APPENDIX D CPT Logs

6105 Rookin Houston, TX 77074 Phone : 713-778-5580 Fax : 713-778-5501

December 5, 1997 Report Number: 0301-7257

Baker Environmental AOP # 3 420 Brauser Rd. Corapolis, PA 15108

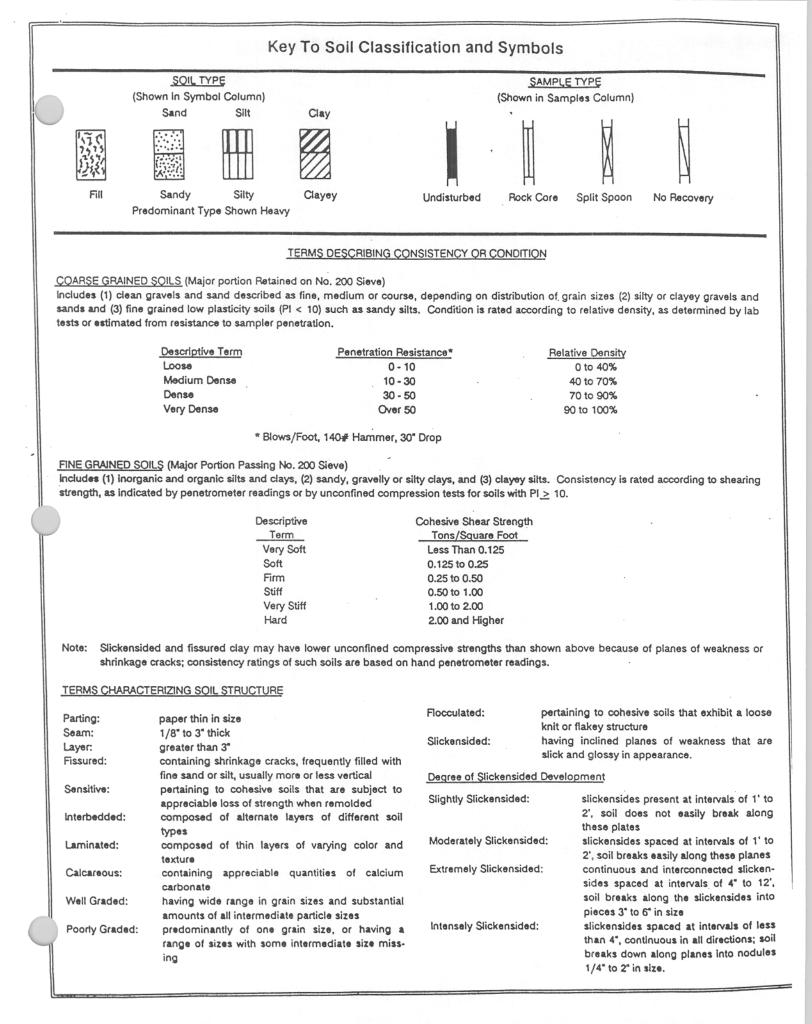
Attention: Mr. John Andy

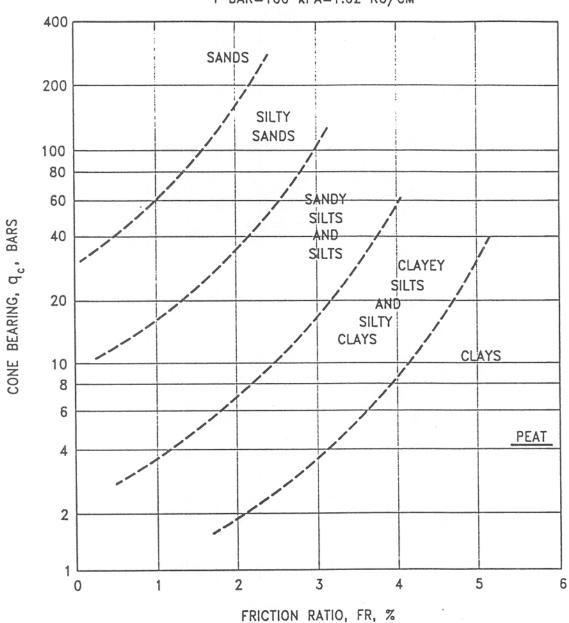
REPORT FOR CONE PENETRATION TESTING AND RELATED SERVICES CAMP LEJEUNE, NORTH CAROLINA

Dear Mr. Andy:

Please find enclosed herewith the final results of the cone penetrometer tests conducted at the above referenced location.

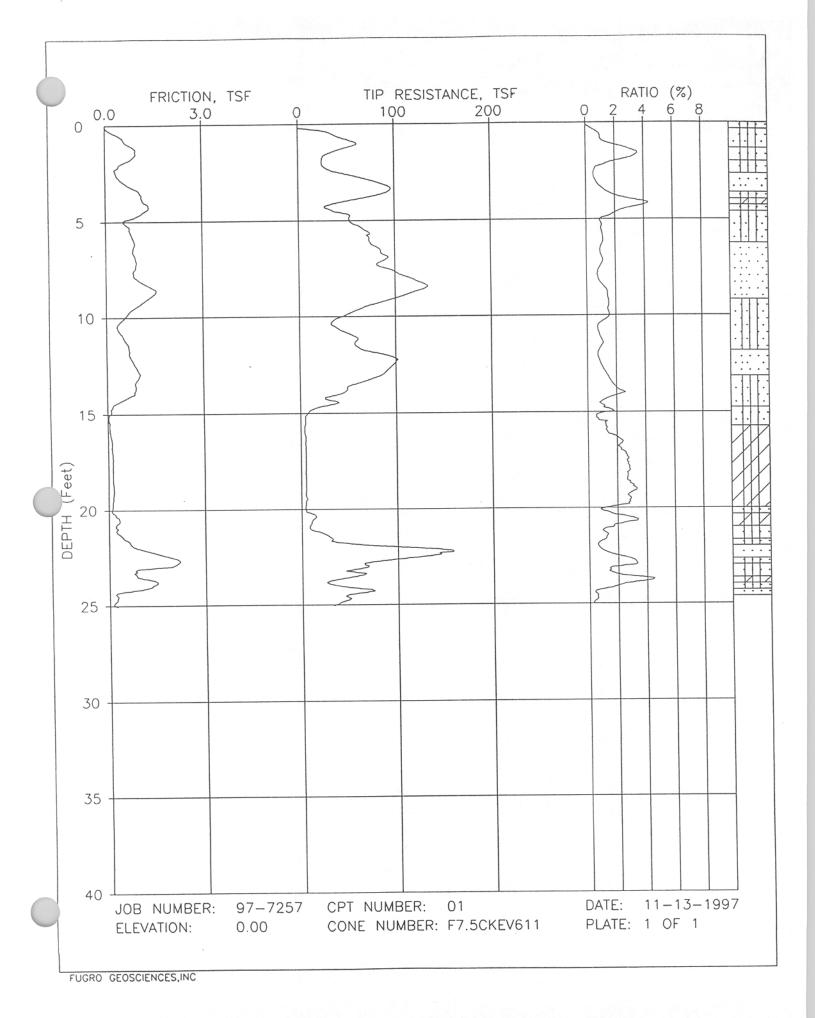
For your information, the soil stratigraphy was identified using Campanella and Robertson's Simplified Soil Behavior Chart. Please note that because of the empirical nature of the soil behavior chart, the soil identification should be verified locally.

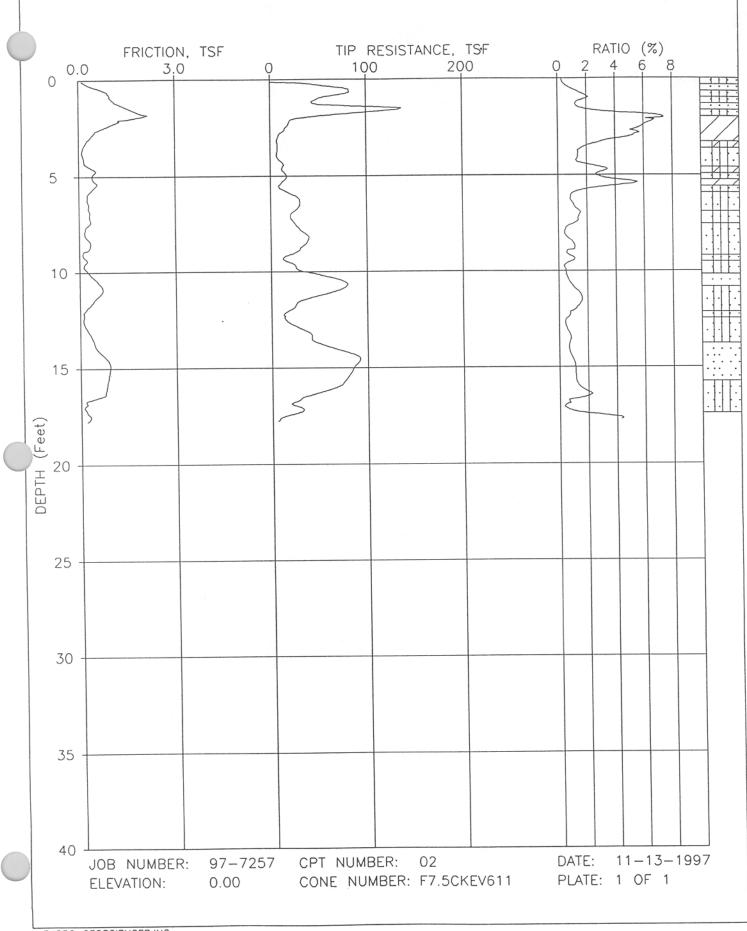

Fugro Geosciences appreciates the opportunity to be of service to your organization. If you should have any questions, or if we can be of further assistance, please do not hesitate to contact us. We look forward to working with you in the future.

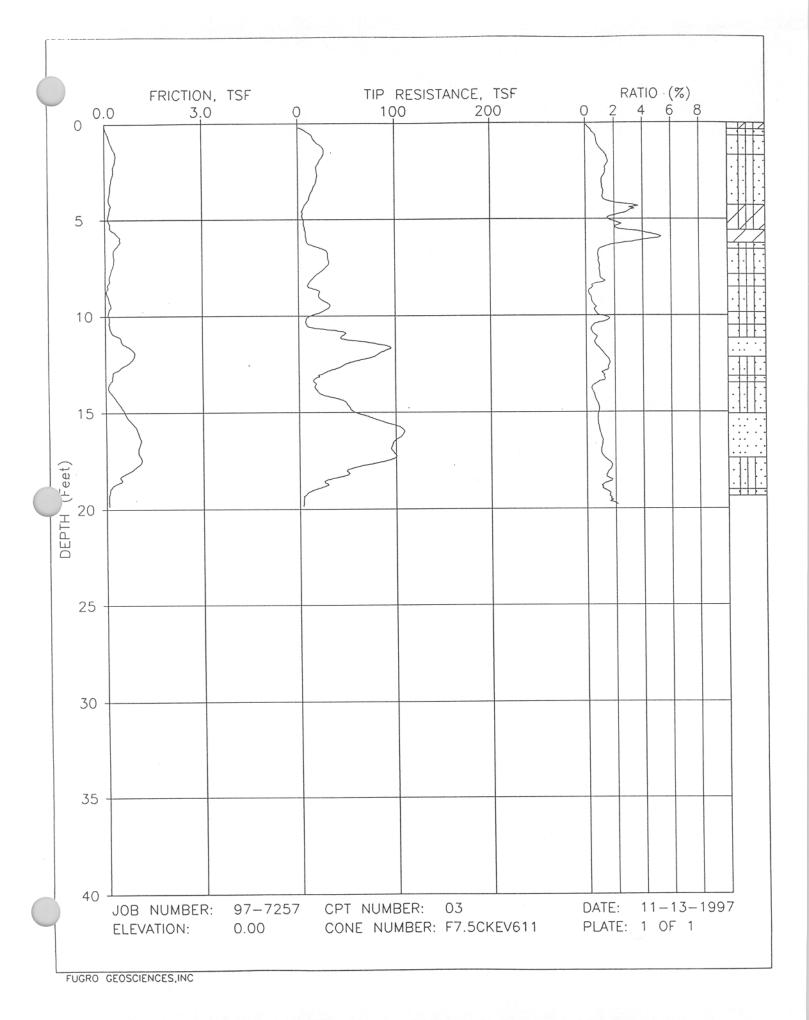

Very truly yours, FUGRO GEOSCIENCES, INC.

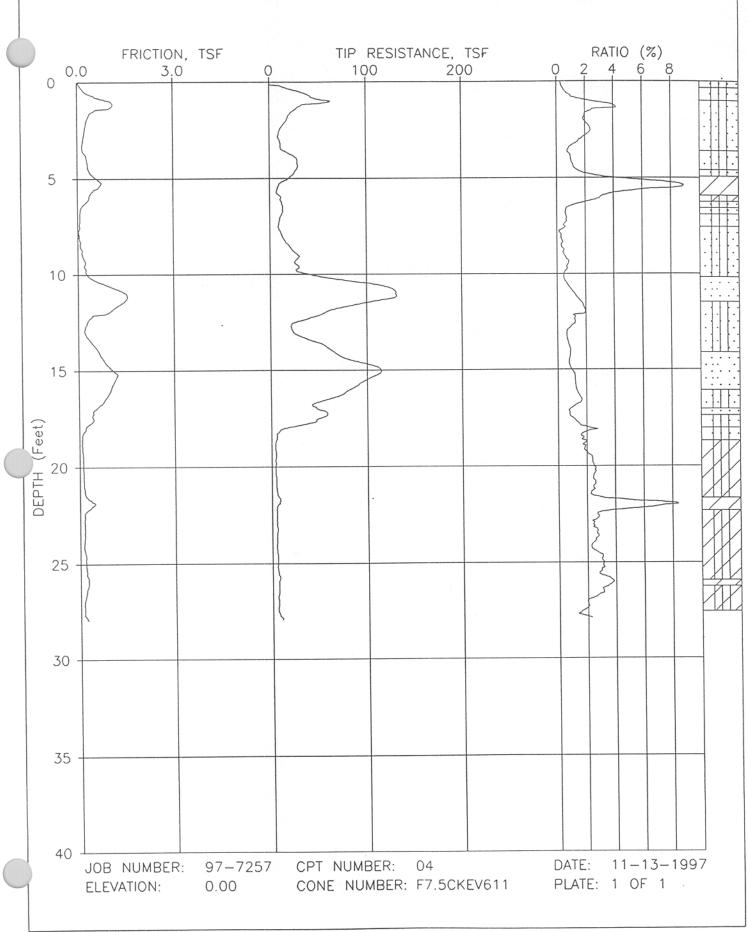
7 J. Des

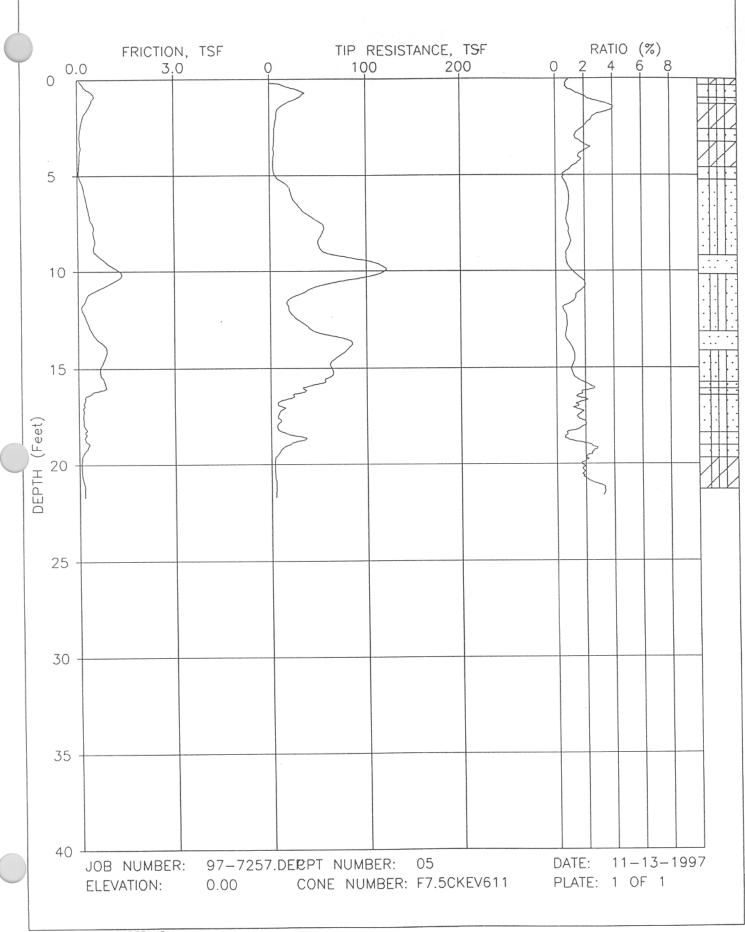
Jeffery L. Ness General Manager CPT Operations

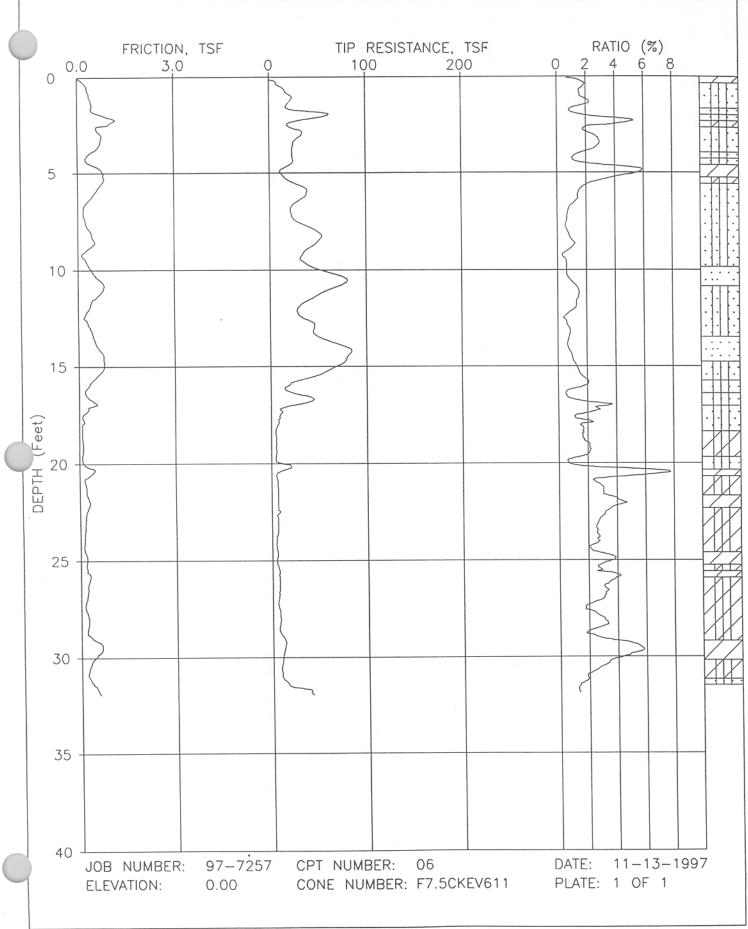

JLN/mw

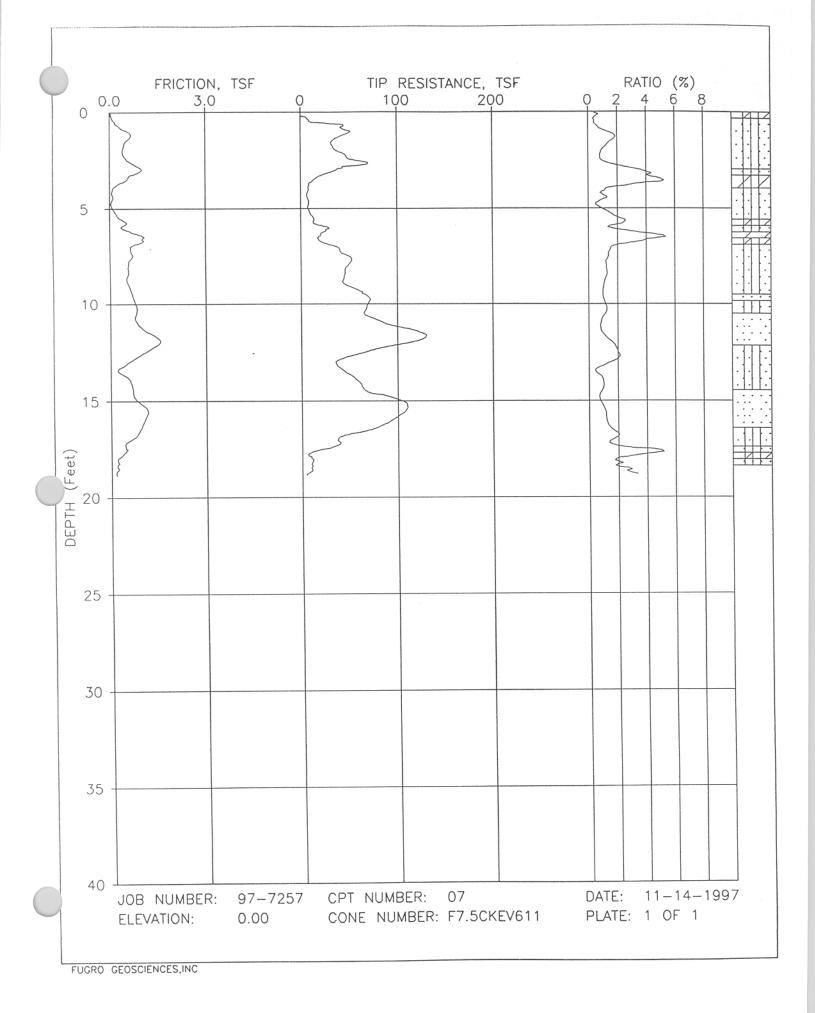


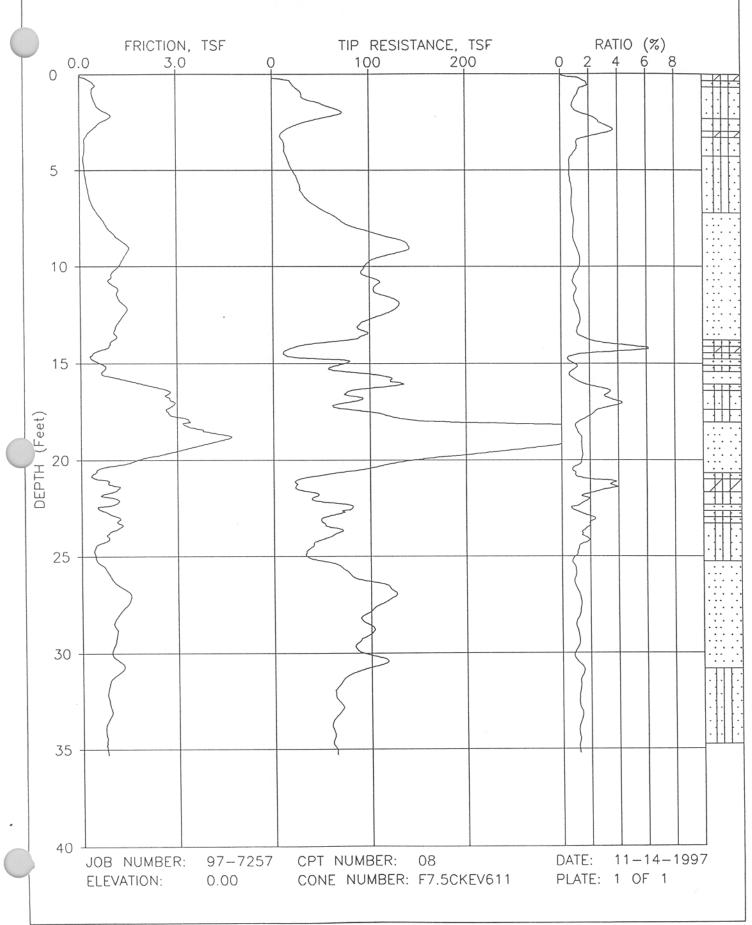


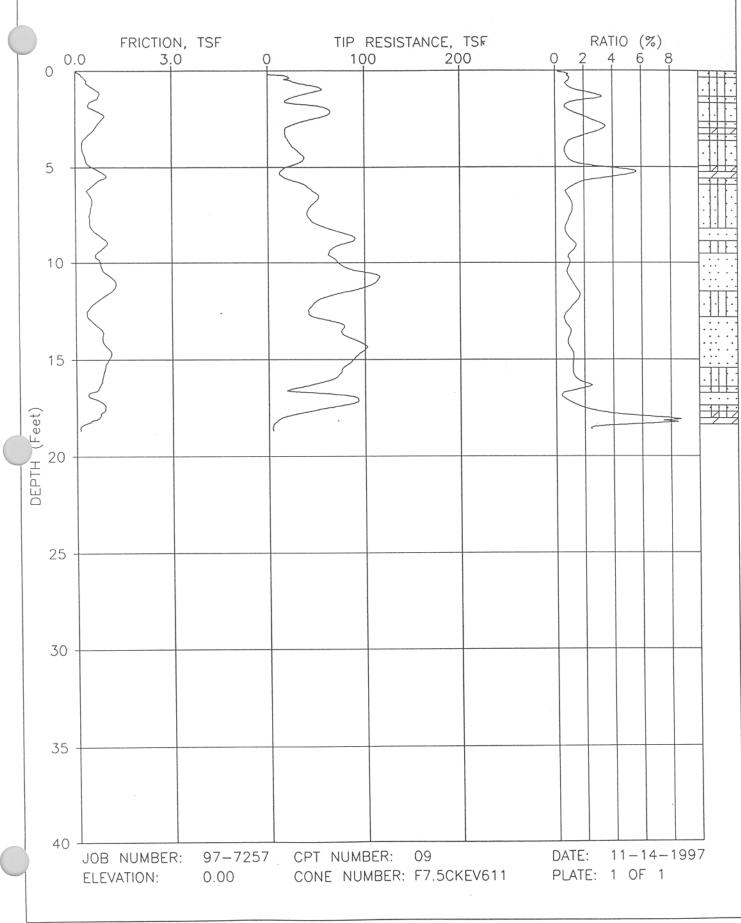

1 BAR=100 kPA=1.02 KG/CM²

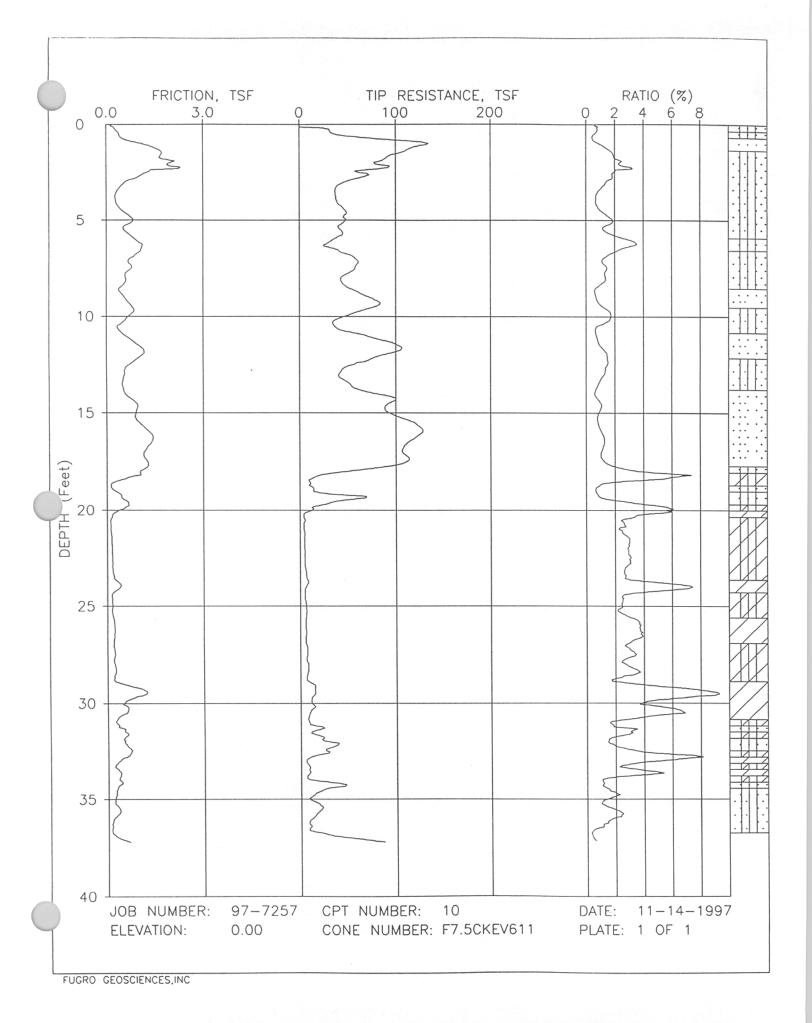

CAMPANELLA AND ROBERTSON CLASSIFICATION CHART (1983)

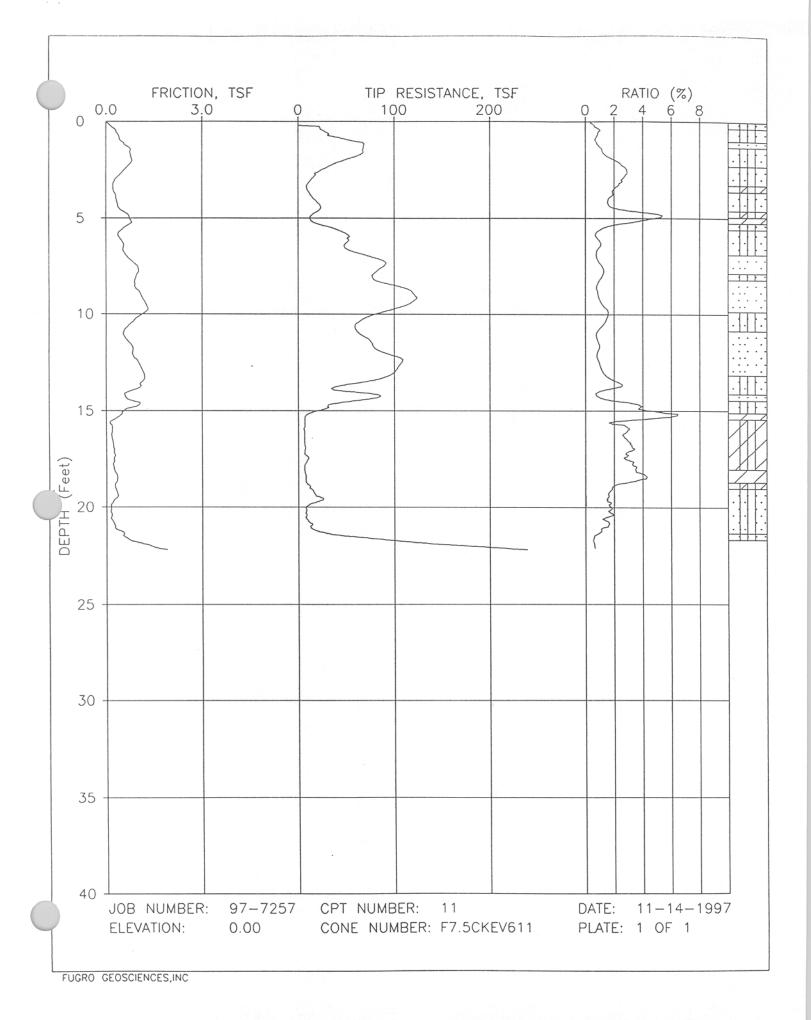


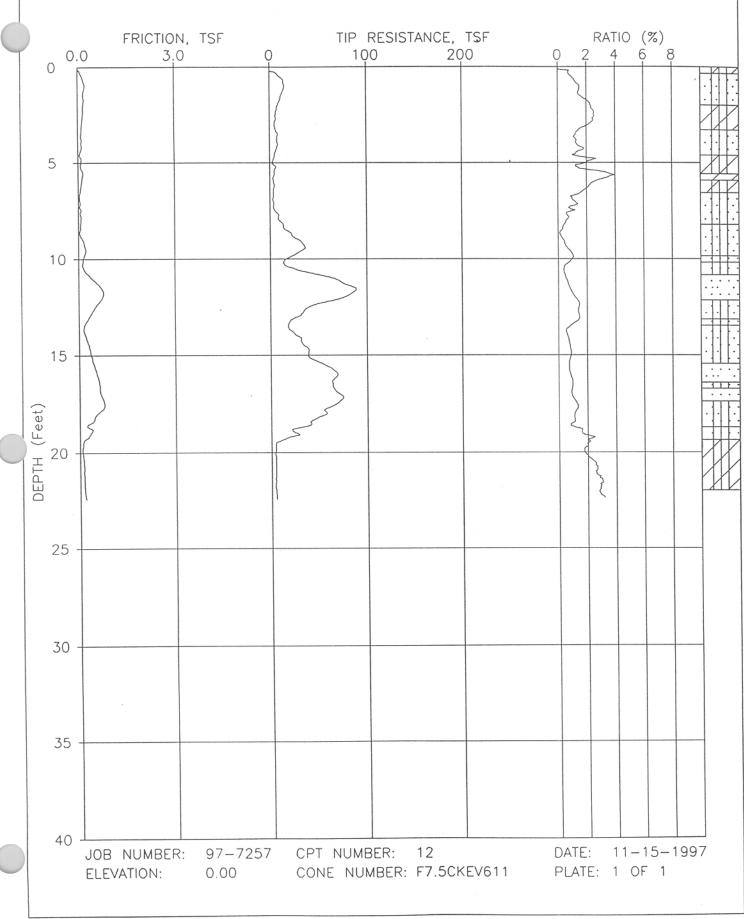












APPENDIX E Non-VOC Analyses (Soil Moisture, f_{oc}, XRD)

Major Ion Analyses (Ground Water And Source Water)

Ground-Water VOC Analyses

						4221 Freidrich Lane, Suite 190, Aus & 9320 Up River Road, Corpus Chr (512) 444-5896 • FAX (512) 447-4766					
Client: Duke Engineering & Services Attn: Fred Holzmer Address:9111 Research Blvd Austin, Tx 787 Phone: 425-2000 FAX:425-2099					Proje Samp Samp Date	ert #/Lab ID#:8 ect ID: MCB Car ole Name: IS26- le Matrix: soil Received: 12/5/9 Sampled: 11/21	7533 Report Date: 12/9/97 np Lejeune 04 97 Time: 16:30:00				
REPORT OF ANALYSIS	1					OI	JALITY ASSURANCE DATA ¹				
Parameter	Result	Units	RQL ⁵	Blank	Date		Prec. ² Recov. ³ CCV ⁴ LCS ⁴				
Total organic carbon (f_{oc})	1510	mg/Kg	200	<200	12/9/97	ASA 29-3.5.2	11.34 119.62 111.25 111.24				
	QUESCL						11.54 119.02 111.25 111.24				

@ 16.5 ft in f. SAND

Inc.'s Quality Assurance/Quality Control Program.© Copyright 1996 AnalySys, Inc., Austin, Texas. All rights reserved. No part of this publication may be reproduced or transmit- ted in any form or by any means without the express written permission of AnalySys, Inc Respectfully Submitted,	 Quality assurance data reported is for the lot analyzed which included this sample. Precision (Prec.) is the absolute value of the relative percent (%) difference between duplicate measurements. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. Calibration Verification (CCV) and Lab Control Sample (LCS) results expressed as the percent (%) recovery of analyte from a known standard. Reporting Quantitation Limit. The Practical Quantitation Limit (PQL) or the Method Detection Limit (MDL) reported for the analyte. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits, adjusted for any required dilution.
	in , and and the any required dilution.

Page#: 1

			0		4221 Freidrich Lane, Suite 190, Aus & 9320 Up River Road, Corpus Christra 78744 (512) 444-5896 • FAX (512) 447-4766				
Client:Duke Engineering & ServicesAttn:Fred HolzmerAddress:9111 Research BlvdAustin,TxThe Table Ta	58				Proje Samp Samp Date	rt #/Lab ID#:87534 ct ID: MCB Camp Lej le Name: IS26-05 le Matrix: soil Received: 12/5/97 Sampled: 11/21/97	Report Date: 12/9/97 jeune Time: 16:30:00 Time: 00:00:00		
REPORT OF ANALYSIS Parameter						<u>OUALI</u>	TY ASSURANCE DATA ¹		
T at affecter	Result	Units	ROL ⁵	Blank	Date	Method Dro	2 Deces 3 COVIDE FRI		

Date Method Prec.² Recov.3 CCV⁴ LCS⁴ Total organic carbon 5560 mg/Kg OC 400 <200 12/9/97 ASA 29-3.5.2 11.34 119.62 111.25

@ 18.0ft in cl-SILT

This analytical report respectfully submitted by AnalySys, Inc. The enclosed results have been 1. Quality assurance data reported is for the lot analyzed which included this sample. reviewed and to the best of my knowledge the analytical results are consistent with AnalySys, 2. Precision (Prec.) is the absolute value of the relative percent (%) difference between Inc.'s Quality Assurance/Quality Control Program.@ Copyright 1996 AnalySys, Inc., Austin, duplicate measurements. Texas. All rights reserved. No part of this publication may be reproduced or transmit- ted in 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. any form or by any means without the express written permission of AnalySys, Inc.. 4. Calibration Verification (CCV) and Lab Control Sample (LCS) results expressed as the percent (%) recovery of analyte from a known standard. Respectfully Submitted. 5. Reporting Quantitation Limit. The Practical Quantitation Limit (PQL) or the fins Hade

Hopkins Haden

Method Detection Limit (MDL) reported for the analyte.

6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits, adjusted for any required dilution.

Page#:1

<u></u>	YC	YS
		ΙΠς.

4221 Freidrich Lane, Suite 190, Aust TX 78744 & 9320 Up River Road, Corpus Chri CX 78409 (512) 444-5896 • FAX (512) 447-4760

Client:	Duke Enginee	ring & Ser	vices							
Attn:	Fred Holzmer									
Address: 9111 Research Blvd										
	Austin,		Tx	78758						
Phone:	425-2000	FAX	:425	-2099						

Project ID: MCB Camp LejeuneSample Name: IS26-06Sample Matrix: soilDate Received: 12/5/97Date Sampled: 11/21/97Time: 00:00:00

Report #/Lab ID#:87535

REPORT OF ANALYSIS

QUALITY ASSURANCE DATA¹

Report Date: 12/9/97

Parameter	Result	Units	RQL ⁵	Blank	Date	Method	Prec. ²	Recov.3	CCV ⁴	LCS ⁴
Total organic carbon (f_{oc})	6420	mg/Kg	400	<200	12/9/97	ASA 29-3.5.2	11.34	119.62	111.25	111.24

@ 19.0 ft in Si-CLAY

This analytical report respectfully submitted by AnalySys, Inc. The enclosed results have been 1. Quality assurance data reported is for the lot analyzed which included this sample. reviewed and to the best of my knowledge the analytical results are consistent with AnalySys, 2. Precision (Prec.) is the absolute value of the relative percent (%) difference between Inc.'s Quality Assurance/Quality Control Program.@ Copyright 1996 AnalySys, Inc., Austin, duplicate measurements. Texas. All rights reserved. No part of this publication may be reproduced or transmit- ted in 3. Recovery (Recov.) is the percent (%) of analyte recovered from a spiked sample. any form or by any means without the express written permission of AnalySys, Inc.. 4. Calibration Verification (CCV) and Lab Control Sample (LCS) results expressed as the percent (%) recovery of analyte from a known standard. Respectfully Submitted, 5. Reporting Quantitation Limit. The Practical Quantitation Limit (PQL) or the Jolins Hades Method Detection Limit (MDL) reported for the analyte. 6. Method numbers typically denote USEPA procedures. Less than ("<") values reflect Hopkins Haden nominal quantitation limits, adjusted for any required dilution.

Page#:1

X-RAY DIFFRACTION MINERAL PERCENTAGES

Project Name: MCB Camp Lejeune

				E	BULK M	IETHO	C					CLAY N	ЛЕТНО	D		
Sample ID	Qtz (%)	Feld (%)	Cal (%)	Dol (%)	Sid (%)	Pyr (%)	Bar (%)		Total Bulk (%)	Kao (%)	III (%)	Chl (%)	Sme (%)	EML	Total Clay (%)	Total (%)
IS25-05 IS25-06	81 85	11 2	*	*	*	1 4	*		93 91	3 4	2 2	1 1	1 2	*	7 9	100 100

* Denotes a trace percentage

Qtz	=	Quartz, SiO ₂
Cal	=	Calcite, CaCC
Sid	=	Siderite, FeCO
Bar	=	Barite BaSO ₄

- Barite BaSO₄ -
- Dol O3 Pyr O3
- Legend Feld

EML

- Feldspar, (K, Na, Ca, Ba) (Al, Si)₃ O₈ =
- Dolomite, $CaMg(CO_3)$ =
 - Pyrite FeS₂ =
- = Expandable Mixed Layer Illite/Smectite)

Clay Minerals = Phyllosilicates

QUANTERRA INCORPORATED

PRELIMINARY DATA SUMMARY

The results shown below may stil change. Actions taken based on			sponsibil	Lity of the data u	ject to ser.
Lot #: H7H220200	Baker Envi Camp L Project Numb RESULT	ronmental eJeune er: CTO-356 REPORTING		Date Reported:	PACE
	<u>KLIJUII</u>	LIMIT	UNITS	METHOD	
Client Sample ID: IR88IW01-04 Sample #: 001 Date Sampled:	08/20/97 08:	10 Date Re	ceived:	08/22/97 Matrix:	
Inorganic Analysis Percent Moisture					
N-Hexane Ext. Material, Silica Gel Treated (1664)	17.3 ND	0.10 330	% mg/kg	MCAWW 160.3 M CFR136A 1664	Reviewed OD SGT
Client Sample ID: IR88RW01-05 Sample #: 002 Date Sampled:	08/19/97 12.	20 Data D			
There are a second secon	00/10/07 12:	39 Date Rec	eived: 0	8/22/97 Matrix: S	OLID
Percent Moisture	17.5	0.10	×	R	eviewed
N-Hexane Ext. Material, Silica Gel Treated (1664)	ND	330	mg/kg	MCAWW 160.3 MO CFR136A 1664 S	D GT
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
Client Sample ID: IR88RW02-04 Sample #: 003 Date Sampled:	08/10/07 16 0		•	· ·	
Sample #: 003 Date Sampled: Inorganic Analysis	00/15/5/ 10:2	9 Date Rece	eived: 08	3/22/97 Matrix: S	OLID
Percent Moisture N-Hexane Ext. Material, Silica Gel Treated (1664)	18.1 ND	222	۲ mg/kg	Ro MCAWW 160.3 MOI CFR136A 1664 So	eviewed) GT
	9 2				
Client Sample ID: IR88IS13-08 Sample #: 004 Date Sampled: (00/20/07 11 1			• •	
	00/20/9/ 11:1:	Date Rece	ived: 08	/22/97 Matrix: SO	LID
inorganic Analysis					
Percent Moisture N-Hexane Ext. Material, Silica Gel Treated (1664)	ND	222	% mg/kg	Re MCAWW 160.3 MOD CFR136A 1664 SG	Viewed T
(100-2)					_
Client Comple TD					
Client Sample ID: IR88IW01-09 Sample #: 005 Date Sampled: 0	8/20/97 08:50	Date Recei	ived 0.0	(22/07 Materia	
				22/5/ Matrix: SO	LID

QUANTERRA INCORPORATED

results shown below may still nge. Actions taken based on t	l require addit: these results a	ional labor re the resp	ratory : ponsibi	review and are sub lity of the data us	ject to ser.	
#: H7H220200	Baker Environ Camp LeJo Project Number	eune CTO-356		Date Reported:	PAGE 2. 8/29/97	
PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD		
lient Sample ID: IR88IW01-09 ample #: 005 Date Sampled:	: 08/20/97 08:50) Date Rec	ceived:	08/22/97 Matrix:	SOLID	
Inorganic Analysis Percent Moisture N-Hexane Ext, Material, Silica Gel Treated (1664)	ND	0.10 330	X mg/kg	MCAWW 160.3 M CFR136A 1664		

- ---

7

Sep. 3. 1997 5:38PM BAK	ER ENVIRONMENT			No	. 5198	P. 2/6
	QUAN	TERRA INCOR	PORATED			
	PRELI	MINARY DATA	SUMMARY			
e esults shown below may sti	ill require addit	ional labor	atory re	view and	are sub	ject to
ange. Actions taken based or	n these results a	re the resp	onsibili	ty of the	data u	ser.
~ ~ ~ 2 ~ ~ ~ ~ 2 ~ ~ ~ 2 ~ ~ ~ 2 ~ ~ ~ ~ 2 ~ ~ ~ ~ 2 ~ ~ ~ ~ ~ ~ ~ 2 ~	Baker Environme	ntal. Inc.	1 82 gp in an an di 10 ini		t tig an an an air ih fil	PAGE
c #: H7H250122	Camp Lej			Date Re	eported:	
-	Project Number					-
		REPORTING			TICAL	
PARAMETER	RESULT	LIMIT	UNITS	METHO		
Client Sample ID: IR88-RW01-9	970					
Sample #: 001 Date Sample	ed: 08/21/97 12:2	0 Date Rec	ceived: 0	8/25/97	Matrix:	WATER
					•	
Inductively Coupled Plasma						In Revie
Silver	ND	10.0	ug/L		ILM03.0	
Aluminum	273	200	ug/L		ILM03.0	
Barium	141 B	200	ug/L		ILM03.0	
Beryllium	ND	5.0	ug/L		ILM03.0	
Calcium	15600	5000	ug/L	-	ILM03.0	
Cadmium	ND	5.0	ug/L		ILM03.0	
Cobalt	4.5 B	50.0	ug/L		ILM03.0	
Chromium	8.9 B	10.0	ug/L		ILM03.0	
Copper	ND	25.0	ug/L		ILM03.0	
Iron	15100	100	ug/L		ILM03.0	
Potassium	2080 B	5000	ug/L	ICLP	ILM03.0	
Magnesium 🗧	4510 B	5000	ug/L	ICLP	ILM03.0	
Manganese	126	15.0	ug/L	ICLP	ILM03.0	
Sodium	12200	5000	ug/L	ICLP	ILM03.0	
Nickel	75.1	40.0	ug/L	ICLP	ILM03.0	
Antimony	ND	60.0	ug/L	ICLP	ILM03.0	
Vanadium	ND	50.0	ug/L	ICLP	ILMO3.0	
Zinc	14.7 B	20.0	ug/L	ICLP	ILM03.0	
						In Revi
Hercury (Cold Vapor Technis	gue) ND	0.20	ug/L	TCLP	ILM03.0	
Mercury	ND.			2002		
Inductively Coupled Plasma			4			In Revi
Arsenic	4.3 B	10.0	ug/L	ICLP	ILM03.0	1
Lead	1.4 B	3.0	ug/L	ICLP	ILM03.0	
Selenium	ND	5.0	ug/L		ILM03.0	
Thallium	ND	10.0	ug/L	ICLP	ILM03.0)
Estimated result. Result is less th	en RL_					
Volatile Organics by GC/MS				-		In Revi
Benzene	ND	10000	ug/L	SW84	6 8260A	
	ND	10000	ug/L		6 8260A	
Reconcion for c		*****	~ 5/ ~			
Bromobenzene		10000	UCT/T.	SW84	6 8260A	
Bromobenzene Bromochloromethane Bromodichloromethane	ND ND	10000	ug/L ug/L		6 8260A	

QUANTERRA INCORPORATED

PRELIMINARY DATA SUMMARY

c results shown below may still change. Actions taken based on t	nese results a	te me r	boratory r esponsibil	eview and a ity of the	data us	ject to ser.	
	Baker Environme Camp LeJ Project Number	ntal, In eune		Date Re	PAGE 2		
		REPORTI		ANALY	TICAL		
PARAMETER	RESULT	LIMIT	UNITS	METHOD			
	1						
Client Sample ID: IR88-RW01-97 Sample #: 001 Date Sampled	: 08/21/97 12:2	0 Date	Raceived:	08/25/97	Matrix:	WATER	
Volatile Organics by GC/NS						In Review	
Bromomethane	ND	20000	ug/L		8260A		
n-Butylbenzene	ND	10000	ug/L		8260A		
sec-Butylbenzene	ND	10000	ug/L		8260A		
tert-Butylbenzene	ND	10000	ug/L		8260A		
Carbon tetrachloride	ND	10000	ug/L		8260A		
Chlorobenzene	ND	10000	ug/L		8260A		
Chlorodibromomethane	ND	10000	ug/L		8260A		
	ND	20000	ug/L	SW846	8260A		
Chloroethane	ND	10000	ug/L	SW846	8260A		
Chloroform	ND	20000	ug/L	SW846	8260A		
Chloromethane	ND	10000	ug/L	\$W84.6	8260A		
2-Chlorotoluene	ND	10000	ug/L	SW846	8260A		
4-Chlorotoluenè	ND	20000	ug/L	SW846	5 8260A		
1,2-Dibromo-3-chloro-	RD .	20000	- 27				
propane	ND	10000	ug/L	SW840	5 8260A		
1,2-Dibromoethane		10000	ug/L		5 8260A		
Dibromomethane	ND	10000	ug/L		5 8250A		
1,2-Dichlorobenzene	ND	10000	ug/L		6 8260A		
1,3-Dichlorobenzene	ND	10000	ug/L		5 8260A		
1,4-Dichlorobenzene	ND		ug/L		6 8260A		
Dichlorodifluoromethane	ND	20000 10000	ug/L		6 826QA		
1,1-Dichloroethane	ND		ug/L		6 82602		
1,2-Dichloroethane	ND	10000	ug/L		6 8260A		
1,1-Dichloroethene	ND		ug/L ug/L		6 8260A		
cis-1,2-Dichloroethene	11000	5000			6 8260A		
trans-1,2-Dichloroethene	ND	5000	ug/L		6 8260A		
1,2-Dichloropropane	ND	10000	ug/L		6 8260A		
1,3-Dichloropropane	ND	10000	ug/L		6 8260A		
2,2-Dichloropropane	ND	10000	ug/L		6 8260A		
1,1-Dichloropropene	ND	10000	ug/L		6 8260A		
Ethylbenzene	ND	10000	ug/L		6 8260A		
Hexachlorobutadiene	ND	10000	ug/L		6 8260A		
Isopropylbenzene	ND	10000	ug/L	이 가지 않는 것이 있는 것이 가지 <u>수 없었</u> 다.	6 8260A		
p-Isopropyltoluene	ND	10000	ug/L		6 8260A		
Methylene chloride	ND	10000			6 82602		
Naphthalene	ND	10000			L6 8260A		
n-Propylbenzene	ND	10000			16 82602		
Styrene	ND	10000	ug/L	DW04	10 02008	h	

(Continued on next page)

No. 5198 P. 3/6

Sep. 3. 1997 5:38PM BAKER ENVIRONMENT

QUANTERRA INCORPORATED

PRELIMINARY DATA SUMMARY

Lot #: H7H250122	ll require additional labora these results are the respo Baker Environmental, Inc. Camp LeJeune Project Number: CTO-356 REPORTING			ac.	Date Re ANALS	PACE	
PARAMETER	RESULT	<u>. </u>	LIMIT	DITIS	the state		
Client Sample ID; IR88-RW01-97 Sample #: 001 Date Sample	/c 1: 08/21/97	12:20) Date	Received:	08/25/97	Matrix:	WATER
							In Review
Volatile Organics by GC/MS	ND		10000	ug/L	SW81	6 8260A	
1,1,1,2-Tetrachloroethane	ND		10000	ug/L		6 8260A	
1,1,2,2=Tetrachloroethane	170000	D	10000	ug/L	SW84	6 8260A	
Tetrachloroethene	ND		10000	ug/L	SW81	6 8260A	
Toluene	ND		10000	ug/L	SW84	6 8260A	
1,2,3-Trichlorobenzene	ND		10000	ug/L		6 8260A	
1,2,4-Trichlorobenzene	ND	•	10000	ug/L	SW81	6 8260A	
1,1,1-Trichloroethane	ND		10000	ug/L	SW84	6 8260A	
1,1,2-Trichloroethane	3200	.т	10000	ug/L	SW84	6 8260A	
Trichloroethene	ND		20000	ug/L		6 8260A	
Trichlorofluoromethane	ND		10000	ug/L		6 8260A	
1,2,3=Trichloropropane	ND		10000	ug/L	SW84	6 8260 x	
1,2,4-Trimethylbenzene	ND		10000	ug/L	SW84	6 8260A	
1/3,5-Trimethylbenzene	ND		20000	ug/L	SW84	6 8260A	
Vinyl chloride	ND		5000	ug/L	SW84	6 8260A	
o-Xylene m-Xylene & p-Xylene	ND		5000	ug/L	SW84	6 8260A	

J Estimated result. Result is lass than BL.

Client Sample ID: IR88-RW02-97C Sample #: 002 Date Sampled: 08/22/97 09:12 Date Redeived: 08/25/97 Matrix: WATER

QUANTERRA INCORPORATED

No. 5198 P. 5/6

PRELIMINARY DATA SUMMARY

ie results shown below may still change. Actions taken based on t	l require addit	ional la	boratory'z esponsibil	eview and are sub ity of the data u	ject to lser.
	Baker Environa Camp Le	ental, In Jeune	c.	Date Reported	PAGE 4
-	Project Number			ANALYTICAL	
	TROUT T	LIMIT		METHOD	
PARAMETER	RESULT	_ pilling			
Client Sample ID: IR88-RW02-97 Sample #: 002 Date Sampled	c ; 08/22/97 09:	12 Date	Received:	08/25/97 Matrix	: WATER
Volatile Organics by GC/MS					In Review
Chloroethane	ND	20000	ug/L	SW846 8260A	
Chloroform	ND	10000	ug/L	SW846 8260A	
Chloromethane	ND	20000	ug/L	SW846 8260A	
2-Chlorotoluene	ND	10000	ug/L	SW846 8260A	
4-Chlorotoluene	ND	10000	ug/L	SW846 8260A	
1,2-Dibromo-3-chloro-	ND	20000	ug/L	SW846 8260A	
propane				CTT046 07603	
1,2-Dibromoethane	ND	10000	ug/L	SW846 8260A	
Dibromomethane	ND	10000	ug/L	SW846 8260A	
1,2-Dichlorobenzene	ND	10000	ug/L	SW846 8260A	
1,3-Dichlorobenzene	ND	10000	ug/L	SW846 8260A	
1,4-Dichlorobenzene	ND	10000	ug/L	SW846 8260A	
Dichlorodifluoromethane	ND	20000	ug/L	SW846 8260A	
1,1-Dichloroethane	ND	10000	ug/L	SW846 8260A	
1,2-Dichloroethane	ND	10000	ug/L	SW845 82607	
1,1-Dichloroethene	ND	10000	ug/L	SW846 82604	
cis-1,2-Dichloroethene	10000	5000	ug/L	SW846 82602 SW846 82602	
trans=1,2-Dichloroethene	ND	5000	ug/L	SW846 82602	
1,2-Dichloropropane	ND	10000	ug/L	SW846 82602	
1,3-Dichloropropane	ND	10000	ug/L	SW846 82602	
2,2-Dichloropropane	ND	10000	ug/L	SW846 82601	
1,1-Dichloropropene	ND	10000	ug/L	SW846 82602	
Ethylbenzene	ND	10000	ug/L	SW846 82602	
Hexachlorobutadiene	ND *	10000	ug/L	SW846 8260	
Isopropylbenzene	ND	10000	ug/L	SW846 8260	
p-Isopropyltoluene	ND	10000	ug/L	SW846 8260	
Methylene chloride	ND	10000	ug/L	SW846 8260	
Naphthalene	ND	10000	ug/L	SW846 8260	
n-Propylbenzene	ND	10000	ug/L ug/L	SW846 B260	
Styrene	ND	10000		SW846 8260	
1,1,1,2-Tetrachloroethane	ND	10000	ug/L ug/L	SW846 8260	
1,1,2,2-Tetrachloroethane	ND	10000 10000	ug/L ug/L	SW846 8260	
Tetrachloroethene	150000	10000	ug/L	SW846 8260	
Toluene	ND		ug/L	SW846 8260	
1,2,3-Trichlorobenzene	ND	10000	ug/L	SW846 8260	
1,2,4-Trichlorobenzene	ND	10000 10000	ug/L ug/L	SW846 8260	
1,1,1-Trichloroethane	ND	70000	49/24		

Sep. 3. 1997 5:39PM BAKER ENVIRONMENT

QUANTERRA INCORPORATED

PRELIMINARY DATA SUMMARY

ie results shown below may sti change. Actions taken based on			atory r onsibil	eview and a ity of the	re subj data us	ect to er. PAGE 5
Lot #: H7H250122	Baker Environme Camp LeJ Project Number	Teune TECTO-356 REPORTING		Date Rep ANALYI	ICAL	9/03/97
PARAMETER	RESULT	LIMIT	UNITS	METHOI)	
	97c ed: 08/22/97 09:3	12 Date Rec	ceived:	08/25/97 1	latrix:	WATER
					1	In Review
Volatile Organics by GC/MS	ND	10000	ug/L		8260A	
1,1,2-Trichloroethane	3500 J	10000	ug/L		8260A	
Trichloroethene	ND	20000	ug/L		8260A	
Trichlorofluoromethane	ND	10000	ug/L		8260A	
1,2,3-Trichloropropane	ND	10000	ug/L		8260A	
1,2,4-Trimethylbenzene		10000	ug/L		8260A	
1,3,5-Trimethylbenzene	ND	20000	ug/L		8260A	
Vinyl chloride	ND	5000	ug/L	SW846	8260A	
o-Xylene	ND		ug/L	SW846	8260A	
m-Xylene & p-Xylene	ND	5000	49/4			
J Estimated result. Result is less	than RL.					In Review
and another another is				C101 0	2320 B	AIL MODECT
Carbonate Alkalinity	ND	5.0	ing/L	SMIG	2320 B	
Client Sample ID: IR88-DRM0 Sample #: 003 Date Samp	l led: 08/22/97 16	:40 Date R	eceived	: 08/25/97	Matrix	: SOLID
						In Review
Volatile Organics by GC/M	IS TCLP	0.62	mg/L	SW84	6 82603	
Benzene	ND		mg/L		6 82604	
Carbon tetrachloride	0.50 J	0.62	' ng/L		6 82602	
Chlorobenzene	ND	0.62	mg/L		6 82602	
Chloroform	ND	0.62	mg/L		6 82607	
1,2-Dichloroethane	ND	0.62			6 82602	L.
1,1-Dichloroethylene	ND	0.62	ng/L	-	6 82602	
Nethyl ethyl ketone	ND	3.0	mg/I		6 82607	1
Tetrachloroethylene	37	0.62	mg/I		16 82607	A
THE PACIFUL OF GRAY A GARG		0 20	mg/I	3104	EO OZOUI	
Trichloroethylene	0,42 J	0.62 1.2	mg/I		16 8260	Δ

J Estimated result. Result is less than RL.

(Continued on next page)

No. 5198 P. 6/6

QUANTERRA INCORPORATED

PRELIMINARY DATA SUMMARY

PARAMETER Lient Sample ID: IR88-RW01-87D ample #: 012 Date Sampled: Aluminum Barium Barium Calcium Cadmium Cadmium Cobalt Chromium Copper Iron Potassium Magnese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	0.28 ND ND 15.7 ND ND ND 25.8 ND 0.094 19.7 ND ND ND 0.023	12:20	REPORT: LIMIT Date 0.20 0.20 0.0050 5.0 0.010 0.025 0.10 5.0 0.015 5.0 0.015 5.0 0.040 0.040 0.060 0.050 0.020	Received ng/I ng/I ng/I ng/I ng/I ng/I ng/I ng/I		ALYTICAL THOD A Matrix 846 6010A 846 6010A	
Aluminum Barium Barium Calcium Cadmium Cobalt Chromium Copper Iron Potessium Magnese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	0.28 ND ND 15.7 ND ND ND 25.8 ND 0.094 19.7 ND ND ND 0.023		0.20 0.20 0.0050 0.050 0.050 0.010 0.025 0.10 5.0 0.015 5.0 0.040 0.060 0.050	ng/I ng/I ng/I ng/I ng/I ng/I ng/I ng/I	SI SI SI SI SI SI SI SI SI SI SI SI SI S	#846 6010A #846 6010A	
Aluminum Barium Barium Calcium Cadmium Cobalt Chromium Copper Iron Potessium Magnese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	0.28 ND ND 15.7 ND ND ND 25.8 ND 0.094 19.7 ND ND ND 0.023		0.20 0.20 0.0050 0.050 0.050 0.010 0.025 0.10 5.0 0.015 5.0 0.040 0.060 0.050	ng/I ng/I ng/I ng/I ng/I ng/I ng/I ng/I	SI SI SI SI SI SI SI SI SI SI SI SI SI S	#846 6010A #846 6010A	
Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	ND ND ND ND ND 25.8 ND 0.094 19.7 ND ND ND 0.023		0.20 0.0050 5.0 0.050 0.050 0.010 0.025 0.10 5.0 0.015 5.0 0.040 0.060 0.050	ng/I ng/I ng/I ng/I ng/I ng/I ng/I ng/I	51 51 51 51 51 51 51 51 51 51 51 51 51 5	846 6010A	
Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	ND 15.7 ND ND ND 25.8 ND 0.094 19.7 ND ND ND 0.023		0.0050 5.0 0.050 0.050 0.010 0.025 0.10 5.0 0.015 5.0 0.040 0.060 0.050	ng/I ng/I ng/I ng/I ng/I ng/I ng/I ng/I	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1946 6010A 1846 6010A	
Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	15.7 ND ND ND 25.8 ND 0.094 19.7 ND ND ND 0.023		5.0 0.0050 0.010 0.025 0.10 5.0 0.015 5.0 0.040 0.060 0.050	ng/I ng/I ng/I ng/I ng/I ng/I ng/I ng/I	SI SI SI SI SI SI SI SI SI SI SI SI SI S	846 6010A 846 6010A	
Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	ND ND ND 25.8 ND ND 0.094 19.7 ND ND ND 0.023		0.0050 0.010 0.025 0.10 5.0 0.015 5.0 0.040 0.060 0.050	ng/I ng/I ng/I ng/I ng/I ng/I ng/I ng/I	51 51 51 51 51 51 51 51 51 51 51 51 51 5	N846 6010A N846 6010A N846 6010A N846 6010A N846 6010A N846 6010A N846 6010A N846 6010A N846 6010A N846 6010A	
Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	ND ND 25.8 ND ND 0.094 19.7 ND ND ND 0.023		0.050 0.025 0.10 5.0 0.015 5.0 0.040 0.060 0.050	ng/I ng/I ng/I ng/I ng/I ng/I ng/I ng/I	51 51 51 51 51 51 51 51 51 51 51 51 51 5	846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A	
Chromium Copper Iron Potassium Magnese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	ND 25.8 ND ND 0.094 19.7 ND ND 0.023		0.010 0.025 0.10 5.0 0.015 5.0 0.040 0.060 0.050	ng/I ng/I ng/I ng/I ng/I ng/I ng/I ng/I	51 51 51 51 51 51 51 51 51 51 51 51 51 5	846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A	
Copper Iron Potessium Magnessium Manganese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	ND 25.8 ND ND 0.094 19.7 ND ND 0.023		0.025 0.10 5.0 0.015 5.0 0.040 0.060 0.050	mg/I mg/I mg/I mg/I mg/I mg/I mg/I mg/I	51 51 51 51 51 51 51 51 51 51 51 51 51 5	846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A	
Iron Potassium Magnesium Manganese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	25.8 ND ND 0.094 19.7 ND ND 0.023		0.10 5.0 0.015 5.0 0.040 0.060 0.050	mg/I mg/I mg/I mg/I mg/I mg/I mg/I	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7846 6010A 7846 6010A 7846 6010A 7846 6010A 7846 6010A 7846 6010A 7846 6010A	
Potessium Magnesium Manganese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	ND ND 19.7 ND ND ND 0.023		5.0 5.0 0.015 5.0 0.040 0.060 0.050	ng/I ng/I ng/I ng/I ng/I ng/I	នា នា នា នា នា នា នា នា	846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A 846 6010A	• • •
Magnesium Manganese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manua Mercury	ND 0.094 19.7 ND ND ND 0.023		5.0 0.015 5.0 0.040 0.060 0.050	ng/I ng/I ng/I ng/I ng/I ng/I	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	846.6010A 846.6010A 846.6010A 846.6010A 846.6010A	х
Manganese Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manua Mercury	0.094 19.7 ND ND ND 0.023		0.015 5.0 0.040 0.060 0.050	ng/l ng/l ng/l ng/l	5 5 5 5 8	1846 6010A 1846 6010A 1846 6010A 1846 6010A	· ·
Sodium Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manua Mercury	19.7 ND ND ND 0.023		5:0 0.040 0.060 0.050	ng/I ng/I ng/I ng/I	S S S S	(846 6010) 1846 6010) 1846 6010)	
Nickel Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	ND ND ND 0.023		0.040 0.060 0.050	ng/1 ng/1 ng/1		1846 6010A 1846 6010A	
Antimony Vanadium Zinc Mercury in Liquid Waste (Manual Mercury	ND ND 0.023		0.060 0.050	ng/I ng/I	. ·	1846 6010A	
Vanadium Zinc Mercury in Liquid Waste (Manua Mercury	ND 0.023		0.050	ng/I			
Zinc Mercury in Liquid Waste (Manual Mercury	0.023				SI	JRAG GOIDA	
Mercury in Liquid Waste (Manua Mercury			0 020				
Mercury			0.020	mg/I	si Si	846.6010A	
	l Cold-Va	por)		•			Reviewed
	ND		0.0002	ng/I	S	1846 7470A	
Inorganic Analysis	•					•	Reviewed
Alkalinity, Total	28.2		5.0	ng/I	and a second	118 2320 B	
Alkalinity, Total	31.5		5.0	mg/I		18 2320 B	
Bromide	0.84		0,50	mg/I		CAWW 300.0	
Chloride	66.0		5.0	mg/l		CAWW 300.0	
Fluoride	ND		1.0	mg/l		0.00E WWA	
Nitrite as N	ND		0.50	ng/l		LAWW 300.0	
Nitrate as N	ND		0.50	mg/1		CAWW 300.0	
- o-Phosphate as P Sulfate	ND . 16.1		1.0	mg/l ng/l	and a stand of the second of the second s	CAWW 300.0 CAWW 300.0	

No. 7189 P. 6/8

QUANTERRA INCORPORATED

PRELIMINARY DATA SUMMARY

-					
The results shown below may still re	midue eddle	danny yahar		reversations	
change. Actions taken based on thes	a recuird addre	Touri tabor	ALOFY LEVI	ew and are sub	Ject to
serender	C Teparco E	ro ent reph	OUPIDITIC	OL MO GAÇA U	ser.
B	aker Enviro	nmental		•	PACE 5
Lot.#: H7K180134	Camp LeJ			Date Reported:	
	ject Number			sand moporced,	12/15/5/
· · ·		REPORTING		ANALYTICAL	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	•
			- HAAR	Marion	• *
Client Sample ID: IR88-RW02-97D				• •	
Sample #: 013 Date Sampled: 11	/17/97.12:3	5 Date Rec	eived: 11/	18/97 Matrix:	WATER
		e (n. 1947) - Nederland Alex 1953 - Alexandri A			1
Trace Inductively Coupled Flasma	(ICP) Mota	lø:		• • •	Reviewed
Arsenic	ND	0.010	mg/L	SW846 6010A	
Lead	ND .	0.0030	mg/L .	SW846 6010A	
Selenium	ND .	0.0050	ng/L	SW846 6010A	
Thallium	ND	0.010	ng/L	SW846 6010A	
		•		•	
Inductively Coupled Plasma (ICP)	Motals				Reviewed
Silver	ND	0.010	mg/L ·	SW846 6010A	
Aluminum	0,33	0.20	mg/L	SW846 6010A	
Barium	ND	0.20	.mg/L .	SW846. 6010A	-#.
Beryllium	ND	0.0050	mg/L	SW846' 6010A	
Calcium	15.1	5.0	mg/L	SW846 6010A	
Cadmium	ND	0.0050	mg/L	SW846 6010A	4
Cobalt .	ND	0.050	'mg/L	SW846 6010A	
Chromium	ND	0.010	ug/L	SW846 6010A	*
Copper	ND ·	0.025	mg/L	SW846 6010A	* *
	6.1	0.10	'mg/L	SW846 6010A	*
Potassium	9.9	5.0	mg/L	SW846 6010A	د
Magnesium	5.3	5.0	mg/L	SW846 60101	
Manganese	0.10	0.015		SW846 6010A	*
Sodium	30.9	5.0	ng/L	SW846 6010A	*
Nickel	ND	0.040	mg/L	SW846 60101	*
Antimony			mg/L	SW846 60101	
Vanadium	ND	0.050	mg/L	SW846 6010A	
Zinc	0.039	0.020	'ng/L	SW846 6010A	-
Mercury in Liquid Waste (Manual	Cold-Vapor)		•		Reviewed
Mercury	ND	0.00020	mg/L	SW846 7470A	
					•
Inorganic Analysis					Reviewed
Alkalinity, Total	ND	5.0	mg/L	SM18 2320 B	VCATCHCC
Bromide	ND	0,50			
Chloride	45.5	5.0	mg/L	MCAWW 300.0A MCAWW 300.0A	
Fluoride		1.0	mg/L		
Nitrite as N	nd Nd	0.50	mg/L	MCAWW 300 GA	
Nitrate as N	1.0	0.50	mg/L mg/L	MCAWW 300.0A MCAWW 300.0A	
o"Phosphate as P	ND .	1.0	mg/L	MCAWW 300.0A	
C SHORPHEL HD I	ND	5 - V	M9/1	ALANH SUU.UA	
	tinued on no	axt page)			
(2011		2-3-1			

4.

QUANTERRA INCORPORATED

PRELIMINARY DATA SUMMARY

Lot #: H7K180134	Baker Envir Camp Le Project Numbe	Jeune		PACE 7 12/15/97	
PARAMETER	RESULT	LIMIT	UNITS	ANALYTICAL METHOD	
· ·	•	•		2	
Inorganic Analysis	•			· · ·	Reviewed
Inorganic Analysis Alkalinity, Total	63.9	5.0	ng/L	SM18 2320 B	Reviewed
Alkalinity, Total	63.9 ND	5.0 0.50	ng/L ng/L	SM18 2320 B NCAWN 300.0A	Reviewed
			mg/L		Reviewed
Alkalinity, Total Bromide	ND	0.50		MCAWN 300.0A	Reviewed
Alkalinity, Total Bromide Chloride	ND 12.4	0.50 1.0 1.0 0.50	mg/L mg/L	MCAWW 300.0A MCAWW 300.0A	
Alkalinity, Total Bromide Chloride Fluoride	ND 12.1 ND	0.50 1.0 1.0	mg/L mg/L mg/L	NCAWW 300.0A MCAWW 300.0A MCAWW 300.0A	
Alkalinity, Total Bromide Chloride Fluoride Nitrite as N	ND 12.4 ND ND	0.50 1.0 1.0 0.50	ng/L ng/L ng/L ng/L	NCAWW 300.0A MCAWW 300.0A MCAWW 300.0A NCAWW 300.0A	-

Dec. 15. 1997 5:14PM BAKER ENVIRONMENT

.

No. 7189 P. 7/8

QUANTERRA INCORPORATED •

PRELIMINARY DATA SUMMARY

Lot #: H7K180134	Camp Lo Project Number	ar: CTO-356		Date Reported:	PACE 6 12/15/97
PARAMETER .	RESULT	REPORTIN	G <u>UNITS</u>	ANALYTICAL METHOD	
	1				
Client Sample ID: 1R88-RW02- Sample #: 013 Date Sampl		35 Date R	eccived: 1	1/18/97 Matrix:	WATER
Sulfata.	• •				Deut in t
Sulfate	46.7	5.0	mg/ī.	MCAWW 300.0A	Reviewed
Client Sample ID: IR88-FB02	Source	WATE	ER SAN	IPLE	
Sample #: 014 Date Sampl				1/18/97 Matrix:	WATER
Trace Inductively Coupled	BLARMA (TOB) MAS				5 1 5
Arsenic	ND ND	0.010	and t	613040 COTAS	Reviewed
Lead	ND	0.0030	ng/L ·ng/L	SU846 6010A	•
Selenium	ND	0.0050	ng/L	SW846 6010A SW846 6010A	•
Thallium	ND	0.010	mg/L	SW846 6010A	•
Inductively Coupled Plasma	(ICP) Metals	•	•	•	Reviewed
Silver	ND.	0.010 ;	mg/L	SW846 6010A	
Aluminum	0.20	0.20	mg/Li.	SW846 60102	
Barium	ND	.0.20	mg/L	SW846 6010A	
Beryllium	ND	0.0050	mg/L	SW846 6010A	•
Calcium	. 26.9	5.0	mg/L .	S¥846 6010A	•
Cadmium	ND	. 0,0050	mg/L	SW846 6010A	
Cobalt	ND	0.050	. mg/L	SW846 6010A	
. Chronium	ND	0.010	mg/L	SW846 6010A	
.Copper	ND ·	0.025	mg/L	SWB46 6010A	
Iron	ND	-0.10	mg/L .	SW846 60101	
Potassium	ND **	5.0	mg/L ·	SW846 60101.	
Magnesium	ND .	5.0	mg/L	SW846 6010A	
Manganese	ND .	0.015	mg/L	SW845 6010A	
Sodium	. 9;0	5.0	mg/L ·	SW846 6010A	÷
Nickel	· ND	0.040	ng/L	SW845. 5010A	
Antimony	ND	0.050	ng/L	SW846 6010A	
· · · · · · · · · · · · · · · · · · ·					
Vanadium	* ND	0.050	mg/L	SW846 6010A	

Duke Engineering & Services	Project:	MCB Camp Lejune - S	Site 88 Sear	Sampled:	9/24/98
9111 Research Blvd.	Project Number:	none		Received:	9/25/98
Austin, TX 78758	Project Manager:	Fred Holzmer		Reported:	10/21/98 13:13

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled	
88 Source - 98	8090283-01	Water	9/24/98	
38 Source - 98	8090283-02	Water	9/24/98	

Source Water : Major ion analysis

Star Analytical, Inc. Lari Hall, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Duke Engineering & Services	Project:	MCB Camp Lejune - Site 88 Sear	Sampled:	9/24/98
9111 Research Blvd.	Project Number:	none	Received:	9/25/98
Austin, TX 78758	Project Manager:	Fred Holzmer	Reported:	10/21/98 13:13

Total Metals by EPA 200 Series Methods Star Analytical, Inc.

	Batch	Date	Date	Specific	Reporting		and a sub-second state of the sub-	
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
				an an the second se Second second				
<u>88 Source - 98</u>			80902	83-01			Water	
Magnesium	10V8211	10/11/98	10/14/98	EPA 200.7	0.500	2.00	mg/l	
Calcium			н	EPA 200.7	2.00	21.0	"	
Potassium	10V8323	н	10/20/98	EPA 200.7	0.500	1.40		
Sodium	"	**	H	EPA 200.7	5.00	8.00	н	

Star Analytical, Inc.

*Refer to end of report for text of notes and definitions.

Duke Engineering & Services	Project:	MCB Camp Lejune - Site 88 Sear	Sampled: 9/24/98
9111 Research Blvd.	Project Number:	none	Received: 9/25/98
Austin, TX 78758	Project Manager:	Fred Holzmer	Reported: 10/21/98 13:13

Conventional Chemistry Parameters by APHA/EPA Methods Star Analytical, Inc.

	Batch	Date	Date	Specific	Reporting			
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
<u>88 Source - 98</u>			80902	83-02			Water	
Chloride	10V8138	10/8/98	10/8/98	EPA 325.3	0.30	13	mg/l	
Fluoride	10V8074	10/2/98	10/2/98	EPA 340.2	0.100	ND	"	
Nitrate-Nitrogen	09V8385	9/28/98	9/25/98	EPA 352.1	0.20	ND		
Nitrate/Nitrite-Nitrogen	09V8397	9/18/98	 Hold States and the second states 	EPA 353.3	0.10	ND	11	
Phosphorus	10V8120	10/5/98	10/1/98	EPA 365.2	0.10	ND	"	
Sulfate	09V8456	9/29/98	9/29/98	EPA 375.4	1.0	7.7	11	
Bicarbonate Alkalinity	10V8194	10/7/98	10/7/98	SM 2320B	10	33		

Star Analytical, Inc.

Duke Engineering & Services 9111 Research Blvd. Austin, TX 78758		ect Number	: MCB Cam : none : Fred Holzr		ite 88 Sea	Re	ceived:	9/24/98 9/25/98 10/21/98	13:13
	Total Met		A 200 Serie Star Analyti		/Quality	Control			
Analyte	Date Analyzed	Spike Level	Sample Result	QC Result	Units	Reporting Limit Recov. Limits	Recov. %	RPD Limit	RPD % Notes*
Batch: 10V8211	Date Prepa	Date Prepared: 10/11/98			Extraction Method: General Preparation				
Blank	10V8211-B	LK1						-	
Calcium	10/14/98			ND	mg/l	0.200			
Magnesium	"			ND	"	0.100			
Blank	<u>10V8211-B</u>	LK2							
Calcium	10/14/98			ND	mg/l	0.200			
Magnesium	11			ND	"	0.100			
LCS	<u>10V8211-B</u>	<u>S1</u>							
Calcium	10/14/98	1.00		1.30	mg/l	80.0-120	130		
Magnesium	-11	1.00		1.20		80.0-120	120		
LCS	10V8211-B	<u>S2</u>							
Ca	10/14/98	1.00		1.10	mg/l	80.0-120	110		
LCS Dup	10V8211-B	SD1							
Calcium	10/14/98	1.00		1.10	mg/l	80.0-120	110	20.0	16.7
Magnesium	н	1.00		1.10	11	80.0-120	110	20.0	8.70
LCS Dup	10V8211-B	SD2							
Calcium	10/14/98	1.00		1.30	mg/l	80.0-120	130	20.0	16.7
Batch: 10V8323	Date Prepa		/98		Extrac	ction Method: Ge	neral Pr	eparation	
Blank	<u>10V8323-B</u>	LK1							
Potassium	10/20/98			ND	mg/l	0.500			
Sodium	"			ND	"	0.500			
LCS	<u>10V8323-B</u>								
Potassium	10/20/98	10.0		10.0	mg/l	80.0-120	100		
Sodium	н	1.00		0.960	"	80.0-120	96.0		
LCS Dup	<u>10V8323-B</u>				-				
Potassium	10/20/98	10.0		9.70	mg/l	80.0-120			3.05
Sodium		1.00		0.900	"	80.0-120	90.0	20.0	6.45

*Refer to end of report for text of notes and definitions.

STAR ANALYTICAL 14500 Trinity Boulevard, Suite 106 • Fort Worth, Texas 76155 (817) 571-6800 • Metro (817) 540-6982 • FAX (817) 267-5431

Duke Engineering & Services	Project:	MCB Camp Lejune - Site 88 Sear	Sampled: 9/24/98
9111 Research Blvd.	Project Number:	none	Received: 9/25/98
Austin, TX 78758	Project Manager:	Fred Holzmer	Reported: 10/21/98 13:13

Conventional Chemistry Parameters by APHA/EPA Methods/Quality Control Star Analytical, Inc.

Date Spike Sample QC Report Limit Recov. RPD RPD RPD Note Batch: 09V3385 Date Frequent (1000) Result Units Recov. Limit % Note Blank 09V3385 Date Frequent (1000) ND mg/1 0.20 Virtate-Nitrogen 9/18/98 ND mg/1 0.20 Virtate-Nitrogen 9/28/98 ND mg/1 0.20 Virtate-Nitrogen Virtate-Nitrogen 9/28/98 ND mg/1 0.10 Virtate-Nitrogen	1									
Batch: 09Y83385 Blank Date Prepared:: 9/18/98 Extraction Method:: General Preparation mg/l Duplicate Nitrate-Nitrogen 09Y83385-BLK1 9/18/98 ND mg/l 0.20 Duplicate Blank 09Y83385 ND mg/l 0.20 Duplicate Blank 09Y8395 ND mg/l 0.20 Blank 09Y8397 Date Prepared:: 9/18/98 ND mg/l Blank 09Y8397-BLK1 Extraction Method: EPA 1311/3010 09Y8397-BLK1 09Y8397-BLK1 ND mg/l 0.10 Mitrate/Nitrite-Nitrogen 09Y8397-BSD1 0.80 0.85 mg/l 70-130 110 30 0 Numentificate 09Y8397-BD1P1 8090283-02 ND mg/l 30 0 Batch: 09Y8397-BD1P1 8090283-02 ND mg/l 30 0 Mitrate/Nitrite-Nitrogen 09/28/98 0.80 0.85 mg/l 70-130 110 30 0 Sulfate 09/28/98 20			- ·	-						
Black Nitrate-Nitrogen 0978385-BLK1 9/18/98 ND ND mg/l 0.20 Puplicate Black Nitrate-Nitrogen 0978335-DLP1 8090192-02 ND ND mg/l 0.20 Extraction Method: EPA 1311/3010 0078397 Bate Prepared: -9/18/98 ND mg/l 0.10 Extraction Method: EPA 1311/3010 0078397-BS1 mg/l 0.10 10 0 0 LCS 0978397-BS1 0.80 0.85 mg/l 70-130 10 30 0 Suffare-Nitrite-Nitrogen 0978397-BS1 8090283-02 0.85 mg/l 70-130 10 30 0 Extraction Method: General Prepared: 9/28397-DUPI 8090283-02 ND mg/l .0 .0 Suffare 9/25/98 ND ND mg/l .0	Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
Nitate-Nitrogen 9/18/98 ND mg/l 0.20 Buplicate Nitrate-Nitrogen 9/28/98 ND mg/l mg/l Batch: 09V8397 Blank Nitrate/Nitrite-Nitrogen Date Preparet: 9/18/98 9/25/98 ND mg/l 0.10 Image: second se				/98		Extract	tion Method: Ge	neral Pre	paration	
Puplicate Biank Nitrate/Nitrogen OPY83355-DUP1 9/28/98 8090192-02 ND ND mg/l Sector	Blank	09V8385-B	LK1							
Nitrate-Nitrogen 9/28/98 ND ND mg/l Batch: 09/28397 Batch: 09/28397-BLK1 mg/l 0.10 LCS 09/28397-BLK1 mg/l 0.10 10 30 0 LCS 09/28397-BLK1 0.80 0.85 mg/l 70-130 110 30 0 LCS 09/28397-BS1 0.80 0.85 mg/l 70-130 110 30 0 LCS not mg/l 70-130 110 30 0 Nitrate/Nitrite-Nitrogen 09/28397-BS1 0.80 0.85 mg/l 70-130 110 30 0 Nitrate/Nitrite-Nitrogen 09/28397-BS1 0.80 0.85 mg/l 70-130 110 30 0 Nitrate/Nitrite-Nitrogen 09/28397-BS1 0.80 ng/l 70-130 110 30 0 Statch: 09/28397 ND ND mg/l 70-130 100 30 0 Blank Date Prepared: 9/29/85 20 9.8 mg/ls 70-130 48	Nitrate-Nitrogen	9/18/98			ND	mg/l	0.20			
Batch: Date Prepared: 9/18/98 Extraction Beth:			UP1 8							
Blank Nitrate/Nitrite-Nitrogen 09Y8397-BLK1 9/25/98 ND ng/l 0.10 LCS Nitrate/Nitrite-Nitrogen 09Y8397-BS1 9/18/98 0.80 0.85 mg/l 70-130 10 30 0 LOP itrate/Nitrite-Nitrogen 09Y8397-BSD1 9/18/98 0.80 0.85 mg/l 70-130 10 30 0 Duplicate Nitrate/Nitrite-Nitrogen 09Y8397-DUP1 9/25/98 8090283-02 ND ND mg/l	Nitrate-Nitrogen	9/28/98		ND	ND	mg/l				
Nitrate/Nitrite-Nitrogen 9/25/98 ND mg/l 0.10 LCS Nitrate/Nitrite-Nitrogen 9/9/8397-BS1 9/18/98 0.80 0.85 mg/l 70-130 110 30 0 LOP 9/18/98 0.80 0.85 mg/l 70-130 110 30 0 LOP 9/18/98 0.80 0.85 mg/l 70-130 110 30 0 LOP 9/98397-DUP1 8090283-02 ND mg/l				<u>/98</u>		Extrac	tion Method: EP	A 1311/3	010	
LCS Nitrate/Nitrite-Nitrogen 09V8397-BS1 9/18/98 0.80 0.85 mg/l 70-130 110 30 0 LCS Nitrate/Nitrite-Nitrogen 09V8397-BSD1 9/18/98 0.80 0.85 mg/l 70-130 110 30 0 Duplicate Nitrate/Nitrite-Nitrogen 09V8397-DUPI 9/25/98 8090283-02 ND ND mg/l 30 Bank Sulfate 09V8456 9/23/98 20 ND ng/l 30 LCS Sulfate 09V8456-BS1 9/23/98 20 9.8 mg/kg 70-130 48 30 2.1 LCS Sulfate 09V8456-BSD1 9/29/98 20 9.8 mg/kg 70-130 48 30 2.1 Duplicate Sulfate 09V8456-BSD1 9/29/98 20 9.5 mg/kg 70-130 48 30 2.1 Duplicate Sulfate 09V8456-DIPI 9/29/98 8090283-02 7.7 7.7 mg/kg 30 0 Batch: 0V8074 10/2/98 0.100 mg/l 0.100 101 0.100 101 0.100 LCS Fluoride 10V8074-BLK1 8090283-02			ALLAL		ND	mg/l	0.10			
Nitrate/Nitrite-Nitrogen 9/18/98 0.80 0.85 mg/l 70-130 110 Light bit ite-Nitrogen 9/18/98 0.80 0.85 mg/l 70-130 110 30 0 Duplicate Nitrate/Nitrite-Nitrogen 9/25/98 0.80 0.85 mg/l 70-130 110 30 0 Batch: 09Y8397-DUP1 8090283-02 ND ND ND mg/l 30 Batch: 09Y8456 Date Prepared: 9/29/98 Extraction Method: General Preparation 9/28/96 LCS Date Prepared: 9/28/98 20 9.8 mg/kg 70-130 49 LCS Dy/8456-BS1 20 9.8 mg/kg 70-130 48 30 2.1 Sulfate 9/28/98 20 9.5 mg/kg 70-130 48 30 2.1 Sulfate 9/28/98 20 9.5 mg/kg 70-130 48 30 2.1 Buplicate 09/28/98 7.7 <t< td=""><td></td><td></td><td>S1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			S1							
Low Printe-Nitrogen DYX8397-BSD1 9/18/98 0.80 ng/l 70-130 110 30 0 Duplicate Nitrate/Nitrite-Nitrogen DYX8397-DUP1 9/25/98 8090283-02 ND ND ng/l 30 30 Batch: 09Y8456 Blank Sulfate Date Prepared: 9/29/98 9/23/98 ND ND ng/l 30 30 CS Sulfate Oyv8456-BLK1 9/23/98 Oyv8456-BSD1 9/23/98 0 9.8 ng/kg 1.0 49 2.1 CS Sulfate Oyv8456-BSD1 9/29/98 20 9.8 ng/kg 70-130 48 30 2.1 Duplicate Sulfate Oyv8456-DUP1 9/29/98 8090283-02 7.7 7.7 ng/kg 70-130 48 30 2.1 Duplicate Sulfate Oyv8456-DUP1 9/29/98 8090283-02 7.7 7.7 ng/kg 70-130 48 30 2.1 Bank Fluoride Ovv8074-BLK1 10/2/98 Ret Prepared: 10/2/98 7.7 7.7 7.7 mg/kg 30 0 LCS Fluoride Ovv8074-BLK1 10/2/98 On0 0.100 mg/l 7.0-13 10.2 1 LCS Fluoride Ovv8074-BLK1 10/2/98 <th< td=""><td></td><td></td><td></td><td></td><td>0.85</td><td>mg/l</td><td>70-130</td><td>110</td><td></td><td></td></th<>					0.85	mg/l	70-130	110		
Duplicate Nitrate/Nitrie-Nitrogen 09V8397-DUP1 9/25/98 8090283-02 ND ND mg/l 30 Batch: 09V8456 09V8456-BLK1 9/23/98 Date Prepared:: 9/29/98 09V8456-BLK1 9/23/98 Extraction Method: General Preparation mg/kg J.0 LCS Sulfate 09V8456-BSD1 9/23/98 20 9.8 mg/kg 70-130 48 30 2.1 LCS Sulfate 09V8456-BSD1 9/29/98 20 9.5 mg/kg 70-130 48 30 2.1 Duplicate Sulfate 09V8456-DDP1 9/29/98 8090283-02 7.7 7.7 mg/kg 70-130 48 30 2.1 Duplicate Sulfate 09V8456-DDP1 9/29/98 8090283-02 7.7 7.7 mg/kg 70-130 48 30 2.1 Bank Sulfate 09V8074-BLK1 10/2/98 ND ND mg/kg 70-130 48 30 0 Batch: 10V8074-BLK1 10/2/98 ND ND mg/l 0.100 9 9 9 9 9 9 9 9 9 9 9 9 9 <td>LC W</td> <td></td> <td></td> <td></td> <td>0.85</td> <td>_</td> <td>70,120</td> <td>110</td> <td>20</td> <td>0</td>	LC W				0.85	_	70,120	110	20	0
Nitrate/Nitrite-Nitrogen 9/25/98 ND ND mg/l 30 Batch: 09V8456 Blank Sulfate Date Prepared: 9/29/98 (9/23/98 Extraction Method: General Preparation mg/kg Ist Extraction Method: General Preparation mg/kg Ist	Nu Nunte-Nulogen	9/10/90	0.80		0.85	mg/1	/0-130	110	50	0
Blank Sulfate 09V8456-BLK1 9/23/98 1.8 mg/kg 1.0 LCS Sulfate 09V8456-BS1 9/23/98 20 9.8 mg/kg 70-130 49 LCS Dup Sulfate 09V8456-BSD1 9/29/98 20 9.5 mg/kg 70-130 48 30 2.1 Duplicate Sulfate 09V8456-DUP1 9/29/98 8090283-02 7.7 7.7 mg/kg			UP1 8		ND	mg/l			30	
Blank Sulfate 09V8456-BLK1 9/23/98 1.8 mg/kg 1.0 LCS Sulfate 09V8456-BS1 9/23/98 20 9.8 mg/kg 70-130 49 LCS Dup Sulfate 09V8456-BSD1 9/29/98 20 9.5 mg/kg 70-130 48 30 2.1 Duplicate Sulfate 09V8456-DUP1 9/29/98 8090283-02 7.7 7.7 mg/kg	Detet. 003/0450	Dete Dever		10.0		Derter	the Matheda Ca	1.D		
Sulfate 9/23/98 1.8 mg/kg 1.0 LCS Sulfate 09Y8456-BS1 9/23/98 20 9.8 mg/kg 70-130 49 LCS Dup Sulfate 09Y8456-BSD1 9/29/98 20 9.5 mg/kg 70-130 48 30 2.1 Duplicate Sulfate 09Y8456-DUP1 9/29/98 8090283-02 7.7 7.7 mg/kg 30 0 Batch: 10Y8074 Blank Fluoride Date Prepared: 10/2/98 10/2/98 ND mg/l 0.100 U U U LCS Fluoride 10Y8074-BLK1 10/2/98 0.100 0.100 mg/l 78.0-113 100 U U Duplicate 10Y8074-BS1 10/2/98 0.100 0.100 mg/l 78.0-113 100 U U Duplicate 10Y8074-DUP1 8090283-02 0.100 mg/l 78.0-113 100 U U Duplicate 10Y8074-DUP1 8090283-02 0.100 U U U U U U U U U U Duplicate 10Y8074-DUP1 8090283-02 0.100 U U <th< td=""><td></td><td></td><td></td><td>98</td><td></td><td>Extrac</td><td>tion Method: Ge</td><td>neral Pre</td><td>paration</td><td></td></th<>				98		Extrac	tion Method: Ge	neral Pre	paration	
LCS 09V8456-BSD1 9.8 mg/kg 70-130 49 LCS Dup 09V8456-BSD1 9.5 mg/kg 70-130 48 30 2.1 LCS Dup 09V8456-DUP1 8090283-02 9.5 mg/kg 70-130 48 30 2.1 Duplicate 09V8456-DUP1 8090283-02 7.7 7.7 mg/kg 30 0 Batch: 10V8074 Date Prepared: 10/2/98 R.77 7.7 mg/l 0.100 9.100 0.100 0.100 0.100 100 <th1< td=""><td></td><td></td><td>LKI</td><td></td><td>1.0</td><td>malka</td><td>1.0</td><td></td><td></td><td></td></th1<>			LKI		1.0	malka	1.0			
Sulfate 9/23/98 20 9.8 mg/kg 70-130 49 LCS Dup Sulfate 09V8456-BSD1 9/29/98 20 9.5 ng/kg 70-130 48 30 2.1 Duplicate Sulfate 09V8456-DUP1 9/29/98 8090283-02 7.7 7.7 ng/kg	Suitate	9123190			1.0	mg/kg	1.0			
Sulfate 9/29/98 20 9.5 mg/kg 70-130 48 30 2.1 Duplicate Sulfate 09/28456-DUP1 8090283-02 9/29/98 7.7 7.7 mg/kg 30 0 Batch: 10V8074 Date Prepared: 10/2/98 7.7 7.7 mg/kg Sulfate 30 0 Blank Fluoride Date Prepared: 10/2/98 ND mg/l 0.100 100					9.8	mg/kg	70-130	49		
Sulfate 9/29/98 7.7 7.7 mg/kg 30 0 Batch: 10V8074 Date Prepared: 10/2/98 Extraction Method: General Preparation Blank 10V8074-BLK1 mg/l 0.100 Fluoride 10V8074-BS1 nD mg/l 0.100 LCS 10V298 0.100 0.100 mg/l 78.0-113 100 Duplicate 10V8074-DUP1 8090283-02 8090283-02 8090283-02 8090283-02 8090283-02	-				9.5	mg/kg	70-130	48	30	2.1
Blank Fluoride 10V8074-BLK1 10/2/98 ND mg/l 0.100 LCS Fluoride 10V8074-BS1 10/2/98 0.100 0.100 mg/l 78.0-113 100 Duplicate 10V8074-DUP1 8090283-02 V V V V			UP1 8		7.7	mg/kg			30	0
Fluoride 10/2/98 ND mg/l 0.100 LCS Fluoride 10V8074-BS1 10/2/98 0.100 0.100 mg/l 78.0-113 100 Duplicate 10V8074-DUP1 8090283-02 8090283-02 8090283-02 8090283-02	Batch: 10V8074	Date Prepa	red: 10/2	/98		Extrac	tion Method: Ge	neral Pre	paration	
LCS 10V8074-BS1 Fluoride 10/2/98 0.100 mg/l 78.0-113 100 Duplicate 10V8074-DUP1 8090283-02 8090283-02 8090283-02 8090283-02	Blank	10V8074-B	LK1							
Fluoride 10/2/98 0.100 mg/l 78.0-113 100 Duplicate 10V8074-DUP1 8090283-02 8090283-02	Fluoride	10/2/98			ND	mg/l	0.100			
					0.100	mg/l	78.0-113	100		
	-		<u>UP1</u>		ND	mg/l			25.0	

Star Analytical, Inc.

Lari Hall, Project Manager

*Refer to end of report for text of notes and definitions.

STAR ANALYTICAL 14500 Trinity Boulevard, Suite 106 • Fort Worth, Texas 76155 (817) 571-6800 • Metro (817) 540-6982 • FAX (817) 267-5431

Duke Engineering & ServicesProject:MCB Camp Lejune - Site 88 SearSampled:9/24/989111 Research Blvd.Project Number:noneReceived:9/25/98Austin, TX 78758Project Manager:Fred HolzmerReported:10/21/98 13:13

Conventional Chemistry Parameters by APHA/EPA Methods/Quality Control Star Analytical, Inc.

Analyte	Date Analyzed	Spike Level	Sample Result	QC Result	Units	Reporting Limit Recov. Limits	Recov. %	RPD Limit	RPD %	Notes*
Batch: 10V8120 Blank	Date Prepare 10V8120-BL					tion Method: Ger				
Phosphorus	10/1/98			ND	mg/l	0.10				
<u>Duplicate</u> Phosphorus	10V8120-DU 10/1/98	<u>P1 8</u>	<u>090304-06</u> 1.5	1.8	mg/l			30	18	
Batch: 10V8138 Blank Chloride	Date Prepare 10V8138-BL/ 10/8/98		<u>98</u>	ND	Extrac mg/l	tion Method: Ger 0.30	neral Pre	paration		
LCS Chloride	10V8138-BS 10/8/98	L 890		910	mg/l	90-110	100			
Du te Ch e	10V8138-DU 10/8/98	<u>P1 8</u>	090283-02 13	12	mg/l			16	8.0	
Batch: 10V8194 Blank Bicarbonate Alkalinity	Date Prepare 10V8194-BL		<u>98</u>	ND	<u>Extrac</u> mg/l	tion Method: Ge	neral Pre	paration		
Duplicate Bicarbonate Alkalinity	10V8194-DU 10/7/98	<u>P1 8</u>	<u>090283-02</u> 33	26	mg/l			30.0	24	

Star Analytical, Inc. Lari Hall, Project Manager

*Refer to end of report for text of notes and definitions.

STAR ANALYTICAL 14500 Trinity Boulevard, Suite 106 • Fort Worth, Texas 76155 (817) 571-6800 • Metro (817) 540-6982 • FAX (817) 267-5431

Duke Engineering & Services	Project:	MCB Camp Lejune - Site 88 Sear	Sampled: 9/24/98
9111 Research Blvd.	Project Number:	none	Received: 9/25/98
Austin, TX 78758	Project Manager:	Fred Holzmer	Reported: 10/21/98 13:13

Notes and Definitions

#	Note
D	Data reported from a dilution.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

APPENDIX F

Soil Concentration Correction Calculations: Extract Volume Calculation and Soil Concentration Conversion

Appendix F Extract Volume Calculation and Soil Concentration Conversion

Extract Volume Correction Calculation (VE)

 $VE = V_{meoh} + V_{sw}$

Where:

 $\begin{array}{lll} VE & = Extract \ Volume \ (mL) \\ V_{meoh} & = Volume \ of \ methanol \ (mL) \\ V_{sw} & = Volume \ of \ soil \ water \ (mL) \end{array}$

 $V_{meoh} = M_{meoh} \ \rho_{meoh}$

Where:

 M_{meoh} = mass Methanol (gms) ρ_{meoh} = density of methanol (0.79 gms/mL)

 $M_w = \%$ soil moisture (M_s)

Where:

M_w = Mass soil water (gms) M_s = Mass soil (gms)

Since density of water = I gm/ml then mass in grams is equal to volume in ml.

Sample calculation for sample IS07-02

Volume of methanol	(57.0gms -126.9gms)/ 0.79gm/ml = 38.1ml					
Mass of Soil	303.0 gms- 157.0 gms = 146 gms					
Mass of Water	146gms (0.2) = 29.2 gms percent soil moisture = 20%					
Volume of water	29.2 ml	assuming density of water = I gm/ml				
Extract Volume	38.ml + 29.2 ml = 67.3 ml					

Extract Concentration from Reported Soil Concentration

RO OCC (df) (V_{meoh})/[1,000(M_s]

RC = Reported soil concentration (μ g/kg)

OCC = On column concentration (μ g/L)

- df = sample dilution factor
- M_s = Mass of soil (gms)

1,000 = unit conversion factor

EC = OCC(df)

Where:

EC = extract concentration (μ g/L)

Then:

EC RC(M_s)(1000)N_{meoh}

Sample calculation for sample IS07-02

```
Extract concentration (µg/L)
```

```
110,830µg/kg(146gms)(1,000)/38, I00µl = 424,703 (µg/L)
```

Soil Concentration Conversion

 $M_{pce}=EC(V_E)(I,000)$

Where:

 M_{pce} = mass of POE (mg)

 $SC = M_{pce}(1000)/M_s$

Where:

SC = concentration of PCE in soil (μ g/kg)

Sample calculation for sample IS07-02

Mass of PCE (µg)

424,703 (μg/L) (67.3 ml)/(1,000 ml/L) 28582.5 μg

Concentration in soil (μg/kg) 28582.5 μg (1,000 gms/kg)/146 gms = 195,771μg/kg

Soil VOC Concentration Correction Calculations

The reason for the correction to the lab-reported soil VOC concentrations is explained as follows. As discussed in Section 3.1.1, the soil samples collected for VOC analysis were preserved in the field with methanol to minimize volatile losses of VOCs from the samples during sample collection, shipment, and analysis. In addition to acting as a VOC preservative for the samples, the methanol also functions as a solvent to extract VOCs from the soil samples. The liquid extract m each soil sample jar, "as received" by the lab, was then analyzed for VOCs by the lab. The soil concentration results reported by the laboratory were incorrect because the calculations to determine soil VOC concentrations were based on the assumption that the total volume of liquid extract in each sample jar was composed only of methanol and VOCs. However, since water is also miscible with methanol, along with the VOCs, the total liquid volume in the soil samples received by the lab consisted of methanol, soil water, and VOCs. Soil water can account for as much as 45% of the total liquid volume in a methanol-preserved soil sample, and therefore, must be accounted for in the analysis in order to accurately convert to soil VOC concentrations. The volume of water in the soil samples can be calculated if the percent soil moisture (by weight) is known. The soil moisture values in Table 3.3 indicates that 20% is generally representative of the moisture content of the soil samples collected at Site 88. The laboratory-reported analytical values were corrected for the sample volume error by assuming 20% moisture content for all samples. The corrected raw analytical results were then converted from a concentration of VOC in μ g/L of extract solution to μ g/Kg of wet soil.

The correction calculations are a 3-part calculation process:

- 1) Extract volume correction;
- 2) Extract concentration from misreported soil concentration;
- 3) Soil concentration conversion

The process is shown below and includes a sample calculation.

1) Extract Volume Correction (V_E)

V_E V_{meoh} + V_{sw}

Where:

 $\begin{array}{lll} V_E &= Extract \ Volume \ (mL) \\ V_{meoh} &= Volume \ of \ methanol \ (mL) \\ V_{sw} &= Volume \ of \ soil \ water \ (mL) \end{array}$

 $V_{meoh} = M_{meoh} \rho_{meoh}$

Where:

 M_{meoh} = mass Methanol (gms) P_{meoh} = density of methanol (0.79 gms/mL)

 $M_w = \%$ soil moisture (M_s)

Where:

M_w = Mass soil water (gms) M_s = Mass soil (gms)

Since density of water = I gm/ml then mass in grams is equal to volume in ml.

Sample calculation for sample IS07-02

Volume of methanol	(157.Ogms -I 26.9gms)/ 0.79gm/ml 38.1ml
Mass of Soil	303.0 gms- 157.0 gms = 146 gms
Mass of Water	146gms (0.2) = 29.2 gms percent soil moisture = 20%
Volume of water	29.2 ml assuming density of water = I gm/ml
Extract Volume	38.1ml + 29.2 ml 67.3 ml

2) Extract Concentration from Misreported Soil Concentration

RC OCC (df) (V_{meoh})/[1,000(M_s)]

Where:

RC = Reported soil concentration (μ g/kg)

0CC = On column concentration (μ g/L)

df = sample dilution factor

 M_s = Mass of soil (gms)

1,000 = unit conversion factor

$$EC = OCC(df)$$

Where:

EC = extract concentration (μ g/L)

Then:

EC RC(M_s)(1000)/V_{meoh}

Sample calculation for sample IS07-02

Extract concentration (µg/L)

110,830µg/kg(146gms)(1,000)/38,100µl 424,703 (µg/L)

3) Soil concentration Conversion

$$M_{pce} = EC(V_E)(1,000)$$

Where:

M_{pce}= mass of PCE (mg)

SC M_{pce}(1000)/M_s

Where:

SC = concentration of PCE in soil (μ g/kg)

Sample calculation for sample IS07-02

Mass of PCE (p.g)

424,703 (μg/L) (67.3 ml)/(I,000 ml/L) 28582.5 μg

Concentration in soil (µg/kg) 28582.5 µg (1,000 gms/kg)/146 gms = 195,771µg/kg

Project Number 7DN 200 Date 7-25 to 7 27 97 Page___ of

SOIL SAMPLES PRESERVATIVE LOG

Sample Number	Tare (gm)	Tare + Methanol (gm)	Final Weight (gm) Soil + methanol	Volume Addec (ml)
IS 01 - 1	127.3	156.8	264.7	
1501-2	127.3	150.5	291.3	
1501-3	128.6	161.2	285.9	
1501-4 .	127.5	152.7	271.9	
1502-\$	126.6	153.0	297.0	
1502-2	126.3	152.8	302.3	
1502-3	128.4	161.5	274.9	
1303-41	127.6	150.8	. 251.2	-
1503-672	128.6	163.2	288.2	
1502-63	126.6	152.8	288.3	
1502-4	127.6	159.5	232.1	
1504-1	127.6	157.B	299.3	
1505-2	127.3	156.6	268.66	÷.
1505-2	127.1	(56.2	,279.5	
1505-3	128.2	* 158.7	287.1	
1505-4	127.0	155.7	280.3	
.1506-1	127.4	159.2	317,9	
1508-g	127.4	156.9	292.3	
1507-2	126.9	157.0	303.0	
1507-3	125.6	156.1	311.9	
1507-4	126.0	152.7	250.6	
1508-1	126.5	156.6	241.1	
1508-2	127.5	153.7	229.8	
1508-3	126.0	151.8	225.3	
140000	126.3	159.2	280.0	

MILD SPLASH

1508-A

BAKER ENVIRONMENTAL

Lab Name: QUANTERRA

SDG Number:

Matrix: (soil/water) SOLID Method: SW846 8260A Volatile Organics, GC/MS (8260A)

Sample WT/Vol: 5 / mL Work Order: CC006202 Dilution factor: 870 Moisture %:

Date Received: 07/29/97 Date Extracted:08/03/97 Date Analyzed: 08/03/97

Lab Sample ID:H7G290134 019

Client Sample Id: IS07-2 -RE 1

QC Batch: 7215125

CAS NO.		ION UNITS: 1g/kg) ug/kg	0
71-43-2	Benzene	4400	Q
108-86-1	Bromobenzene	4400	
74-97-5	Bromochloromethane	4400	
75-27-4	Bromodichloromethane	4400	U
75-25-2	Bromoform	4400	
74-83-9	Bromomethane	8700	
104-51-8	n-Butylbenzene	4400	
135-98-8	sec-Butylbenzene	4400	UU
98-06-6	tert-Butylbenzene		_ U
56-23-5	Carbon tetrachloride	4400	<u>U</u>
108-90-7	Chlorobenzene	4400	_ <u>U</u>
124-48-1	Chlorodibromomethane	4400	<u>U</u>
75-00-3	Chloroethane	8700	_ <u>U</u>
67-66-3	Chloroform	4400	U
74-87-3	Chloromethane	8700	<u>U</u>
95-49-8	2-Chlorotoluene	4400	_ U
106-43-4	4-Chlorotoluene	4400	U
96-12-8	1,2-Dibromo-3-chloropropane	8700	<u> </u>
106-93-4	1,2-Dibromoethane	4400	U
74-95-3	Dibromomethane	4400	U
95-50-1	1,2-Dichlorobenzene	4400	U
541-73-1	1,3-Dichlorobenzene	4400	U
106-46-7	1,4-Dichlorobenzene	4400	U
75-71-8	Dichlorodifluoromethane	8700	U
75-34-3	1,1-Dichloroethane	4400	_ U
107-06-2	1,2-Dichloroethane	4400	U
75-35-4	1,1-Dichloroethene	4400	U
156-59-2	cis-1,2-Dichloroethene	46000	U
156-60-5	trans-1,2-Dichloroethene	2200	U

CONCENTRATION UNITS:

4

BAKER ENVIRONMENTAL

Lab Name:QUANTERRA

SDG Number:

Matrix: (soil/water) SOLID Lab Sample ID:H7G290134 019 Method: SW846 8260A Volatile Organics, GC/MS (8260A)

Sample WT/Vol: 5 / mL Work Order: CC006202 Dilution factor: 870 Moisture %: Date Received: 07/29/97 Date Extracted:08/03/97 Date Analyzed: 08/03/97

QC Batch: 7215125

Client Sample Id: IS07-2 -RE 1

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or u	g/kg) ug/kg	Q
78-87-5	1,2-Dichloropropane	4400	_ <u> </u>
142-28-9	1,3-Dichloropropane	4400	U
594-20-7	2,2-Dichloropropane	4400	U
563-58-6	1,1-Dichloropropene	4400	U
100-41-4	Ethylbenzene	4400	U U
87-58-3	Hexachlorobutadiene	4400	U U
98-82-8	Isopropylbenzene	4400	U
99-87-6	p-Isopropyltoluene	4400	U
75-09-2	Methylene chloride	4400	U
91-20-3	Naphthalene	4400	U
103-65-1	n-Propylbenzene	4400	U
100-42-5	Styrene	4400	U
630-20-6	1,1,1,2-Tetrachloroethane	4400	U
79-34-5	1,1,2,2-Tetrachloroethane	4400	U U
127-18-4	Tetrachloroethene	110000	
108-88-3	Toluene	4400	U U
87-61-6	1,2,3-Trichlorobenzene	4400	U
120-82-1	1,2,4-Trichlorobenzene	4400	U
71-55-6	1,1,1-Trichloroethane	4400	U
79-00-5	1,1,2-Trichloroethane	4400	U
79-01-6	Trichloroethene	3900	J
75-69-4	Trichlorofluoromethane	8700	U
96-18-4	1,2,3-Trichloropropane	4400	U
95-63-6	1,2,4-Trimethylbenzene	3800	J
108-67-8	1,3,5-Trimethylbenzene	1700	J
75-01-4	Vinyl chloride	4800	J
95-47-6	o-Xylene	2200	U
136777-61-2	m-Xylene & p-Xylene	2200	U

Data File: /chem/gcms/mw.i/W080397.b/CC006202.d Report Date: 03-Aug-97 17:46:16

Quanterra - Knoxville

SW-846 Method 8260A - Volatile Organics Data file : /chem/gcms/mw.i/W080397.b/CC006202.d Lab Smp Id: CC006202 Inj Date : 03-AUG-97 16:12:00 : 60487 Operator Inst ID: mw.i Smp Info : CC006202,870,0,,, Misc Info : W080397, MS8260_L, Comment : Method : /chem/gcms/mw.i/W080397.b/MS8260 L.m Meth Date : 03-Aug-97 13:19:28 wilesd Cal Date : 30-JUL-97 20:57:00 Als bottle: 1 Dil Factor: 870.00000 Integrator: HP RTE Quant Type: ISTD Cal File: WI0730A.d Compound Sublist: all.sub Target Version: 3.30 Processing Host: hpuxcs12

Concentration Formula: Vt/(Ws*1000)

Name	Value	Description
Vt	5000.000	Sample Volume Purged
Ws	5.000	Weight of sample

			CONCENTRATIO	ONS
		QUANT SIG	ON-COLUMN	FINAL
Compounds		MASS	RT EXP RT REL RT RESPONSE (ug/L) (ug/Kg)
==:		====		=====
*	1 Fluorobenzene	96	9.483 9.517 (1.000) 255535 50.0000	
*	2 Chlorobenzene-d5	117	13.833 13.900 (1.000) 237432 50.0000	
ŵ	3 1,4 Dichlorobenzene-d4	152	17.417 17.517 (1.000) 176643 50.0000	
\$	4 1,2-Dichloroethane-d4	65	9.100 9.133 (0.960) 86542 37.8135	37.814(a)
\$	5 Toluene-d8	98	11.683 11.733 (0.845) 221489 46.1209	46.121(a)
\$	6 4-Bromofluorobenzene	95	15.617 15.700 (0.897) 195307 41.3967	41.397(a)
	7 Dichlorodifluoromethane	85.00	Compound Not Detected.	
	8 Chloromethane (spcc)	50.00	Compound Not Detected.	
	9 Vinyl Chloride (ccc)	62	3.050 3.050 (0.322) 9396 5.54636	4825.3(a)
	10 Bromomethane	94.00	Compound Not Detected.	
	11 Chloroethane	64.00	Compound Not Detected.	
	12 Trichlorofluoromethane	101.00	Compound Not Detected.	
	13 1,1-Dichloroethene (ccc)	96.00	Compound Not Detected.	
	14 Carbon Disulfide	76.00	Compound Not Detected.	
	15 Acetone	43	5.383 5.400 (0.568) 625 1.03861	903.59(a)
	16 Methylene Chloride	84	6.017 6.033 (0.634) 2030 1.03158	897.48(a)
	17 trans-1,2-Dichloroethene	96.00	Compound Not Detected.	

Data File: /chem/gcms/mw.i/W080397.b/CC006202.d Report Date: 03-Aug-97 17:46:16

	OWNER OLD	QUANT SIG			CONCENTRATIONS		
Compounds	MASS	RT	EXP RT REL RT	85000005	OH-COLUHH	FINAL	
	10,35	==	EAP KI KEL KI	RESPONSE	(ug/L)	(ug/Kg)	
18 1,1-Dichloroethane (spcc)	63.00				EACCHEE	All and a set of the s	
19 2,2-Dichloropropane	77.00		pound Not Detect				
20 cis 1,2-Dichloroethene	96	7.917	7 050 (0 875)		~~ ~///		
21 1,2-Dichloroethene (total)	96	1.911	7.950 (0.835)	108219	53.3411	46407	
22 2-Butanone	43	7 0/7	7 007 10 0100	108219	53.3411	46407	
23 Bromochloromethane		7.967	7.983 (0.840)	736	0.58136	*505,78(a0)	
24 Chloroform (ccc)	128.00		pound Not Detect				
	83.00		pound Not Detect				
25 1,1,1-Trichloroethane	97.00		pound Not Detect				
26 Carbon Tetrachloride	117.00		pound Not Detect				
27 1,1-Dichloropropene	75.00		pound Not Detect				
28 Benzene	78.00		pound Not Detect	ed.			
29 1,2-Dichloroethane	62	9.483	9.233 (1.000)	2706	1.00733	876-38(a)	
30 Trichloroethene	130	9.967	10.017 (1.051)	12495	4.52553	3937.2(a)	
31 1,2-Dichloropropane (ccc)	63.00	Coa	pound Not Detect	ed.			
32 Dibromomethane	93.00	Coa	pound Not Detect	ed.			
33 Bromodichloromethane	83.00	Coa	pound Not Detect	ed.			
34 cis-1,3-Dichloropropene	75.00	Com	pound Not Detect	ed.			
35 4-Methyl-2-pentanone	43_00	Coa	pound Not Detect	ed.			
36 Toluene (ccc)	91_00	Coa	pound Not Detect	ed.			
37 trans-1,3-Dichloropropene	75.00	Coa	pound Not Detect	ed.			
38 1,1,2-Trichloroethane	97	12.533	12.500 (0.906)	1796	0.76042	661.57(aQ)	
39 Tetrachloroethene	164	12.533	12.583 (0.906)	346227	127.392	110830 #	
40 1,3-Dichloropropane	76.00	Coa	pound Not Detect	ed.			
41 Z-flexanone	43.00	Coa	pound Not Detect	ed.			
42 Chlorodibromomethane	129.00		pound Not Detect				
43 1,2-Dibromoethane	107.00		pound Not Detect				
44 Chlorobenzene (spcc)	112.00		pound Not Detect				
45 Ethylbenzene (ccc)	106.00		pound Not Detecto				
46 1,1,1,2-Tetrachloroethane	131_00		pound Not Detect				
47 m&p-Xylene	106.00		pound Not Detect				
48 o-Kylene	106.00		pound Not Detect				
49 Kylene (total)	106.00		pound Not Detect				
50 Styrene	104.00		pound Not Detect				
51 Bromoform (spcc)	173.00 .		pound Not Detect				
52 Isopropylbenzene	105.00						
53 Bromobenzene	156.00		pound Not Detector				
54 1,1,2,2-Tetrachloroethane(sp							
55 n-Propylbenzene	91.00		pound Not Detecto				
56 1,2,3-Trichloropropane	75.00		pound Not Detect				
57 2-Chlorotoluene	91.00		pound Not Detect				
58 1,3,5-Trimethylbenzene			pound Not Detect		4 07050		
59 4-Chlorotoluene	105		16.267 (0.929)	11347	1.97959	1722.2(a)	
60 tert-Butylbenzene	/ 91.00		pound Not Detect				
	119.00		pound Not Detect		4		
61 1,2,4-Trimethylbenzene	105		16.883 (0.964)	25716	4.33953	3775_4(a)	
62 sec-Butylbenzene	105.00		pound Not Detect				
63 1,3-Dichlorobenzene	146.00		pound Not Detect				
64 p-Isopropyltoluene	119		17.333 (0.989)	3880	0.56635	492.72(a)	
65 1,4-Dichlorobenzene	146.00	Con	pound Not Detect	ed.			

1118/4/4/

APPENDIX G

Porosity Calculation and NAPLANAL paper (Mariner et al, 1997)

POROSITY FROM PERCENT SOIL MOISTURE

Assume pores are fully saturated with water, then:

 $%w = m_p/m_t \times 100$ and $m_p = V_p \rho_w$ then: $%w = (V_p \rho_w/m_t) \times 100$ rearranging

$$V_{p} = \% w m_{t} / 100 \rho_{w}$$

where:

%w = percent soil moisture m_p = mass of water in pores m_t = total mass of sample V_p = volume of pores ρ_w = density of water

$V_t = V_s + V_p$	Then
$V_t = m_s / \rho_s + V_p$	and
$m_s = m_t - m_p$	substituting
$V_t = (m_t - m_p)/\rho_s + V_p$	Finally
$V_t = (m_t - V_p \rho_w)/\rho_s + V_p$	

where:

 V_T = total volume of sample V_s = volume of soil m_s = mass of soil ρ_s = density of soil

 $\eta = V_p / V_t$

$$\eta = (\% w m_t / 100 \rho_w) / ((m_t - V_p \rho_w) / \rho_s + V_p)$$

Substituting

Substitute for V_p

POREVOL

1

 $\eta = (\%w \ m_t / 100 \rho_w) / (((m_t - (\%w \ m_t / 100 \rho_w)) / \rho_s + \%w \ m_t / 100 \rho_w))$

Divide top and bottom by mt then:

 $\eta = (\% w /100 \rho_w) / (((1 - (\% w /100 \rho_w)) / \rho_s + \% w /100 \rho_w))$

Multiply top and bottom by 100pw then:

 $\eta = \% w /((100 \rho_w -\% w) / \rho_s + \% w)$

where:

 $\eta = porosity$

For soil correction calculations a value of 1 gm/ml was used for ρ_w and a value of 2.64 gm/ml was used for ρ_s . The above equation then becomes:

 $\eta = \% w /((100 -\% w)/2.64 + \% w)$

Sample Calculation

Assuming soil moisture content of 20%.

$$\eta = 20 /((100 -20)/2.64 + 20)$$

$$\eta = 20 /((80)/2.64 + 20)$$

$$\eta = 20 /(30.3 + 20)$$

η = 0.398

Duke Engineering

POREVOL

Extination of NAPL Saturation and Composition from Typical Soil Chemical Analyses

by Paul E. Mariner, Minquan Jin, and Richard E. Jackson

Abstract

an algorithm is presented that allows

estimation of the saturation and

somposition of a single or multi-

comporent NAPL within a core sample. These estiunites are possible because, in addition to distributing the organic characteristic between aqueous, sorbeit, and and NAPL phases according to reachitomal partitioning equations, the algorithm incorporates equations. Or the conservation of mass and volume. A unique solution is obtained by solving the set of nonlinear equations implicitly. The algorithm is built into a sode called NAPLANAL, which is tested and applied to actual core samples collected in the field.

Introduction

It is an extraordinary feature of modern hydrogeological practice that estimating the mass or volume of nonaqueous phase liquid (NAPL) in a soil or rock is not deemed essential to the design of remediation systems. A brief inspection of past issues of this journal will show that NAPL volumes are seldom estimated from field data. Such a volume estimate permits the calculation of an approximate remediation period for the NAPL-contaminated soil or rock. An essential parameter for estimating NAPL volumes in a NAPL-contaminated soil or rock is the NAPL saturation of the porous medium. Mercer and Cohen (1990) have tabulated NAPL saturation data from the literature.

Paraphrasing Bear (1972), when the pore space of an aquifer sediment or fractured rock is contaminated with NAPL, the saturation (or degree of saturation) of NAPL at a particular point is defined as the fraction of pore space occupied by NAPL within a representative elementary volume (REV) around the considered point:

 $N = \frac{\text{volume of NAPL within REV}}{\text{total pore volume within REV}}$

(1)

As pointed out by Corey (1994), "saturation can be conceptualized (but not measured) as a point property varying in space in a manner entirely analogous to porosity." The constraint of being unable to measure the saturation at a point arises from the size of the REV, which

Pages 122-129

122 SPRING 1997 GWMR

. Mayer and Miller (1992) found to vary directly with the nonuniformity of the porous medium such that "the upper range of these REV estimates (i.e., ~10-10⁴ cm³) exceeds the scale of ... field samples typically taken to estimate NAPL residual saturation levels." It is for this reason of scale that Jin et al. (1995) have proposed using a partitioning interwell tracer test for measuring NAPL volume over a large interwell pore volume.

While soil cores cannot provide reliable NAPL saturations over large zones of the subsurface, they can provide information on the approximate volumes of NAPL present in the core samples. Furthermore, continuous coring can indicate the relative NAPL saturations with depth, which may allow an experienced observer to deduce whether pooling of NAPL may be occurring upon some capillary barrier, such as a clay lens. In addition, the analysis and interpretation of soil chemical data from cores indicate the nature of the chemical composition of the NAPL in the source zone. Finally, the chemical analysis of soil cores provides an approximate initial value of NAPL saturation which can be used in multiphase, multicomponent simulators such as UTCHEM for modeling surfactant-enhanced aquifer remediation (e.g., Brown et al. 1994) and the application of partitioning interwell tracer tests (e.g., Jin et al. 1995).

We are not aware of any published method for calculating NAPL saturation from a soil sample chemical analysis when more than one organic compound is identified in the analysis. Feenstra et al. (1991) showed how a measured organic concentration can be used to assess whether a single- or multicomponent NAPL is present in a soil sample, but not how NAPL saturation could be calculated. In addition, the method requires an a priori assumption of the NAPL chemical composition. Mott (1995) improved on the Feenstra et al. (1991) method by presenting a method that can be used to estimate multicomponent NAPL composition from a complete organic chemical soil sample analysis and to determine whether NAPL is present in the sample. The method, which is incorporated in a code called SOIL-CALC, distributes mass among all phases including the NAPL phase. However, because the method assumes that NAPL occupies no pore space, SOILCALC cannot be used to calculate NAPL saturation. Consequently, its calculations of NAPL composition and the concentrations of organic compounds in each phase are not accurate unless NAPL saturation is approximately two orders of magnitude lower than typical residual NAPL saturations. Typical residual NAPL saturations range from 10 percent to 20 percent in the vadose zone and from 15 percent to 50 percent in the saturated zone (Mercer and Cohen 1990).

In this paper, a model is presented for the implicit calculation of NAPL saturation, NAPL composition, and phase distribution of organic compounds in a core sample of soil or rock. This model was developed in 1993 as an extension of the model presented in Feenstra et al. (1991). In addition to the phase partitioning relationships, the model incorporates equations for the conservation of mass and volume. The algorithm distributes the organic chemicals among aqueous, air, sorbed, and NAPL phases so that both the NAPL saturation and the correct NAPL composition are determined regardless of the amount of NAPL in the sample.

Partitioning Theory

If NAPL exists in a core sample from the unsaturated zone, the NAPL components will be distributed among four physical phases: air, soil, water, and NAPL. Each NAPL component (i.e., each compound in the NAPL) is distributed among the phases according to thermodynamic equilibrium principles and mass transfer kinetic factors. The system reaches equilibrium when the chemical potential of any constituent is equal in all phases. Figure 1 shows a schematic representation of the equilibrium relationship.

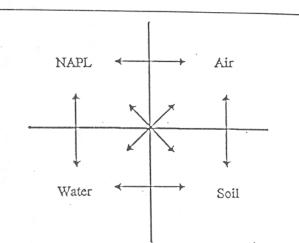


Figure 1. Schematic representation of phase equilibrium and partitioning.

To estimate the distribution of the total mass of a chemical among the phases at equilibrium, the chemical's phase partitioning behavior must be known. All nonaqueous concentrations are defined using traditional equilibrium equations that are functions of aqueous concentrations. These relationships are presented later. In each relationship, at least one chemical property of each organic compound (e.g., aqueous solubility, vapor pressure, and partition coefficient) must be known. In each case, the value of the chemical property is temperature dependent. Consequently, the values used in the model must be representative of the original soil or rock temperature. Values for these properties at specific temperatures can be found in the literature (e.g., Mercer et al. 1990) or estimated (e.g., Lyman et al. 1990; Drefahl and Reinhard 1995).

NAPL-Water Partitioning

NAPL-water partitioning depends on the aqueous solubilities of the NAPL components and the concentrations of the NAPL components in the NAPL. The relationship is analogous to Raoult's law for ideal gas mi tures. For an ideal NAPL in contact with water the aqueous phase concentration of a NAPL component is equal to the pure phase aqueous solubility of the component multiplied by the mole fraction of the component in the NAPL mixture. Mathematically, this relationship in the mas:

(2)

 $\mathbf{w} = \mathbf{x}_i \mathbf{S}_i$

where C_w^i is the aqueous phase concentration of component i (mass i in water per volume water); x_i is the mole fraction of the component in the NAPL mixture (mole i in NAPL per mole NAPL); and S_i is the aqueous solubility of pure component i (mass i in water per volume water). Feenstra et al. (1991) refers to C_w^i as the effective aqueous solubility of component i when the aqueous phase is at equilibrium with a NAPL. This general NAPL-water partitioning relationship has been confirmed by Banerjee (1984), Mackay et al. (1991), Cline et al. (1991), Lee et al. (1992a,b), and Broholm and Feenstra (1995) for NAPL mixtures of structurally similar compounds. This relationship is not highly dependent on temperature.

Air-Water Partitioning

The equilibrium concentration of component i in air is related to the aqueous concentration by Henry's law. Henry's law states that equilibrium water-air partitioning is described by a linear relationship. The relationship can be written as:

$$C_a^i = K_H^i C_w^i \tag{3}$$

tere C_a^i is the concentration of i in air (mass i in air per volume air), and K_H^i is the dimensionless Henry's constant. The Henry's constant is often reported in the literature in its dimensional form, K_H^i (e.g., atm-L/mol). The dimensional Henry's constant is calculated from the equation:

$$K_{\rm H}^{i}{}' = \frac{P_{\rm vap}^{i}}{S_{\rm i}} M W_{\rm i} \tag{4}$$

where P_{wap}^{i} is the component's vapor pressure (e.g., atm), and MW_i is the component's molecular weight (mass i per mole i), which is needed to convert the previously defined mass-based aqueous solubility S_i to molar units. The two Henry's constants are related through the equation:

$$K_{\rm H}^{\,i} = \frac{K_{\rm H}^{\,i}}{\rm RT} \tag{5}$$

where R is the universal gas constant (0.08206 atm-L/ mol-K) and T is temperature in Kelvin. As the equation reveals, air-water partitioning is highly dependent on temperature.

Soil-Water Partitioning

Sorption to soil organic matter can also be described a linear function of the aqueous organic compound incentration. The relationship can be written as:

$$C_{s}^{i} = K_{oc}^{i} f_{oc} C_{w}^{i}$$
(6)

where C_s^i is the sorbed concentration of component i (mass i sorbed per mass soil); K_{∞}^i is the organic carbon to water partition coefficient of component i (mass i sorbed per mass organic carbon divided by mass i in water per volume water); and f_{∞} is the mass fraction of natural organic carbon within the soil matrix (mass natural organic carbon per mass soil).

The mass fraction of natural organic carbon has to be measured for the particular soil to be evaluated. Although the effect of temperature is small, the K_{∞}^{i} value can be highly sensitive to pH if the organic compound is ionizable (Drefahl and Reinhard 1995).

The linear isotherm model of Equation 6 has been experimentally verified for various organic compounds by Karickhoff et al. (1979), Chiou et al. (1979), Schwarzenbach and Westall (1981), and Chiou et al. (1983). It has been noted, however, that linear sorption is valid only for f_{oc} greater than about 0.001 (Schwarzenbach and Westall 1981) and greater than about 3 to 7 percent of the solid mass fraction of clay (Karickhoff 1984); otherwise, sorption of organic compounds on clays and mineral surfaces can be significant.

Conservation Equations and Relationships

Soil, water, air, and NAPL account for the total volume of a soil sample containing NAPL. The volume conservation equation is:

$$\phi_s + \phi_w + \phi_a + \phi_n = 1 \tag{7}$$

where ϕ_s is the volumetric soil content (volume soil per total volume); ϕ_w is the volumetric water content (volume water per total volume); ϕ_a is the volumetric air content (volume air per total volume); and ϕ_n is the volumetric NAPL content (volume NAPL per total volume). The soil porosity ϕ (volume void per total volume) is equal to the sum of the volumetric air, water, and NAPL contents:

$$\phi = \phi_a + \phi_w + \phi_n \tag{8}$$

Thus, the volumetric soil content ϕ_s equals $1 - \phi$.

Each NAPL component in a soil sample is distributed among the phases present. As a result, the total mass of component i in the sample equals the sum of the masses of component i in all phases. The mass conservation equation is:

$$\rho_t C_t^i = \phi_w C_w^i + \phi_a C_a^i + \phi_n C_n^i + \phi_s \rho_s C_s^i$$
(9)

where ρ_t is the total density of the soil sample (mass of sample per volume of sample); C_i^i is the measured total concentration of i in the sample (mass i in sample per mass of sample); C_n^i is the concentration of i in the NAPL (mass i in NAPL per volume NAPL); and ρ_s is the density of the solid (approximately 2.65 kg/L for sand). The total density, ρ_t , is approximately equal to

124 SPRING 1997 GWMR

the weighted average of the densities of the four phases:

$$\rho_t = \phi_w \rho_w + \phi_a \rho_a + \phi_n \rho_n + \phi_s \rho_s \tag{10}$$

where ρ_w is the density of water (approximately 1.0 kg/L); ρ_* is the density of air (approximately 0.0013 kg/L at 20°C); and ρ_n is the density of the NAPL mixture (mass NAPL per volume NAPL). ρ_n can be expressed as:

$$\rho_{\alpha} = \Sigma C_{\alpha}^{i} = \frac{\Sigma x_{i} M W_{i}}{\sum_{i} \frac{x_{i} M W_{i}}{\rho_{i}}}$$
(11)

where ρ_i is the density of pure component i in liquid form (mass i per volume i). Some components, such as vinyl chloride or anthracene, may not occur as liquid in their pure form under environmental conditions. For these components, hypothetical pure phase liquid densities are computed by extrapolation.

The mole fraction of component i in the NAPL mixture is related to mass concentration by the equation:

$$x_{i} = \frac{C_{n}^{i} M W_{n}}{\rho_{n} M W_{i}}$$
(12)

where MW_n is the equivalent molecular weight of the NAPL mixture (mass NAPL per mole NAPL). MW_n is approximately equal to the weighted average of the molecular weights of the NAPL components:

$$MW_n = \Sigma x_i MW_i \tag{13}$$

Finally, the sum of the NAPL mole fractions is equal to 1:

$$\Sigma \mathbf{x}_i = 1 \tag{14}$$

Estimation of NAPL Saturation and Composition

A complete chemical analysis of a core sample provides the total mass of each component per unit mass of sample (i.e., the value of C_t for each component). To determine the saturation and composition of NAPL in the sample, the total mass of each component in each phase and the total volume of each phase must be determined. The partitioning theory and conservation relationships presented in the previous section can be used for this purpose. The solution allows calculation of the NAPL saturation from the equation:

$$S_{N} = \frac{\Phi_{n}}{\Phi}$$
(15)

The method presented here is a numerical solution of the partitioning and conservation equations. PC software called NAPLANAL was developed to perform the numerical simulation. NAPLANAL can be used to estimate the following: (1) the NAPL saturation and composition in a soil sample containing NAPL; (2) the concentrations of organic compounds in each phase; and (3) the NAPL composition and NAPL volume in samples of NAPL-water emulsions ($\phi_{\epsilon} = 0$). A copy of NAPLANAL is available from the INTERA web site (http://www.intera.com) for a small fee.

The algorithm is first demonstrated by considering a hypothetical soil sample from an unsaturated formation containing NAPL with N chemical components. Calculation of NAPL saturation and composition requires the following measurements or estimates as input: total concentrations of NAPL components in the soil sample (C_t), volumetric water content (ϕ_w), soil porosity (ϕ), volumetric soil content ($\phi_{\varepsilon} = 1 - \phi$), soil organic carbon content ($f_{\infty c}$), organic carbon to water partition coefficients ($K_{m c}^{i}$), Henry's law constants in dimensionless form (K_{H}^{i}), molecular weight of each component (MW_i), and densities of water, air, soil, and each NAPL component ($\rho_{w c} \rho_{a}, \rho_{s}$, and ρ_{i}).

Equations 2, 3, 6, and 8 through 14 provide a total of 5N+5 independent equations that describe partitioning and conservation of organic compounds in a soil sample. Given the measurements and estimates listed in the previous paragraph, there are 5N+5 unknowns. These unknowns are as follows: NAPL component concentrations in water, air, soil, and NAPL (C_{u}^{i} , C_{a}^{i} , C_{s}^{i} , and C_{n}^{i}); component mole fractions in the NAPL mixture (x_{i}); volumetric contents of air and NAPL (ϕ_{a} and ϕ_{n}); density of sample (ρ_{t}); and the equivalent density and molecular weight of the NAPL (ρ_{n} and MW_n).

An equal number of unknowns and independent equations guarantees a unique solution. NAPLANAL solves the system of equations and unknowns using an algorithm that combines the rapid local convergence of the Newton-Raphson method for a system of nonlinear equations with a globally convergent strategy. For the sample problems tested so far, the computation time for reaching a solution is less than one minute using a 486 DX66 PC.

For core samples from the saturated zone, the air volumetric content (ϕ_a) and air phase concentrations (C_a^i) are equal to zero. Thus, the terms and equations involving the air phase are dropped from the system of equations. As a result, the number of equations reduces to 4N+5, while the number of unknowns reduces to 4N+4. Because there are fewer unknowns than equations, a measurement for either soil porosity (ϕ) or soil volumetric water content (ϕ_w) is sufficient for estimation purposes. Users of NAPLANAL have the choice of treating either ϕ or ϕ_w as an unknown parameter. A gas chromatography method is currently being developed to allow simultaneous measurement of ϕ_w and the concentrations of organic compounds in a soil sample.

The NAPLANAL code begins with the assumption that there is no NAPL present in the sample (i.e., $\phi_n = 0$). The density of the sample can then be calculated from Equation 10 as:

$$\rho_{t} = \phi_{w}\rho_{w} + (\phi - \phi_{w})\rho_{a} + (1 - \phi)\rho_{s} \qquad (16)$$

The first approximation of the aqueous concentration can be calculated from Equation 9 by:

$$C_{w}^{i} = \frac{C_{t}^{i} \rho_{t}}{\phi_{w} + K_{H}^{i} (\phi - \phi_{w}) + f_{oc} K_{oc}^{i} \rho_{s} (1 - \phi)} \quad (17)$$

shown by Feenstra et al. (1991). If NAPL exists in the sample, then this first approximation of C_w^i should exceed the effective aqueous solubility of component i. Equations 2 and 14 imply that C_w^i equals the effective aqueous solubility when:

$$\sum_{i} \frac{C_{w}^{i}}{S_{i}} = 1$$
(18)

Thus, a summation exceeding 1 when Equation 17 is used to estimate C_w^i implies that NAPL is present in the sample and that the NAPL saturation algorithm must be used instead to estimate C_w^i . A summation in Equation 18 equal to or less than one indicates there is no NAPL in the sample (i.e., S_N and ϕ_n equal zero). In this case, Equation 17 provides valid explicit estimates of aqueous concentrations. Air and sorbed concentrations are then calculated directly from Equations 3 and 6. When the summation in Equation 18 is less than 1, C_w^i is less than the effective aqueous solubility and calculation of x_i from Equation 2 is invalid.

Petroleum Hydrocarbon Example

In this example, the petroleum hydrocarbon data from Mott (1995) are used to compare the results of NAPLANAL and SOILCALC. The example problems onsider hypothetical soil samples contaminated with C6 through C9 n-aliphatic hydrocarbons. For direct comparison of NAPLANAL and SOILCALC results, the input data are identical. The physical and chemical properties of the soil samples and the petroleum hydrocarbons used in the calculations are summarized in Table 1.

Table 1Chemical Property Data Used in the Examples by Mott (1995)							
Component i	K _{ec} ⁽ (mL/g)	K _H i	S _i (mg/L)	ρ _i (kg/L)	MWi (g/mol)		
Hexane	6025.60	46.49	12.31	0.66	86.07		
Heptane	22908.68	63.59	3.06	0.68	100.20		
Octane	77624.71	95.74	0.68	0.70	114.22		
Nonane	263026.8	45.80	0.47	0.72	128.26		
Soil Sample	Data	f _{oc} 0.01		ф _w 0.08	ф 0.4		

The three soil samples differ only in the total hydrocarbon component concentration. These data are shown in Table 2. The first data set represents a soil sample containing 250 mg/kg of each component. The second data set, which is a borderline case (NAPL may or may not be present based on SOILCALC results), represents a soil sample containing 192 mg/kg each component. The third data set, which is a no NAPL case, represents a soil sample containing 100 mg/kg each component. Results from SOILCALC and NAPLANAL are summarized in Table 2. SOILCALC results are in parentheses.

SOILCALC assumes that NAPL occupies zero void space (i.e., the NAPL saturation is assumed insignificant relative to water and air content). Because of this assumption, SOILCALC does not have NAPL saturation estimation capability. In contrast, NAPLANAL implicitly calculates NAPL saturation. For the first two sets of data, the results indicate NAPL saturations of 0.15 percent and 0.02 percent, respectively. At such low NAPL saturations (i.e., approximately 1 percent or less of typical residual NAPL saturations [Mercer and Cohen 1990]), the pore space occupied by NAPL is indeed insignificant relative to pore space occupied by water and air. As a result, the two models give similar results, as shown in Table 2. However, there are still differences in the component mass distributions, especially for the mass of components in the NAPL phase. Because NAPLANAL calculates NAPL saturation, it should provide more accurate results than SOILCALC, especially at higher NAPL saturations.

Field DNAPL Examples

NAPLANAL was used to calculate the saturations and compositions of DNAPL and the phase distributions of DNAPL components in several core samples collected from a chemical plant on the Gulf Coast. DNAPL is NAPL that is denser than water. The plant has manufactured a variety of chlorinated ethanes and ethenes, such as 1,2-dichloroethane (EDC), trichloroethene (TCE), tetrachlorothene (PCE), 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA),

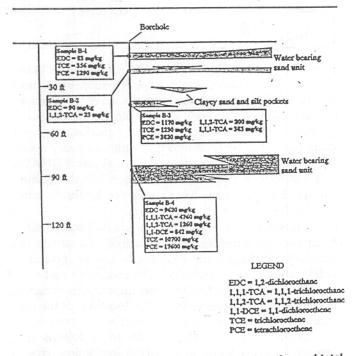


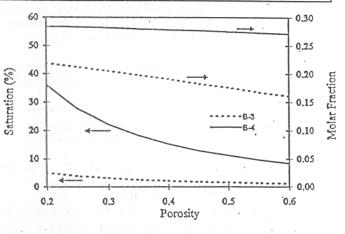
Figure 2. Cross-sectional view of soil sample location and total soil concentration.

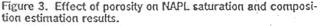
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Component i	Measured Sample Conc. Cl (mg/kg)	Sample Conc. in Aq. Phase C ¹ _w $\phi_{w}\rho_{v}^{-1}$ (mg/kg)	Sample Conc. in Air Phase C ¹ _a $\phi_a \rho_t^{-1}$ (mg/kg)	Sample Canc. Sorbed $C_s^{I} \phi_{e} \rho_{e} \rho_{t}^{-1}$ (mg/kg)	Sample Conc. in NAPL C ¹ $\phi_{\mu}\rho_{\tau}^{-1}$ (mg/kg)	Mole Fraction in NAPL X ₁
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Data Set #1						
Heptane250(4.062E-02)(1.040E-01)(1.861E-02)(5.347E+01)(0.2663)Octane2501.055E-023.970E+001.607E+028.530E+010.3193Nonane250(1.104E-02)(4.258E+00)(1.715E+02)(7.427E+01)(0.3245)Nonane250(3.926E-03)6.936E-011.989E+025.040E+010.1663)NAPL saturation = 0.15% $\sum_{x_i = (1.0000)$ $\sum_{x_i = (1.0000)$ $\sum_{x_i = (1.0000)$ Data Set #21.366E-012.499E+011.615E+025.322E+000.2290Hexane1921.366E-012.499E+01(1.616E+02)(1.060E-02)(0.2241)Heptane192(3.968E-02)(1.016E+01)(1.818E+02)(1.445E-02)(0.2602)Octane192(3.968E-02)(1.016E+01)(1.818E+02)(1.445E-02)(0.2602)Octane192(3.637E-03)6.710E-01)(1.873E+02)(2.224E+02)(0.3541)Nonane192(3.637E-03)(6.710E-01)(1.913E+02)(1.038E+01)0.3511Notane192(3.637E-03)(6.710E-01)(1.913E+02)(0.1570)(0.1570)NAPL saturation = 0.02% $\sum_{x_i = (0.9929)}$ $\sum_{x_i = (0.9929)}$ $\sum_{x_i = (0.9929)}$ $\sum_{x_i = (0.9929)}$ Data Set #3 $= 100$ (2.067E-02)(5.233E+00)(9.469E+01)(6.132E-15)(0.1167)Hexane100(2.067E-02)(5.233E+00)(9.469E+01)(8.132E-15)(0.1355)Octane100(2.067E-02)(5.2	Hexane	* * 250	(1.493E-01)	(2.795E+01)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Heptane	250	(4.062E-02)	(1.040E+01)	(1.861E+02)	(5.347E+01)	
Nonane250 $(3.926E-03)$ $(6.710E-01)$ $(2.055E+02)$ $(3.040E+01)$ (0.1663) NAPL saturation = 0.15% $\sum_{x_i} = (1.0000)$ $\sum_{x_i} = (1.0000)$ $\sum_{x_i} = (1.0000)$ Data Set #21.366E-012.499E+011.615E+025.322E+000.2290Hexane192 $(1.378E-01)$ $(2.580E+01)$ $(1.661E+02)$ $(1.060E-02)$ (0.2241) Heptane192 $(3.948E-02)$ $9.749E+00$ $1.751E+02$ $7.114E+00$ 0.2629 Heptane192 $(1.207E-02)$ $(4.653E+00)$ $(1.873E+02)$ (0.2602) Octane192 $(1.207E-03)$ $(6.710E-01)$ $(1.873E+02)$ (0.3546) Nonane192 $(3.637E-03)$ $(6.710E-01)$ $(1.913E+02)$ $(1.057E-02)$ (0.1570) Nonane192 $(3.637E-03)$ $(6.710E-01)$ $(1.913E+02)$ $(1.057E-02)$ (0.1570) Nonane100 $(7.177E-02)$ $(1.344E+01)$ $(8.654E+01)$ $(6.720E-15)$ (0.1167) Hexane100 $(7.177E-02)$ $(1.344E+01)$ $(8.648E+01)$ $(6.720E-15)$ (0.1167) Heptane100 $(2.067E-02)$ $(5.293E+00)$ $(9.469E+01)$ $(8.132E-15)$ (0.1355) Octane100 $(2.263E-03)$ $(2.423E+00)$ $(9.757E+01)$ $(1.364E-15)$ (0.1847) Detane100 $(2.263E-03)$ $(2.423E+00)$ $(9.757E+01)$ $(1.364E-15)$ (0.1847)	Octane	250	(1.104E-02)	(4.258E+00)	(1.715E+02)	(7.427E+01)	
CAPL saturation = 0.15% $\sum_{x_i} = (1.000)$ Data Set #2Hexane1921.366E-012.499E+011.615E+025.322E+000.2290Hexane192(1.378E-01)(2.580E+01)(1.661E+02)(1.060E-02)(0.2241)Heptane192(3.968E-02)(1.016E+01)(1.818E+02)(1.445E-02)(0.2602)Detane192(1.207E-02)(4.653E+00)1.751E+021.083E+010.3511Octane192(1.207E-02)(4.653E+00)(1.873E+02)(2.224E-02)(0.3546)Nonane192(3.637E-03)(6.710E-01)(1.913E+02)(1.087E-02)(0.1570)NAPL saturation = 0.02% $\sum_{x_i} = (0.9929)$ $\sum_{x_i} = (0.9929)$ $\sum_{x_i} = (0.9929)$ Data Set #3Hexane100(7.177E-02)(1.344E+01)(8.654E+01)(6.720E-15)(0.1167)Heptane100(2.067E-02)(5.293E+00)9.471E+01(8.132E-15)(0.1355)Octane100(2.067E-02)(5.293E+00)9.475E+01)(8.132E-15)(0.1355)Octane100(6.285E-03)(2.423E+00)9.758E+01(1.364E-15)(0.1847)1.930E-033.481E-019.965E+01(1.364E-15)(0.1847)	Vonane	250					(0.1663)
Hexane1366E-012.499E+011.615E+025.322E+000.2290Heptane192(1.378E-01)(2.580E+01)(1.661E+02)(1.060E-02)(0.2241)Beptane192(3.968E-02)(1.016E+01)(1.818E+02)(1.445E-02)(0.2602)Octane192(1.207E-02)(4.653E+00)(1.873E+02)(2.224E-02)(0.3546)Nonane192(3.637E-03)6.493E-011.859E+025.438E+000.1570Nonane192(3.637E-03)(6.710E-01)(1.913E+02)(1.087E-02)(0.1540)NAPL saturation = 0.02%7.316E-025.274E+009.471E+01(6.720E-15)(0.1167)Hexane100(7.177E-02)(1.344E+01)(8.648E+01)(6.720E-15)(0.1167)Heptane100(2.067E-02)(5.293E+00)9.471E+01(8.132E-15)(0.1355)Octane100(6.285E-03)(2.423E+00)(9.757E+01)(1.364E-15)(0.1847)1.930E-033.481E-019.965E+01(1.364E-15)(0.1847)	NAPL saturation	n = 0.15%				\sum_{i}	
Hexane 192 (1.378E-01) (2.580E+01) (1.661E+02) (1.060E-02) (0.2241) 3.894E-02 9.749E+00 1.751E+02 7.114E+00 0.2629 (1.9060E-02) (0.2602) (1.016E+01) (1.818E+02) (1.445E-02) (0.2602) 1.160E-02 4.374E+00 1.768E+02 1.083E+01 0.3511 0.0ctane 192 (1.207E-02) (4.653E+00) (1.873E+02) (2.224E-02) (0.3546) 3.601E-03 6.493E-01 1.859E+02 5.438E+00 0.1570 Nonane 192 (3.637E-03) (6.710E-01) (1.913E+02) (1.087E-02) (0.1540) NAPL saturation = 0.02% $\sum_{x_i} = (0.9929)$ Data Set #3 Hexane 100 (7.177E-02) (1.344E+01) (8.654E+01 Hexane 100 (7.177E-02) (5.293E+00 9.471E+01 Heptane 100 (2.067E-02) (5.293E+00) (9.469E+01) (8.132E-15) (0.1167) 2.106E-02 5.274E+00 9.758E+01 Heptane 100 (2.067E-02) (5.293E+00) (9.469E+01) (8.132E-15) (0.1355) 0.01355) Octane 100 (6.285E-03) (2.423E+00 9.758E+01 1.930E-03 3.481E-01 9.965E+01	Data Set #2					•	
Heptane192(3.968E-02)(1.016E+01)(1.818E+02)(1.445E-02)(0.2602)Octane1921.160E-024.374E+001.768E+021.083E+010.3511Octane192(1.207E-02)(4.653E+00)(1.873E+02)(2.224E-02)(0.3546)Nonane192(3.637E-03)6.493E-011.859E+025.438E+000.1570NAPL saturation = 0.02%192(3.637E-03)(6.710E-01)(1.913E+02)(1.087E-02)(0.1540)NAPL saturation = 0.02% $\sum_{x_i} = (0.9929)$ $\sum_{x_i} = (0.9929)$ $\sum_{x_i} = (0.9929)$ Data Set #37.316E-021.339E+018.654E+01(6.720E-15)(0.1167)Heptane100(7.177E-02)(1.344E+01)(8.648E+01)(6.720E-15)(0.1355)Octane100(2.067E-02)(5.293E+00)(9.469E+01)(8.132E-15)(0.1355)Octane100(6.285E-03)(2.423E+00)(9.757E+01)(1.364E-15)(0.1847)1.930E-033.481E-019.965E+011.364E-15)(0.1847)	Hexane	192	(1.378E-01)				
Octane192 $(1.207E-02)$ $(4.653E+00)$ $(1.873E+02)$ $(2.224E-02)$ (0.3546) Nonane192 $3.601E-03$ $6.493E-01$ $1.859E+02$ $5.438E+00$ 0.1570 Nonane192 $(3.637E-03)$ $(6.710E-01)$ $(1.913E+02)$ $(1.087E-02)$ (0.1540) NAPL saturation = 0.02% $\sum_{x_i} = (0.9929)$ Data Set #3 $7.316E-02$ $1.339E+01$ $8.654E+01$ Hexane100 $(7.177E-02)$ $(1.344E+01)$ $(8.648E+01)$ $(6.720E-15)$ (0.1167) Leptane100 $(2.067E-02)$ $(5.293E+00)$ $(9.469E+01)$ $(8.132E-15)$ (0.1355) Octane100 $(6.285E-03)$ $2.415E+00$ $9.758E+01$ $(1.364E-15)$ (0.1847) 1.930E-03 $3.481E-01$ $9.965E+01$ $(1.364E-15)$ (0.1847)	Heptane	192	(3.968E-02)	(1.016E+01)	(1.818E+02)		
Nonane192 $(3.637E-03)$ $(6.710E-01)$ $(1.913E+02)$ $(1.087E-02)$ (0.1540) NAPL saturation = 0.02% $\sum_{x_i} = (0.9929)$ Data Set #3Hexane100 $(7.177E-02)$ $(1.344E+01)$ $(8.654E+01)$ $(6.720E-15)$ (0.1167) Leptane100 $(7.177E-02)$ $(1.344E+01)$ $(8.648E+01)$ $(6.720E-15)$ (0.1167) Heptane100 $(2.067E-02)$ $(5.293E+00)$ $(9.469E+01)$ $(8.132E-15)$ (0.1355) Octane100 $(6.285E-03)$ $(2.423E+00)$ $(9.757E+01)$ $(1.364E-15)$ (0.1847)	Octane	192	(1.207E-02)	(4.653E+00)	(1.873E+02)	(2.224E-02)	
NAPL saturation = 0.02% $\sum_{x_i} = (0.9929)$ Data Set #3T.316E-021.339E+018.654E+01Hexane100(7.177E-02)(1.344E+01)(8.648E+01)(6.720E-15)(0.1167)Leptane100(2.067E-02)(5.293E+00)(9.469E+01)(8.132E-15)(0.1355)Octane100(6.285E-03)(2.423E+00)(9.757E+01)(1.364E-15)(0.1847)1.930E-033.481E-019.965E+01(1.364E-15)(0.1847)	Nonane	192		그는 것 같은 것 같은 것이 있는 것이 없는 것이 없다.			(0.1540)
Hexane $7.316E-02$ $1.339E+01$ $8.654E+01$ 100 $(7.177E-02)$ $(1.344E+01)$ $(8.648E+01)$ $(6.720E-15)$ (0.1167) $2.106E-02$ $5.274E+00$ $9.471E+01$ Heptane 100 $(2.067E-02)$ $(5.293E+00)$ $(9.469E+01)$ $(8.132E-15)$ (0.1355) Octane 100 $(6.285E-03)$ $(2.423E+00)$ $(9.757E+01)$ $(1.364E-15)$ (0.1847) $1.930E-03$ $3.481E-01$ $9.965E+01$	NAPL saturation	n = 0.02%				$\sum_{i=1}^{n}$	$x_i = (0.9929)$
Hexane100 $(7.177E-02)$ $(1.344E+01)$ $(8.648E+01)$ $(6.720E-15)$ (0.1167) $2.106E-02$ $5.274E+00$ $9.471E+01$ Heptane100 $(2.067E-02)$ $(5.293E+00)$ $(9.469E+01)$ $(8.132E-15)$ (0.1355) $6.404E-03$ $2.415E+00$ $9.758E+01$ Octane100 $(6.285E-03)$ $(2.423E+00)$ $(9.757E+01)$ $(1.364E-15)$ (0.1847) $1.930E-03$ $3.481E-01$ $9.965E+01$	Data Set #3						
Heptane 100 (2.067E-02) (5.293E+00) (9.469E+01) (8.132E-15) (0.1355) 0.00000000000000000000000000000000000	Hexane	100	(7.177E-02)	(1.344E+01)	(8.648E+01)	(6.720E-15)	(0.1167)
Octane 100 (6.285E-03) (2.423E+00) (9.757E+01) (1.364E-15) (0.1847) 1.930E-03 3.481E-01 9.965E+01	Heptane	100	(2.067E-02)	(5.293E+00)	(9.469E+01)	(8.132E-15)	(0.1355)
	Octane	100	(6.285E-03)	(2:423E+00)	(9.757E+01)	(1.364E-15)	(0.1847)
	Nonane	100		(3.495E-01)	9.965E+01 (9.965E+01)	(7.434E-15)	(0.0802)

1,1-dichloroethane (1,1-DCA), and 1,1-dichloroethene (1,1-DCE). Spillage, waste-disposal operations, and pipeline leakage of these solvents have resulted in ground water contamination at the site. Previous investigations at the site have revealed silty water-bearing sand units separated by fractured clay units. In some areas, the clays are discontinuous and have allowed DNAPL to migrate to a sand unit 80 feet beneath the ground surface. Pumping tests have confirmed hydraulic communication between the sand units.

Total soil chemical concentrations in four core samples from a single borehole were measured to evaluate the suitability of the site for a pilot-scale test of surfactantenhanced aquifer remediation. The saturation and composition of the DNAPL mixture are important parameters in the decision-making process. The locations of the core samples and the analyzed soil chemical concentrations are shown in Figure 2. The samples are as follows: B-1, located in a sand unit at about 10 feet below ground

Chemical Prop o				ie Ana	lysis
Component i	K₀₀¹ (mĽ/g)	Кн ⁽	[·] S _i (mg/L)	ρι (kg/L)	MW((g/mol)
1,1-dichloroethene	65	0.87	400	1.22	97
1,2-dichloroethane	14	0.038	8690	1.26	9 9 ·
1,1,1-trichloroethane	152	.0.54	720	1.35	133.4
1,1,2-trichloroethane	56	0.031	4500	1.44	133.4
trichloroethene	126	0.3	1100	1.47	131.5
tetrachloroethene	364	0.54	200	1.63	165.8


surface (bgs); B-2, located in a sand unit at about 20 feet bgs; B-3, located in a unit of clayey sand with silt pockets at about 43 feet bgs; and B-4, located in a sand unit at about 80 feet bgs. The volumetric water contents of th core samples were not measured. The porosity and fraction organic carbon content of the sands were assumed


Table 4 NAPLANAL Calculations from Soil Sample Analyses Concentrations Are Normalized by Total Sample Mass. Results Are Rounded to Two Significant Figures.						
component l	Measured Sample Conc. Cl (mg/kg)	Sample Conc. in Aq. Phase C ⁱ w $\phi_w \rho_t^{-1}$ (mg/kg)	Sample Couc. Sorbed C: \$4.0.07 ⁻¹ (mg/kg),	Sample Conc. in NAPL C ^t \omega \omega \overline{r}^1 (mg/kg)	Mole Fraction in NAPL _{Xi}	
Sample B-1			a san yang tang tang tang tang tang tang tang t		실패가 말한 것이지 않는	
1,2-dichloroethane	83	50	0.74	32	0.022	
trichloroethene	356	46	6.4	300	0.032	
tetrachloroethene	1290	27	11	1300	0.23 0.74	
NAPL saturation $= 0.54\%$		~		1500	0.74	
Sample B-2						
1,2-dichloroethane	90	89	17			
1,1,2-trichloroethane	23	22	1.7 1.4			
No NAPL	<i></i>		1.4			
Sample B-3						
1,2-dichloroethane	1170	200	10			
1,1,1-trichloroethane	1170 383	300	4.8	860	0.19	
1,1,2-trichloroethane	200	8.2	1.4	370	0.063	
trichloroethene	1230	24 40	1.5	170	0.029	
tetrachloroethene	3820	18	5.7 7.6	1200 3800	0.20 0.51	
NAPL saturation $= 2.3\%$			1.0	2000	0.51	
Sample B-4						
1,2-dichloroethane	0(00	270				
1,1,1-trichloroethane	9620	370	6.8	9200	0.28	
1,1,2-trichloroethane	4760	12	2.3	4700	0.11	
1,1-dichloroethene	1260 842	19 1.6	1.4	1200	0.028	
trichloroethene	842 10700	1.6 40	0.14	840	0.026	
etrachloroethene	17600	40 9.6	6.8 4.6	11000	0.24	
NAPL saturation $= 17\%$	17000	9.0	4.0	18000	0.32	

to be 0.375 and 0.0015, respectively. These values are equivalent to average values measured by Liljestrand and Charbeneau (1987) in similar shallow sands in the area. Table 3 lists the physical properties attributed to the chlorinated solvents in the core samples.

According to the results of the NAPLANAL calculations, presented in Table 4, only a small amount of DNAPL is present in sample B-1. The ground water in B-2 appears to contain no DNAPL. Samples B-3 and B-4 have calculated NAPL saturations of about 2.3 percent and 17 percent, respectively. The computed NAPL composition in each of these core samples is different. Although PCE appears to be the predominant NAPL component in all samples containing NAPL, the mole fraction of PCE decreases with depth while the TCE and EDC mole fractions increase. This trend suggests historical variations in the composition of infiltrating DNAPL and/or different locations of DNAPL releases having different DNAPL compositions.

In the aforementioned calculations, soil porosity was estimated. Neither porosities nor water contents had been measured for these samples. A graph relating the porosity to the calculated NAPL saturation and compotion for samples B-3 and B-4 is shown in Figure 3. Samples B-3 and B-4 represent soil samples having relatively low and high NAPL saturations, respectively. The graph shows that the uncertainty of the porosity value

on the calculations of NAPL saturation and composition is small considering the relatively small possible range of soil porosity in sandy sediments.

Conclusions

The NAPL saturation algorithm presented in this paper provides a useful tool to investigators involved in site characterization studies at NAPL-contaminated sites. This algorithm allows the quantification of NAPL saturation and NAPL composition in a soil sample from a typical soil chemical analysis. This information is useful in modeling and designing site-specific surfactantenhanced aquifer remediation strategies (e.g., Brown et al. 1994) and partitioning interwell tracer tests (e.g., Jin et al. 1995). The calculations require only the soil information typically gathered in ground water contamination studies, specifically total chemical concentrations, water moisture content, porosity, natural organic content, and specific physical and chemical properties of the contaminants. A PC software program, NAPLANAL, was developed to perform these calculations.

The accuracy of the calculations depends on the accuracy of the input data. A sample's chemical analysis can be compromised by improper sampling and preservation, failure to identify and quantify all organic contaminants, and incomplete extraction of contaminants. In addition, the values of the physical properties of the soil sample and the chemical properties of the NAPL components affect the results. Thus, sensitivity analyses, such as the example shown for porosity, are strongly encouraged. Such sensitivity analyses can be performed easily using NAPLANAL.

Acknowledgements

The authors gratefully acknowledge the useful and constructive comments made by Stan Feenstra and Henry Mott in the review of this paper.

References

- Banerjee, S. 1984. Solubility of organic mixtures in water. Environ. Sci. Technol. 18, no. 8: 587-591.
- Bear, J. 1972. Dynamics of fluids in porous media. New York: American Elsevier.
- Broholm, K., and S. Feenstra. 1995. Laboratory measurements of the aqueous solubility of mixtures of chlorinated solvents. *Environmental Toxicology and Chemistry* 14, no. 1: 9-15.
- Brown, C., G.A. Pope, L.M. Abriola, and K. Sepehrnoori. 1994. Simulation of surfactant-enhanced aquifer remediation. Water Resour. Res. 30, no. 11: 2959-2977.
- Chiou, C.T., P.E. Porter, and D.W. Schmedding. 1983. Partition equilibria of nonionic organic compounds between soil organic matter and water. *Environ. Sci. Technol.* 17, no. 4: 227-231.
- Chiou, C.T., L.J. Peters, and V.H. Freed. 1979. A physical concept of soil-water equilibria for nonionic organic compounds. *Science* 206, no. 4420: 831-832.
- Cline, P.V., J.J. Delfino, and P.S.C. Rao. 1991. Partitioning of aromatic constituents into water from gasoline and other complex solvent mixtures. *Environ. Sci. Technol.* 25, no. 5: 914-920.
- Corey, A.T. 1994. Mechanics of immiscible fluids in porous media. Highlands Ranch, Colorado: Water Resources Publications.
- Drefahl, A., and M. Reinhard. 1995. Handbook for estimating physico-chemical properties of organic compounds. Stanford, California: Stanford University.
- Feenstra, S., D.M. Mackay, and J.A. Cherry. 1991. A method for assessing residual NAPL based on organic chemical concentrations in soil samples. Ground Water Monitoring Review 11, no. 2: 128-136.
- Jin, M., M. Delshad, V. Dwarakanath, D.C. McKinney, G. A. Pope, K. Sepehrnoori, C. Tilburg, and R.E. Jackson. 1995.

Partitioning tracer test for detection, estimation and remediation performance assessment of subsurface nonaqueous phase liquids. *Water Resour. Res.* 31, no. 5: 1201-1211.

- Karickhoff, S. 1984. Organic pollutant sorption in aquatic systems. J. Hydraulic Engineering 110, no. 6: 707-735.
- Karickhoff, S.W., D.S. Brown, and T.A. Scott. 1979. Sorpt of hydrophobic pollutants on natural sediments. Water Research 13, 241-248.
- Lee, L.S., M. Hagwall, J.J. Delfino, and P.S.C. Rao. 1992a. Partitioning of polycyclic aromatic hydrocarbons from diesel fuel into water. *Environ. Sci. Technol.* 26, no. 11: 2104-2110.
- Lee, L.S., P.S.C. Rao, and I. Okuda. 1992b. Equilibrium partitioning of polycyclic aromatic hydrocarbons from coal tar into water. *Environ. Sci. Technol.* 26, no. 11: 2110-2115.
- Liljestrand, H.M., and R.J. Charbeneau. 1987. Analysis and interpretation of batch equilibrium and column studies of the partitioning of chlorinated hydrocarbons to soil materials. Report prepared for Ground-Water Science Consultants, Inc., Houston, Texas.
- Lyman, W.J., W.F. Reehl, and D.H. Rosenblatt. 1990. Handbook of chemical property estimation methods: Environmental behavior of organic compounds. Washington, D.C.: American Chemical Society.
- Mackay, D.M., W.Y. Shiu, A. Maijanen, and S. Feenstra. 1991. Dissolution of nonaqueous phase liquids in groundwater. J. Contam. Hydr. 8, no.1: 23-42.
- Mayer, A.S., and C.T. Miller. 1992. The influence of porous medium characteristics and measurement scale on porescale distributions of residual non-aqueous phase liquids. J. Contam. Hydr. 11, nos. 3,4: 189.
- Mercer, J.W., and R.M. Cohen. 1990. A review of immiscible fluids in the subsurface: Properties, models, characterization, and remediation. J. Contam. Hydr. 7, no. 2: 107-1
- Mercer, J.W., D.C. Skipp, and D. Griffin. 1990. Basic pump and treat ground water remediation technology. EPA/600/ 8-90/003. Ada, Oklahoma: R.S. Kerr Environmental Research Laboratory, EPA.
- Mott, H.V. 1995. A model for determination of the phase distribution of petroleum hydrocarbons at release sites. *Ground Water Monitoring and Remediation* 15, no. 3: 157-167.
- Schwarzenbach, R.P., and J. Westall. 1981: Transport of nonpolar organic compounds from surface water to groundwater: Laboratory sorption studies. *Environ. Sci. Technol.* 15, no. 11: 1360-1366.

Biographical Sketches

Paul Mariner is a senior hydrogeochemist of the Chemical Hydrogeology Group of INTERA Inc. (9111 Research Blvd., Austin, TX 78759). He has an M.S. in hydrology from the University of Arizona and a B.A. in environmental science from the University of Virginia. His e-mail address is pemarine@dpcmail.dukepower.com.

Minquan Jin is a geosystems engineer of the Chemical Hydrogeology Group of INTERA Inc. (9111 Research Blvd., Austin, TX 78759). He has an M.S. and Ph.D. in petroleum and geosystems engineering from the University of Texas. His e-mail address is mjin@dpcmail.dukepower.com.

Dick Jackson is manager of the Chemical Hydrogeology Group of INTERA Inc. (9111 Research Blvd., Austin, 7 78759). He is registered as a professional hydrologist (grou. water) by the American Institute of Hydrology and has a Ph.D. in hydrogeology from the University of Waterloo. His e-mail address is rejackso@dpcmail.dukepower.com.