Sampling and Analysis Relevant to Air-Based Remediation Technologies

> Chung-Rei Mao Chemist USACE EM CX

Overview and Objectives

- Describe general technical project planning approach for site characterization and remediation
- Describe the benefits of proper project planning and how planning supports site closeout
- Describe sampling strategies and technologies for soils, ground water, soil gas, air, and process controls
- Introduce analytical methods and strategies for chemical testing

Technical Project Planning in Support of Air-Based Remediation

- Needs a multi-disciplinary approach
- Focuses on site closeout
- Defines project objectives
- Defines constraints and dependencies
- Determines data needs based on project objectives
- Promotes documentation
 - Planning Worksheets
 - Data Quality Objectives (DQOs)
- Follows USEPA Guidance QA/G-4 on Systematic Planning Using DQO Process Or USACE EM 200-1-2 Technical Project Planning (TPP) Process

What are DQOs?

- Data Quality Objectives (DQOs) are quantitative and qualitative criteria that:
 - Clarify study objectives
 - Define appropriate types of data to collect
 - Specify the tolerable levels of potential decision errors

The 7 Steps of DQO Process

- Step 1 State the problem
- Step 2 Identify the decision
- Step 3 Identify the inputs to the decision
- Step 4 Define the boundaries of the studies
- Step 5 Develop a decision rule
- Step 6 Specify tolerable limits on decision errors
- Step 7 Optimize the design

Stating the Problem

- What is the problem?
- What resources are available?
- What time is available?
- What important social / political issues have an impact on the decision?

Identifying the Decision

- Identify the principal study question
 - Clarify the main issue to be resolved
- Specify the alternative actions that would result from each resolution
 - Associate a course of action with each possible answer
- Define the decision statement that must be resolved to address the problem
 - Combine the principal study question and the alternative actions into a specific decision statement

Identifying Inputs for the Decision

- Focus on what information is needed for the decision
- Identify the variables / characteristics to be measured
- Identify the information needed to establish the action level

Defining the Boundaries

- Define the spatial boundary for the decision
 - Define the geographical area within which decisions apply
 - Define the media of concern
 - Divide each medium into homogeneous strata
- Define the temporal boundary of the decision
 - Determine the time frame to which the study results apply
 - Determine when to study
- Define a scale of decision making
- Identify practical constraints on data collection

Develop a Decision Rule

- Develop an "lf..., then..." statement that incorporates:
 - The population parameter of interest (e.g., mean, maximum, percentile)
 - The scale of decision making (e.g., residential lot size)
 - The action-triggering value
 - The alternative actions

Specify Limits on Decision Errors

- Determine the possible range of the parameter of interest
- Determine baseline condition (null hypothesis)
- Determine consequences of each decision error. Consequences may include:
 - Health risks
 - Ecological risks
 - Political risks
 - Social risks
 - Resource risks

Optimize the Design

- Develop general data collection design alternatives
 - Simple random sampling
 - Simple random sampling with compositing
 - Stratified random sampling
- For each design, develop cost formula, select a proposed method of data analysis, develop method for estimating sample size to correspond to method for data analysis
- Select the most resource-effective design
 - Consider cost, human resources, other constraints
 - Consider performance of design

DQO Process Output

- Qualitative and quantitative framework for a study
- Feeds directly into the Quality Assurance Project Plan (QAPP) which is mandatory for USEPA environmental data collection activities

Develop Conceptual Model

- Develop a mental picture of the site and how it interacts in the environment (sources, hydrogeology)
 - Review site information and data to identify preliminary Conceptual Site Model (CSM)
 - Concept of CSM may be different for different team members
- CSM helps identify data gaps
- Data collected should be focused on adding certainty to CSM
- CSM leads to common understanding of where the site is today

Conceptual Site Model

Minimum components:

- Source
- Environmental setting
 - Topography, surface water hydrology, geology, hydrogeology, land use
- Release mechanism
- Migration pathways
- Exposure routes
- Receptors
- USACE EM 1110-1-1200, CSM for OE/HTRW Projects, ASTM D5979 and E1689

Identify Data Needs

- Data Types examples for air based technologies
 - Locations of municipal wells
 - Stratigraphy
 - Depth to water
 - Soil permeability
 - Location of waste
 - Ground water concentrations
- Data Amount
 - Function of uncertainty, resources
 - Statistical analysis may be appropriate
- Data Location
- Data Quality screening vs. definitive

Summary on Project Planning

- Project planning involves all team members, including stakeholders and regulators
- Agreement on conceptual site model and site closeout statement is critical
- Data needs are governed by project objectives and conceptual site model
- Sampling program is designed to obtain data by most efficient means and is well documented

Sampling Selection Criteria

- Method Selection
 - Sample matrices
 - Contaminant type
 - Sample representativeness
 - Practicality / simplicity
 - Cost
 - Safety
- Layout Selection
 - Judgmental / Biased (soil gas, GW)
 - Random
 - Stratified random
 - Systematic (soil)

- Objectives
- Site history and disposal practices
- Hydrogeology
- Contaminant behavior
- Receptor location
- Statistical significance
- Safety

Visual Sample Plan (VSP)

- VSP is a tool that helps gather the right type, quality, and quantity of data to support confident decisions
- Helps answer following questions:
 - How many samples do I need?
 - Where should I take samples?
 - What decisions do my data support?
 - How confident am I in those decisions?
- Covers many sampling designs: random, systematic, stratified, multi-increment, combined judgment/probabilistic, etc.
- VSP: <u>http://vsp.pnl.gov/</u>

Soil Sampling Objectives

Assessment and remediation

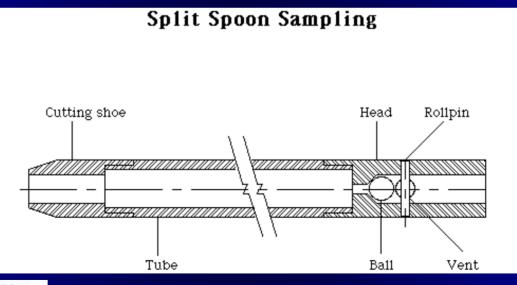
- Determine levels of contamination
- Compare with numeric standards
- Calculate site-specific risk
- Verify cleanup
- Sample for chemical and geotechnical testing
- Method should yield most representative sample that meets DQOs

Soil Sampling Equipment

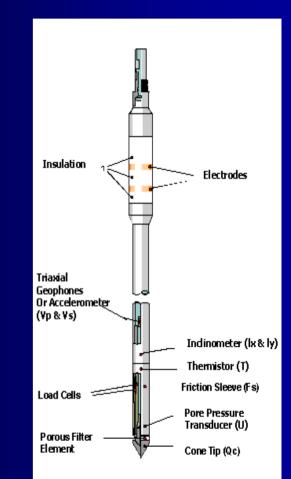
- Select equipment based on:
 - Depth of sample
 - Type of sample
 - Disturbed vs.
 Undisturbed
 - Type of soil
 - Type of contaminants

Sampling Tools

• Soil


- Hand auger
- Split spoon
- Thin-walled sampler
- California modified split spoon
- Continuous sampler
- Cone penetrometer

- Most common sampling method
- Used extensively in different soil types
- Driven with weighted hammer
- Disturbed sample



Cone Penetrometer

- Cone Penetrometer (Geoprobe) provides "real-time" data for subsurface characterization
 - Hydraulically push a steel cone into ground at up to 40K pounds of pressure to 150 feet depth typically
 - Limited sample volume, no cuttings to deal with
 - Difficult to penetrate sites with large boulders or rock
 - Sensors on the cone classify soil type
 - Chemical sensors available for organic compounds, metals, radioactivity, explosives, soil moisture, etc.

Sampling Procedures

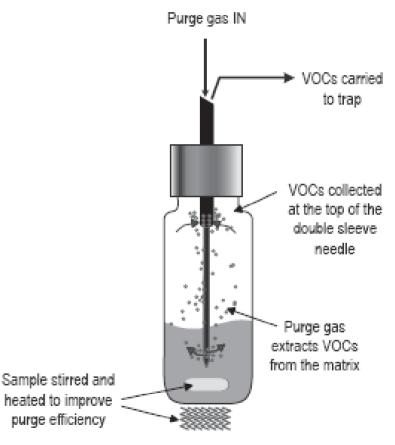
Discrete Sampling

 Taken from one relatively small depth interval in one borehole or at one sample location

Composite Sampling

 Mixture of discrete samples taken at a certain depth from a number of locations or from a number of depths in a single borehole; "physical averaging"

SW-846 Method 5035


- Over half of total volatile organics lost within 10 min of sampling by conventional means (jars, cores with Teflon liners)
- Samples must be either sealed immediately (10 seconds) and not opened again <u>or</u> placed in extraction solvent (water or methanol)
- Low-level vs. high-level sample collection
- Screen sample, check for carbonates
- EnCore Sampler, sodium bisulfate, or methanol preservation
- Refer USACE EM 200-1-3, App E.4 or ASTM D6418 for more detail

Soil Sampling for VOCs

USEPA SW-846 Method 5035A:

Closed-System Purgeand-Trap and Extraction for Volatile Organics in Soil and Waste Samples

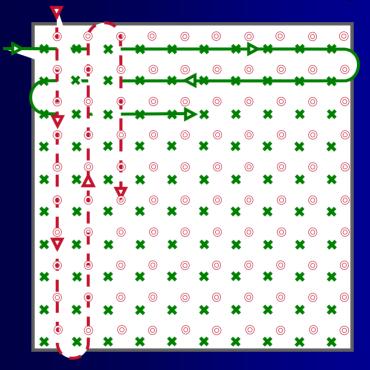
Sample Purging: Soil Mode

EnCore Samplers

- Disposable core type sampler
- Approved for sampling by USEPA for Method 5035A
- Advantages:
 - Disposable
 - Easy to use
- Disadvantages:
 - Expense ~\$8 each
 - Not effective in some soils
 - Short field holding time

Multi-Increment Sampling (MIS)

- Composite sampling protocol for a single analytical sub-sample having all constituents in exactly the same proportion as a specifically defined volume of soil in the field (a sampling unit / decision unit)
 - Representative estimate of mean analyte concentration
 - Highly reproducible / scientifically defensible (RSD <15%)
- All soil constituents are heterogeneously distributed
 - Compositional (micro-scale, particulate)
 - Distributional (macro-scale, non-uniform distribution)
 - Every point in the field Sampling Unit has equal probability of being included in analyzed aliquot
- Most often applied to surface soil, but can be used for subsurface. Requires multiple borings
- Confirmation after treatment



Discrete vs. MIS Sampling

Discrete Sampling

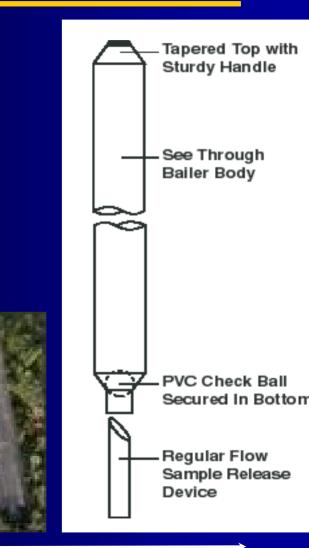
- ▲ Collection points for 100 discrete samples
- ▲ Typically only a few discrete samples are collected

Multi-Increment Sampling

 Increment collection points for two replicate MI samples (100 increments each)

MIS is a 2-Part Process

- Controls error due to heterogeneity
- Field sample collection:
 - Collect multiple (30 100) increments (discrete)
 - Of uniform size
 - In an unbiased manner
 - From the entire volume of soil to be represented (Sampling Unit)
 - Combine increments into a single sample (1 2 kg dry weight)
- Laboratory processing and sub-sampling:
 - Particle size reduction (drying / sieving / possibly grinding)
 - Representative sub-sampling (multi-increment or rotary sectorial splitter)

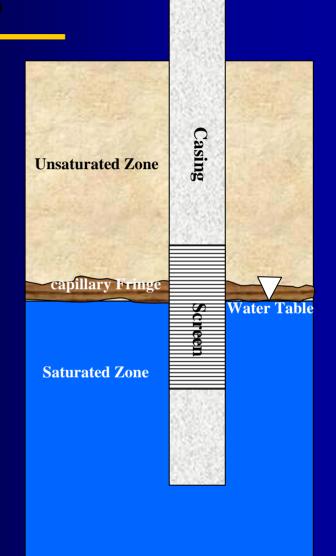

Sampling Procedures Ground Water Sampling

- Ground Water and product sampling
 - Equipment
 - Bailers
 - Pumps
 - Procedures
 - Purge and low-flow sampling
 - No-purge sampling

Bailers

- Readily available
- Inexpensive
- Time consuming
- Physically demanding
- Aeration of sample (not recommended for VOCs)
- Dedicated use

Sampling Procedures (cont.) Ground Water Sampling


• Pumps

- Bladder pumps
- Suction-lift pumps (peristaltic pump)
- Submersible pumps
- Inertial pumps (direct push)

Sampling for LNAPLS

- Low density & solubility
- Occupies capillary fringe
- Well must be screened across water table
- Sample / measure LNAPL
 - Tape, interface probe, clear
 Teflon bailer

Sampling for DNAPLS

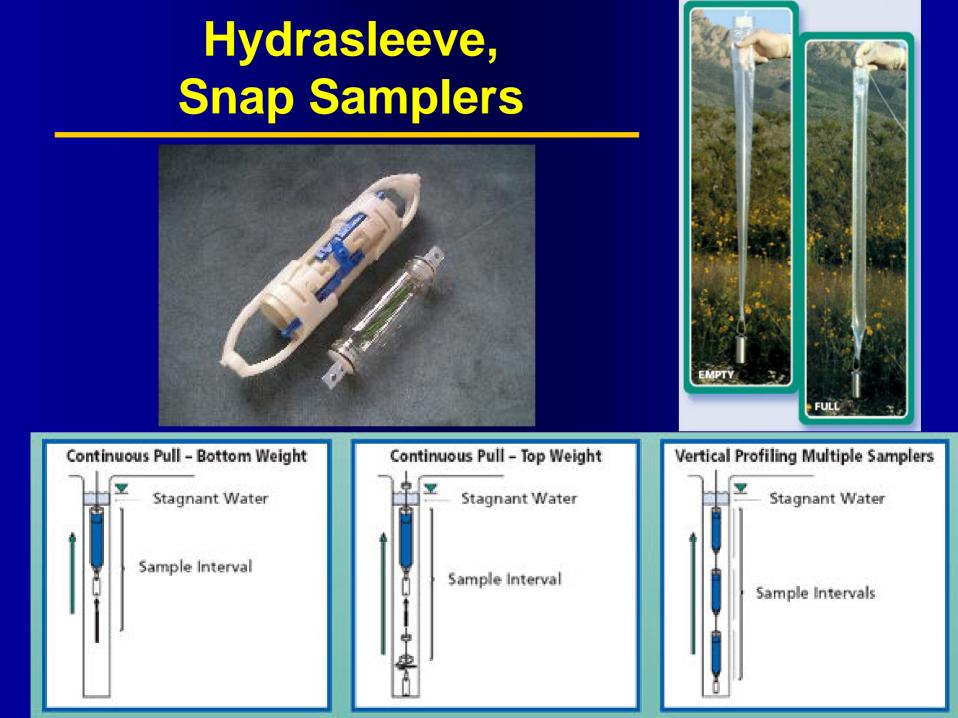
- High density sinks
- Low solubility
- Screened down to confining layer
- Measure DNAPL layer prior to purging well
 - Interface probe
- Sample with dual check valve bailer
- Use weighted sampler or pump

Low-Flow Sampling Procedures

- Minimize disturbance to well and ground water
- Sound water level
- Set pump slowly to point midway in screened interval
- Pump at rate that results in minimal drawdown, laminar flow from formation to pump (Target < 4 inch, 100 – 500 ml/min, but this is only guide)
- Monitor pH, conductivity, temperature, redox, DO, turbidity in flow-through cell
- When parameters stable, take sample, not based on purge volume. DO and turbidity often last to stabilize

No-Purge Samplers

- Passive Diffusion Bag Samplers (PDBs)
 - Low density polyethylene (LDPE) bags filled with lab grade water
 - Bags set in screened interval for period of time
 - Contaminants of right molecular size diffuse into bag and reach equilibrium
 - Retrieve bag, analyze
 - Less waste, less labor, better recovery
 - Comparability issues, consider vertical stratification
- Hydrasleeve, Snap sampler
- ITRC Guidance



Passive Samplers (cont.)

Soil Gas Sampling Applications

- Locate source(s)
- Design air-based remediation
- Track performance of air-based technologies

Soil Gas Sampling Uncertainty and Limitations

- Lateral transport of vapors
- Subsurface stratification
 - Unsaturated zone
 - Ground water plume
- Surface coverings
- Precipitation / atmospheric conditions
- Other sources
- Analytical uncertainties

Passive Soil Gas Sampling

- Sorbent material allowed to equilibrate with soil gas (days, weeks)
- Retrieve and desorb mass, quantify
- Qualitative evaluation of mass correlate with hot spots. Grid for characterizing large areas
- Takes time
- Relatively inexpensive

Active Soil Gas Sampling

- Drive probe or drill borehole
- Seal to prevent atmospheric air entry
 - Probe seal, grout seal, packer
 - Check for leaks, ambient air interferences
- Draw vacuum, purge air from hole
 - Look at concentrations as *f*(purge volume)
- Take sample, analyze on- or off-site
- Rapid results possible
- Areal survey shallow depths, vertical profiling
- Partitioning of vapors, correlation with soil samples, and interpretation
- Sampling of SVE systems wells under vacuum

Air Sampling Techniques

- Ambient air sampling
 - USACE EP 1110-1-21 (Air Pathway Analysis)
 - USACE EM 200-1-5 (Fixed-Fenceline)
 - USEPA TO-Methods
 - EPA/600/4-84/041
 - EPA/625/R-96/010b)
- Point source emission / remedial process sampling
 - 40 CFR 60, 61, 266
 - USEPA SW-846 Chapter 10
- Surface area emission flux
 - ASTM D 5314

Air Sampling

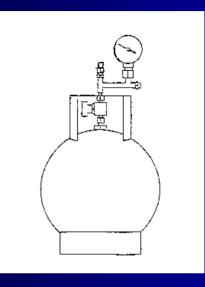
Direct measurement with on-site instruments
 NO_x, SO₂, O₃, NH₃, H₂S, CO, VOCs, PM, etc.

Air Sampling Sampling Techniques

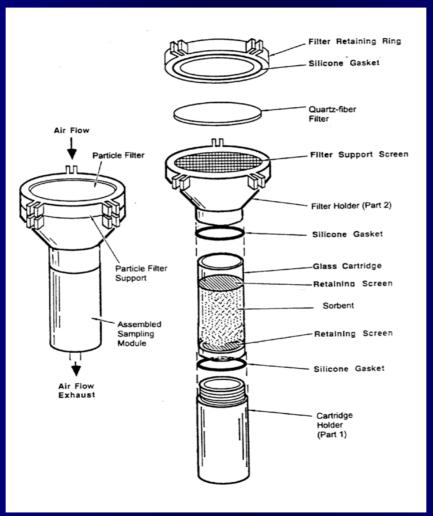
Whole Air Samples

- Plastic bags (Tedlar)
- Metal canisters (Summa)
- Glass globes
- Component Samples
 - Filtered sample media
 - Solid sorbent media (resin)
 - Trapping liquid (acid impingers, solvents)

Tedlar Bags



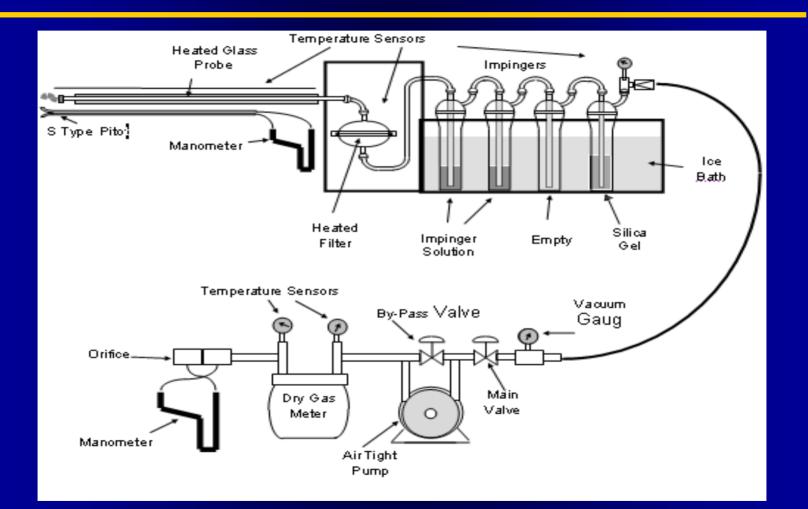
Metal "Summa" Canisters



Solid Sorbent Media Cartridge

Point Source Emission / Remedial Process' Sampling Scope / Application Scenarios

- Regulatory emission compliance
- System process'
 - Optimize operating parameters at start-up
 - Evaluate efficiency / performance
- Air pollution control system performance verification



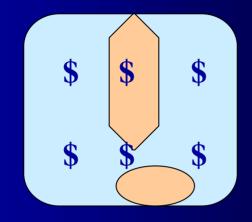
Point Source Sampling Sampling Techniques

- Continuous Emission Monitors (CEMs)
- Extractive Sample Collection Analysis
 - Sample is extracted from source (i.e., stack) with a vacuum pump through a <u>Sampling</u> <u>Train</u> designed to capture project-specific contaminants

Stack Sampling Train Schematic

Analytical Methods and Strategies

Chung-Rei Mao Chemist USACE EM CX



Selection of Analytical Techniques / Methods

- Review candidate analytical technologies for measuring project COCs
- Consider strengths and limitations of analytical options against critical decision elements
- Consider site conditions / constraints
- Potential method modifications to accommodate project analytical needs

Data Quality vs. Information Value

Fewer "higher quality" data points \Rightarrow Lower information value of the data set

Less likely

¢¢¢¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢¢ ¢¢¢¢¢¢¢¢¢

Many "lower quality" data points \Rightarrow Higher information value of the data set

More likely

Goal: A defensible site decision that reflects the "true" site condition

Analytical Strategy

- Establish an analytical strategy that <u>integrates</u> <u>a variety of analytical techniques</u> to help
 - Direct fieldwork real-time to areas requiring evaluation
 - Focus \$\$\$ analysis to provide the most benefit
 - Provide more <u>site information value</u>: Greater sample density results in a larger data-set and improves overall characterization of the site and media
 - Implements a standard of checks / balances based on data comparability that can provide the extra assurance in ALL the data supporting project decisions

Screening Data

- <u>Screening Data</u> are generated by rapid, less precise methods of analysis with less rigorous sample preparation
- Provide analyte identification and quantification, although quantification may be relatively imprecise
- Require 10% of the screening data be confirmed using analytical methods, QA/QC procedures, and criteria associated with <u>Definitive Data</u> to be considered "data of known quality"
- May be generated on-site or at an off-site location
- Often used for process control

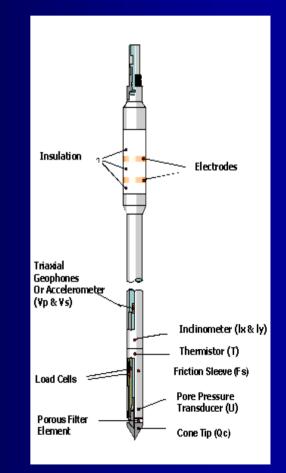
Definitive Data

- Generated using rigorous analytical methods, such as approved USEPA reference methods
- Provide data that are analyte-specific, with confirmation of analyte identity and concentration
- Produce tangible raw data output in the form of paper printouts or electronic files
- Must determine either analytical or total measurement error in order to be considered definitive data
- May be generated on-site or at an off-site location, as long as additional QA/QC requirements are satisfied
- Often used to demonstrate compliance with regulatory requirements

Triad

- Three components:
 - 1. Systematic Planning
 - Scientifically defensible
 - Identification of decisions to be made
 - Development of a Conceptual Site Model (CSM)
 - Evaluation of decision uncertainty
 - 2. Dynamic Work Strategies
 - Flexible to adapt information generated by real-time measurement technologies
 - As information gathered, make decisions on subsequent activities to meet cleanup goals
 - 3. <u>Real-Time Measurement Technologies</u>
 - Any data generation mechanism that supports realtime decision-making, including:
 - Field-based measurement technologies
 - Rapid turn-around lab analysis

Organic Chemical Characterization Techniques


Screening

- Hand-held survey instruments (PID / FID)
- Colorimetric tests / indicators
- Immunoassay
- SCAPS Laser-Induced Fluorescence (LIF) probe and other sensors
- Definitive
 - Gas Chromatograph (GC)
 - Gas Chromatograph / Mass Spectrometer (GC/MS)
 - High Performance Liquid Chromatograph (HPLC)
 - Fourier Transform Infrared Spectrometer (FTIR)

Direct Push Technology Sensors

- Electrical Resistivity
- Membrane Interface Probe
- Laser-Induced Fluorescence (Petroleum, Oil, & Lubricant)
- Thermal Desorption VOC
- Hydrosparge VOC Sensing
- Multiport Sampler

Summary

- Describe general technical project planning approach for site characterization and remediation
- Describe the benefits of proper project planning and how planning supports site closeout
- Describe sampling strategies and technologies for soils, ground water, soil gas, air, and process controls
- Introduce analytical methods and strategies for chemical testing

- DQO USEPA QA/G-4 <u>http://www.epa.gov/QUALITY/qs-docs/g4-final.pdf</u>
- TPP USACE EM 200-1-2 http://140.194.76.129/publications/eng-manuals/em200-1-2/entire.pdf
- Low Flow USEPA/540/S-95/504 <u>http://www.epa.gov/swertio1/tsp/issue.htm</u>
- USEPA Chemical Testing SW-846 <u>http://www.epa.gov/osw/hazard/testmethods/sw846/online/index.htm</u>
- USEPA Air Toxic Methods TO <u>http://www.epa.gov/ttnamti1/airtox.html</u>
- DoD Quality Systems Manual: http://www.navylabs.navy.mil/QSM%20Version%204.1.pdf
- USACE Engineer Manuals
 <u>http://140.194.76.129/publications//eng-manuals/</u>

QUESTIONS?

Chung-Rei Mao Chemist USACE EM CX

