Study of Process Oil to Daphnia magna. Mobil Environmental and Health Science Laboratory. Pennington, NJ. 1987.
(64)	Mobil (1987) A Static 96-hour Acute Toxicity Study of Process Oil to Bluegill Sunfish. Mobil Environmental and Health Science Laboratory. Pennington, NJ. 1987.
(65)	Mobil (1987) A Static 96-hour Acute Toxicity Study of Process Oil to Selenastrum capricornutum. Mobil Environmental and Health Science Laboratory. Pennington, NJ. 1987.
(66)	Mobil (1987) Developmental toxicity screen in rat exposed dermally to Heavy coker gas oil-2 Report of study No. 50431 Mobil environmental and health science laboratory
(67)	Mobil (1987) Metaphase analysis of chinese hamster ovary (CHO) cells treated in vitro with a DMSO extract of heavy vacuum gas oil (a screening assay) Study No. 52262 Mobil Environmental and Health Science laboratory. [Cited in CONCAWE (2000) IUCLID data set]
(68)	Mobil (1987) Micronucleus assay of bone marrow red blood cells from rats treated via dermal administration of heavy vacuum gas oil Study No. 61591 Mobil Environmental and Health Science Laboratory
(69)	Mobil (1988) Consolidated acute test report on heavy vacuum gas oil MEHSL Study Nos. 62443, 62444, 62445 Mobil Environmental and Health Science Laboratory
(70)	Mobil (1988) Consolidated acute test report on V/breaker HGO MEHSL study Nos. 62496, 62497, 62498, 62499 Mobil Environmental and Health Science Laboratory
(71)	Mobil (1988) Consolidated acute test report on vis gas oil VIBRA MEHSL study Nos. 62500, 62501, 62502, 62503 Mobil Environmental and Health Science Laboratory
(72)	Mobil (1988) Thirteen-week dermal administration of heavy vacuum gas oil to rats Study No. 61590 Mobil Environmental and Health Science Laboratory.

9. Referenc	ces		Heavy fuel oil December 7, 2012
(73)	Mobil (1988) Thirteen-week dermal administration of syntower bottoms to rats Study No. 62710 Mobil Environmental and Health Sciences Laboratory		
(74)	Mobil (1991) Developmental toxicity study in rats exposed dermally to heavy atmospheric gas oil. Study No. 64146 Mobil Environmental and Health Science Laboratory, Princeton.		
(75)	Mobil (1992) Consolidated acute test report on V.B. Mittelol MEHSL study Nos. 64635, 64636, 64637, 64638 Mobil Environmental and Health Science Laboratory		
(76)	Mobil (1992) Thirteen-week dermal administration of visbreaker gas oil to rats Study No. 63237 Mobil environmental and health sciences laboratory.		
(77)	Mobil (1992) Thirteen-week dermal administration of heavy atmospheric gas oil to rats. Study No. 63456 Mobil Oil Corporation Environmental and Health Sciences Laboratory, Princeton, New Jersey.		
(78)	Mobil (1994) Thirteen-week dermal administration of Joliet heavy coker gas oil to rats Study No. 64165 Mobil Environmetal and Health Science Laboratory		
(79)	Mobil (1995) Thirteen-week dermal administration of Torrance heavy coker gas Study No. 64184 Mobil Environmental and Health Sciences Laboratory	s oil to	rats - 3
(80)	Mobil (undated) Developmental toxicity screen in rats exposed dermally to heavy vacuum gas oil (HVGO) Study No. 61801 Final report		
(81)	Mobil Oil Corporation (1993) Material Safety Data Bulletin No. 220012-00. [as cited in ECB, 2000]		
(82)	Mulkins-Phillips, G.J., and J.E. Stewart. (1974) Effect of environmental parameters on bacterial degradation of Bu hydrocarbons. App. Microbiol. 28(6):915-922.	unker	C oil, crude oils and
(83)	NIPER, (1993) Analyses of ARCO petroleum stream samples National Institute for Petroleum and Energy Research, Bartlesville	e, Okla	homa
(84)	OECD (1989) Guideline No. 117: Partition Coefficient (n-octanol/water): High per chromatography (HPLC) method, adopted 30 March 1989. In, OECD Guideline for Testing of Chemicals Organization for Economic Cooperation and Development, Paris.		ance liquid

9. Refere	ences	Id Heavy fuel oil Date December 7, 2012		
(85)	OECD (1995) Guideline No. 107: Partition Coefficient (n-octanol/wat July 1995. In, OECD Guideline for Testing of Chemicals, Organization for Economic Cooperation and Developn			
(86)	Potter, T.L. and K.E. Simmons (1998) Total petroleum hydrocarbon criteria working group se petroleum mixtures. Amherst Scientific Publishers, Amherst, Massachusett			
(87)	Prince, R.C. (2002) Petroleum and other hydrocarbons, biodegradation of Environmental Microbiology. John Wiley & Sons, New York, pp. 2402-2416.	. In: Bitton, G. (ed.), Encyclopedia of		
(88)	Prince, R.C., R.M. Garrett, R.E. Bare, M.J. Grossman, E.H. Owens, G.A. Sergy, J.F. Braddock, J.E. Lindstron The roles of photooxidation and biodegradation in long fuel oils. Spill Sci. Technol. Bull. 8(2):145-156.	m, and R.R. Lessard (2003)		
(89)	Quann, R.J. and S.B. Jaffe (1992) Structure-oriented lumping: Describing the chemistry Ind. Eng. Chem. Res. 31(11):2483-2497.	of comples hydrocarbon mixtures.		
(90)	Rashid, M.A. (1974) Degradation of Bunker C oil under different coastal er Scotia. Est. and Coastal Mar. Sci. 2:137-144.	vironments of Chedabucto Bay, Nova		
(91)	Richmond, S.A., J.E. Lindstrom, and J.F. Braddock. ( Effects of chitin on microbial emulsification, mineraliza C fuel oil. Mar. Poll. Bull. 42(9):773-779.			
(92)	Saeger, R.B. and S.B. Jaffe (2002) Petroleum stream compositional modeling for the petr ExxonMobil Process Research Laboratories, Paulsbor			
(93)	Shell (1997) Heavy fuel oil: Acute toxicity of water accomodated fra Report No. OP.97.47002. Shell Research and Technology Centre, Thornton.	actions to Daphnia magna.		
(94)	Shell (1997) Heavy fuel oil: Acute toxicity of water accomodated fra Report No. OP.97.47002. Shell Research and Technology Centre, Thornton.	actions to Raphidocelis subcapitata.		
(95)	Shell (1997) Light fuel oil: Acute toxicity of water accomodated frac Report No. OP.97.47001. Shell Research and Technology Centre, Thornton.	ctions to Daphnia magna.		
(96)	Shell (1997) Light fuel oil: Acute toxicity of water accomodated frac Report OP.97.47001. Shell Research and Technology Centre, Thornton.	ctions to Oncorhynchus mykiss.		

9. Referen	Ces	Id Heavy fuel oil Date December 7, 2012
(97)	Shell (1997) Light fuel oil: Acute toxicity of water accomodated Report No. OP.97.47001. Shell Research and Technology Centre, Thornton	
(98)	Shell (1997) Heavy fuel oil: Acute toxicity of water accomodate Report No. OP.97.47002. Shell Research and Technology Centre, Thornton	
(99)	Shiu, W.Y., M. Bobra, A.M. Bobra, A. Maijanen, L. The water solubility of crude oils and petroleum p	
(100)	Sinclair Oil Corporation. Material Safety Data Sheet, Residual Fuel Oil, Va Salt Lake City, Utah.	cuum Tower Bottoms.
(101)	Smith, W.E., Sunderland, D.A., Sugiura, K. (1951) Experimental analysis of the carcinogenic activity Arch Ind Hyg Occup Med 4: 299-314	
(102)	Suntio, I., W.Y. Shiu, and D. Mackay (1986) Analyses of water soluble fractions of crude oils a of selected oils in water, Contract No. 0164, Environment Canada, Ottawa, On. [as cited in Jol	
(103)	Texaco Fuel and Marine Marketing (2001) Material Safety Data Sheet, 29068 Fuel Heavy 38	0 CST. Houston, Texas.
(104)	Total UK Limited (2003) Material Safety Data Sheet, residual fuel oils. Watford, Herts, United Kingdom.	
(105)	U.S. EPA (2000) Estimation programs interface (EPI) Suite, Version Agency, Washington, DC.	n 3.10. U.S. Environmental Protection
(106)	UBTL (1986) (ARCO Study) Dermal sensitization study in guinea pigs administ Report No. ATX-85-0158 Utah Biomedical Testing Laboratory Inc. Salt Lake	-
(107)	UBTL (1987) (ARCO Study) 28 day dermal toxicity study in rats on Watson Hea Report No. ATX-86-0008 Utah Biomedical Test Laboratory, Inc., Salt Lake (	
(108)	UBTL (1988) (ARCO Study) Acute oral toxicity study in rats administered F-97 Report No. ATX-88-0086, study No. 64707 UBTL Inc. Salt Lake City, UT	-01
(109)	UBTL (1989) (ARCO Study) Acute dermal toxicity study (limit test) in rabbits ac Study No. 64834. Report No. ATX-88-0087 Utah Biomedical Test Laboratory Inc. Salt Lake C	

9. Referen	ices	Id Heavy fuel oil Date December 7, 2012
(110)	UBTL (1989) (ARCO Study) Dermal sensitization study in guinea pigs adr gas oil) Study No. 64838. Report No. ATX-88-0090 Utah Biomedical Test Laboratory, Inc., Salt L	
(111)	UBTL (1989) (ARCO Study) Dermal sensitization study in guinea pigs adr bottoms) Study No. 65066. Report No. ATX-88-0097 Utah Biomedical Test Laboratory, Inc., Salt L	
(112)	UBTL (1989) (ARCO Study) Primary dermal irritation study in rabbits admi oil) Study No. 64782. Report No. ATX-88-0089 Utah Biomedical Test Laboratory, Inc., Salt L	nistered test article F-97-01 (Coker heavy gas ake City UT
(113)	UBTL (1989) (ARCO Study) Primary dermal irritation study in rabbits admi bottoms) Study No. 65054. Report No. ATX-88-0096 Utah Biomedical Test Laboratory, Inc., Salt L	
(114)	UBTL (1989) (ARCO Study) Primary eye irritation study in rabbits adminis oil) Study No. 64831. Report No. ATX-88-0088 Utah Biomedical Test Laboratory, Inc., Salt L	
(115)	UBTL (1989) (ARCO Study) Primary eye irritation study in rabbits adminis bottoms) Study No. 65042. Report No. ATX-88-0095 Utah Biomedical Test Laboratory, Inc., Salt L	
(116)	UBTL (1990) (ARCO Study) 28 day dermal toxicity study in rats Report No. ATX-90-0066 Utah Biomedical Test Laboratory Inc. Salt La	ke City. UT
(117)	UBTL (1990) (ARCO Study) Acute oral toxicity study in rats administered Report No. ATX-90-0059 Utah Biomedical Test Laboratory, Salt Lake (	
(118)	UBTL (1990) (ARCO Study) Dermal sensitization study in albino guinea pi Vacuum Gas Oil) Study No. 65303. Report No. ATX-89-0035 Utah Biomedical Test Laboratory, Inc., Salt L	
(119)	UBTL (1991) (ARCO Study) Primary eye irritation study in rabbits adminis bottoms) Study No. 65833. Report No. ATX-90-0061 Utah Biomedical Test Laboratory, Inc., Salt L	

9. Reference			Heavy fuel oil December 7, 2012
(120)	UBTL (1992) (ARCO Study) Acute dermal toxicity study (limit test) in rabbits administered test art Study No. 65989. Report No. ATX-90-0092 Utah Biomedical Test Laboratory Inc. Salt Lake City, UT	ticle	F-136.
(121)	UBTL (1992) (ARCO Study) Acute dermal toxicity study in rabbits administered test article F-132 Study No. 65893. Report No. ATX-90-0060 Utah Biomedical Test Laboratory Inc. Salt Lake City, UT	2.	
(122)	UBTL (1992) (ARCO Study) Dermal sensitization study in guinea pigs administered test article Fe tower bottoms) Study No. 65849. Report No. ATX-90-0063 Utah Biomedical Test Laboratory, Inc., Salt Lake City UT	-132	2 (Atmospheric
(123)	UBTL (1992) (ARCO Study) Primary dermal irritation study in rabbits administered test article F- bottoms) Study No. 65841. Report No. ATX-90-0062 Utah Biomedical Test Laboratory, Inc., Salt Lake City UT	132	(Atmospheric tower
(124)	UBTL (1994) (ARCO Study) A developmental toxicity screen in female rats administered F-228 c gestation days 0 to 20 Study No. 66479. Report No. ATX-91-0267 Utah Biomedical Test Laboratory, Inc., Salt Lake City UT	derm	ally during
(125)	UBTL (1994) (ARCO Study) A developmental toxicity screen in female Sprague-Dawley rats adm dermally during gestation days -7 to 20 Study No. 66349. Report No. ATX-91-0155 Utah Biomedical Test Laboratory, Inc., Salt Lake City UT	ninis	tered F-179
(126)	Vandermeulen, J. H., Foda, A and Stuttard, C. (1985) Toxicity vs mutagenicity of some crude oils, distillates and their wate Water Res. Vol 19, pp 1283-1289	er so	luble fractions.
(127)	Walker, J.D., L. Petrakis, and R.R. Colwell. (1976) Comparison of th crude and fuel oils. Can. J. Microbiol. 22:598-602.	ie bi	odegradability of