FINAL 7-17-2014

Provisional Peer-Reviewed Toxicity Values for

Perfluorobutane Sulfonate (CASRN 375-73-5) and Related Compound Potassium Perfluorobutane Sulfonate (CASRN 29420-49-3)

Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268

AUTHORS, CONTRIBUTORS, AND REVIEWERS

CHEMICAL MANAGERS

Evisabel A. Craig, PhD National Center for Environmental Assessment, Cincinnati, OH

Q. Jay Zhao, PhD, DABT National Center for Environmental Assessment, Cincinnati, OH

DRAFT DOCUMENT PREPARED BY

National Center for Environmental Assessment, Cincinnati, OH

PRIMARY INTERNAL REVIEWERS

Paul G. Reinhart, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC

Suryanarayana Vulimiri, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC

Questions regarding the contents of this document may be directed to the U.S. EPA Office of Research and Development's National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300).

TABLE OF CONTENTS

COMMONLY USED ABBREVIATIONS AND ACRONYMS	iii
BACKGROUND	1
DISCLAIMERS	1
QUESTIONS REGARDING PPRTVs	
INTRODUCTION	
REVIEW OF POTENTIALLY RELEVANT DATA (NONCANCER AND CANCER)	4
HUMAN STUDIES	7
Oral Exposures	7
Inhalation Exposures	
ANIMAL STUDIES	7
Oral Exposures	
Inhalation Exposures	
OTHER DATA	
Tests Evaluating Genotoxicity and Mutagenicity	
Metabolism/Toxicokinetic Studies	
DERIVATION OF PROVISIONAL VALUES	
DERIVATION OF ORAL REFERENCE DOSES	
Derivation of Subchronic p-RfD	
Derivation of Chronic Provisional RfD (Chronic p-RfD)	
DERIVATION OF INHALATION REFERENCE CONCENTRATIONS	
CANCER WEIGHT-OF-EVIDENCE DESCRIPTOR	
DERIVATION OF PROVISIONAL CANCER RISK VALUES	
APPENDIX A. SCREENING PROVISIONAL VALUES	
APPENDIX B. DATA TABLES	
APPENDIX C. BENCHMARK DOSE MODELING RESULTS	
APPENDIX D. REFERENCES	45

COMMONLY USED ABBREVIATIONS AND ACRONYMS

α2u-g	alpha 2u-globulin	MN	micronuclei
ACGIH	American Conference of Governmental	MNPCE	micronucleated polychromatic
	Industrial Hygienists		erythrocyte
AIC	Akaike's information criterion	MOA	mode-of-action
ALD	approximate lethal dosage	MTD	maximum tolerated dose
ALT	alanine aminotransferase	NAG	N-acetyl-β-D-glucosaminidase
AST	aspartate aminotransferase	NCEA	National Center for Environmental
atm	atmosphere		Assessment
ATSDR	Agency for Toxic Substances and	NCI	National Cancer Institute
	Disease Registry	NOAEL	no-observed-adverse-effect level
BMD	benchmark dose	NTP	National Toxicology Program
BMDL	benchmark dose lower confidence limit	NZW	New Zealand White (rabbit breed)
BMDS	Benchmark Dose Software	OCT	ornithine carbamoyl transferase
BMR	benchmark response	ORD	Office of Research and Development
BUN	blood urea nitrogen	PBPK	physiologically based pharmacokinetic
BW	body weight	PCNA	proliferating cell nuclear antigen
CA	chromosomal aberration	PND	postnatal day
CAS	Chemical Abstracts Service	POD	point of departure
CASRN	Chemical Abstracts Service Registry	POD _[ADJ]	duration-adjusted POD
CASIN	Number	QSAR	quantitative structure-activity
CBI	covalent binding index	QBAR	relationship
СНО	Chinese hamster ovary (cell line cells)	RBC	red blood cell
CL	confidence limit	RDS	replicative DNA synthesis
CNS	central nervous system	RfC	inhalation reference concentration
CPN	chronic progressive nephropathy	RfD	oral reference dose
CYP450	cytochrome P450	RGDR	
DAF		RNA	regional gas dose ratio ribonucleic acid
DAF DEN	dosimetric adjustment factor	SAR	
	diethylnitrosamine		structure activity relationship
DMSO	dimethylsulfoxide	SCE SD	sister chromatid exchange
DNA	deoxyribonucleic acid		standard deviation
EPA	Environmental Protection Agency	SDH	sorbitol dehydrogenase
FDA	Food and Drug Administration	SE SCOT	standard error
FEV1	forced expiratory volume of 1 second	SGOT	glutamic oxaloacetic transaminase, also
GD	gestation day	CODT	known as AST
GDH	glutamate dehydrogenase	SGPT	glutamic pyruvic transaminase, also
GGT	γ-glutamyl transferase	CCD	known as ALT
GSH	glutathione	SSD	systemic scleroderma
GST	glutathione-S-transferase	TCA	trichloroacetic acid
Hb/g-A	animal blood-gas partition coefficient	TCE	trichloroethylene
Hb/g-H	human blood-gas partition coefficient	TWA	time-weighted average
HEC	human equivalent concentration	UF	uncertainty factor
HED	human equivalent dose	UFA	interspecies uncertainty factor
i.p.	intraperitoneal	UF_{H}	intraspecies uncertainty factor
IRIS	Integrated Risk Information System	UFs	subchronic-to-chronic uncertainty factor
IVF	in vitro fertilization	UFD	database uncertainty factor
LC ₅₀	median lethal concentration	U.S.	United States of America
LD ₅₀	median lethal dose	WBC	white blood cell
LOAEL	lowest-observed-adverse-effect level		

PROVISIONAL PEER-REVIEWED TOXICITY VALUES FOR PERFLUOROBUTANE SULFONATE (CASRN 375-73-5) AND RELATED COMPOUND POTASSIUM PERFLUOROBUTANE SULFONATE (CASRN 29420-49-3)

BACKGROUND

A Provisional Peer-Reviewed Toxicity Value (PPRTV) is defined as a toxicity value derived for use in the Superfund Program. PPRTVs are derived after a review of the relevant scientific literature using established Agency guidance on human health toxicity value derivations. All PPRTV assessments receive internal review by a standing panel of National Center for Environment Assessment (NCEA) scientists and an independent external peer review by three scientific experts.

The purpose of this document is to provide support for the hazard and dose-response assessment pertaining to chronic and subchronic exposures to substances of concern, to present the major conclusions reached in the hazard identification and derivation of the PPRTVs, and to characterize the overall confidence in these conclusions and toxicity values. It is not intended to be a comprehensive treatise on the chemical or toxicological nature of this substance.

The PPRTV review process provides needed toxicity values in a quick turnaround timeframe while maintaining scientific quality. PPRTV assessments are updated approximately on a 5-year cycle for new data or methodologies that might impact the toxicity values or characterization of potential for adverse human health effects and are revised as appropriate. It is important to utilize the PPRTV database (<u>http://hhpprtv.ornl.gov</u>) to obtain the current information available. When a final Integrated Risk Information System (IRIS) assessment is made publicly available on the Internet (<u>http://www.epa.gov/iris</u>), the respective PPRTVs are removed from the database.

DISCLAIMERS

The PPRTV document provides toxicity values and information about the adverse effects of the chemical and the evidence on which the value is based, including the strengths and limitations of the data. All users are advised to review the information provided in this document to ensure that the PPRTV used is appropriate for the types of exposures and circumstances at the site in question and the risk management decision that would be supported by the risk assessment.

Other U.S. Environmental Protection Agency (EPA) programs or external parties who may choose to use PPRTVs are advised that Superfund resources will not generally be used to respond to challenges, if any, of PPRTVs used in a context outside of the Superfund program.

QUESTIONS REGARDING PPRTVs

Questions regarding the contents and appropriate use of this PPRTV assessment should be directed to the EPA Office of Research and Development's National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300).

INTRODUCTION

Perfluorobutane sulfonate (PFBS) (CASRN 375-73-5) and its related salt called potassium perfluorobutane sulfonate (K⁺PFBS) (CASRN 29420-49-3) are polyfluorinated compounds (PFCs) manufactured for use in paints, cleaning agents, and water-impermeable products (<u>Rosal et al., 2010</u>). Concerns about PFBS and other PFCs stem from the resistance of these compounds to hydrolysis, photolysis, and biodegradation, which leads to their persistence in the environment (<u>Sundström et al., 2012</u>). The chemical formula of PFBS is C₄HF₉O₃S and the chemical formula of K⁺PFBS is C₄F₉KO₃S. Their respective chemical structures are presented in Figure 1. K⁺PFBS differs from PFBS by having a potassium atom. A table of physicochemical properties for PFBS and K⁺PFBS is provided below (see Table 1).

PFBS

K+PFBS

Figure 1. Chemical Structures of PFBS and K⁺PFBS

Table 1. Physicochemical Properties of PFBS (CASRN 375-73-5) and Related Compound K+PFBS (CASRN 29420-49-3) ^a					
	Value				
Property (unit)	PFBS (free acid)	K ⁺ PFBS (potassium salt)			
Boiling point (°C)	200	76-84			
Density (g/cm ³ at 71°C)	ND	ND			
Vapor pressure (mm Hg at 20°C)	ND	9.15×10^{-8}			
pH (unitless)	ND	ND			
Solubility in water (mg/L)	56.6 at 24°C	46.2 at 20°C			
Molecular weight (g/mol)	300.10	338.19			
Dissociation constant	NA	Fully dissociated in water over the pH range of 4–9			

^aNICNAS (2005b).

ND = no data; NA = not applicable.

A summary of available toxicity values for PFBS and related compound K⁺PFBS from U.S. EPA and other agencies/organizations is provided in Table 2.

Source/Parameter ^a	Value (Applicability)	Notes	Reference	Date Accessed
Noncancer				
ACGIH	NV	NR	ACGIH (2013)	NA
ATSDR	NV	NR	ATSDR (2013)	NA
Cal/EPA	NV	NR	<u>Cal/EPA (2014a),</u> 2014b)	4-29-2014 ^b
NIOSH	NV	NR	<u>NIOSH (2010)</u>	NA
OSHA	NV	NR	<u>OSHA (2011),</u> <u>2006)</u>	NA
IRIS	NV	NR	U.S. EPA	4-29-2014
Drinking water	NV	NR	<u>U.S. EPA (2012a)</u>	NA
HEAST	NV	NR	<u>U.S. EPA (2011a)</u>	NA
CARA HEEP	NV	NR	<u>U.S. EPA (1994)</u>	NA
WHO	NV	NR	<u>WHO</u>	4-29-2014
Cancer				
IRIS	NV	NR	U.S. EPA	4-29-2014
HEAST	NV	NR	<u>U.S. EPA (2011a)</u>	NA
IARC	NV	NR	IARC (2013)	NA
NTP	NV	NR	<u>NTP (2011)</u>	NA
Cal/EPA	NV	NR	<u>Cal/EPA (2014b,</u> (2011)	4-29-2014 ^b

Table 2. Summary of Available Toxicity Values for PFBS (CASRN 375-73-5) and

^aSources: ACGIH = American Conference of Governmental Industrial Hygienists; ATSDR = Agency for Toxic Substances and Disease Registry; Cal/EPA = California Environmental Protection Agency; CARA = Chemical Assessments and Related Activities; HEAST = Health Effects Assessment Summary Tables; HEEP = Health and Environmental Effects Profile; IARC = International Agency for Research on Cancer; IRIS = Integrated Risk Information System; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; WHO = World Health Organization.

^bThe Cal/EPA Office of Environmental Health Hazard Assessment (OEHHA) Toxicity Criteria Database (http://oehha.ca.gov/tcdb/index.asp) was also reviewed and found to contain no information on PFBS.

NA = not applicable; NV = not available; NR = not relevant.

Literature searches were conducted on sources published from 1900 through April 2014 for studies relevant to the derivation of provisional toxicity values for PFBS and related compound K⁺PFBS. The following databases were searched by chemical name, synonyms, or CASRN: ACGIH, ANEUPL, ATSDR, BIOSIS, Cal/EPA, CCRIS, CDAT, ChemIDplus, CIS, CRISP, DART, EMIC, EPIDEM, ETICBACK, FEDRIP, GENE-TOX, HAPAB, HERO, HMTC, HSDB, IARC, INCHEM IPCS, IPA, ITER, IUCLID, LactMed, NIOSH, NTIS, NTP, OSHA, OPP/RED, PESTAB, PPBIB, PPRTV, PubMed (toxicology subset), RISKLINE, RTECS, TOXLINE, TRI, U.S. EPA IRIS, U.S. EPA HEAST, U.S. EPA HEEP, U.S. EPA OW, and U.S. EPA TSCATS/TSCATS2. The following databases were searched for toxicity values or exposure limits: ACGIH, ATSDR, Cal/EPA, U.S. EPA IRIS, U.S. EPA HEAST, U.S. EPA HEEP, U.S. EPA OW, U.S. EPA TSCATS/TSCATS2, NIOSH, NTP, OSHA, and RTECS.

REVIEW OF POTENTIALLY RELEVANT DATA (NONCANCER AND CANCER)

Tables 3A and 3B provide an overview of the relevant database for PFBS and related compound K⁺PFBS and include all potentially relevant repeated-dose, short-term-, subchronic-, and chronic-duration studies. Principal studies are identified in bold. The phrase "statistical significance," used throughout the document, indicates a *p*-value <0.05, unless otherwise noted.

Category	Number of Male/Female, Strain, Species, Study							1
TT	Type, Study Duration	Dosimetry ^a	Critical Effects	NOAEL ^a	BMDL/ BMCL ^a	LOAEL ^a	Reference (Comments)	Notes
Human							•	
			1. Oral (mg/kg-day) ^a					
ND								
			2. Inhalation (mg/m ³) ^a					
ND								
Animal								
			1. Oral (mg/kg-day) ^a					_
Subchronic ^c	10/10, S-D rat, K ⁺ PFBS administered by gavage, 7 days/week, 90 days	0, 60, 200, 600	Increased incidence of renal hyperplasia in males and females	200	78.7	600	<u>Lieder et al.</u> (2009a)	PR, PS
Chronic ^d	ND			•	l			
Developmental	ND							
Reproductive	30/30, S-D rat, K ⁺ PFBS administered by gavage, two-generation reproductive study	F0 adults: 0, 30, 100, 300, 1,000 F1 adults: 0, 30, 100, 300, 1,000	F0 and F1 adults: increased incidence of hyperplasia and focal papillary edema in the kidneys of males and females. F2 pups: no dose-related effects at the highest dose tested (1,000 mg/kg-day)	100	26.6 (based on increased incidence of kidney hyperplasia in F0 females)	300	Lieder et al. (2009b)	PR

^aDosimetry: Values expressed in mg/kg-day for oral noncancer effects. ^bNotes: PS = principal study; PR = peer reviewed. ^cSubchronic = repeated exposure for >90 days ≤ 10% lifespan (based on 70-year typical lifespan). ^dChronic = repeated exposure for >10% lifespan.

ND = no data; S-D = Sprague-Dawley.

								1
Category	Number of Male/Female, Strain, Species, Study Type, Study Duration	Dosimetry ^a	Critical Effects	NOAEL	BMDL/ BMCL ^a	LOAEL ^a	Reference (Comments)	Notes
Human								
			1. Oral (mg/kg-day)					
ND								
			2. Inhalation (mg/m ³)					
ND								
Animal								
			1. Oral (mg/kg-day)					
ND								
			2. Inhalation (mg/m ³)					

ND = no data.

HUMAN STUDIES

Oral Exposures

No studies have been identified for either PFBS or K⁺PFBS.

Inhalation Exposures

No studies have been identified for either PFBS or K⁺PFBS.

ANIMAL STUDIES

Oral Exposures

The effects of oral exposure of animals to K⁺PFBS were evaluated in one subchronic-duration and one two-generation reproductive toxicity study. No oral studies in animals have been identified for PFBS.

Subchronic-duration Studies

Lieder et al. (2009a)

In a peer-reviewed subchronic-duration toxicity study performed by Lieder et al. (2009a), 10 Sprague-Dawley rats/sex/dose were administered K⁺PFBS daily via gavage for approximately 90 days (90–93 days). Doses of 0, 60, 200, or 600 mg/kg-day K⁺PFBS were given to rats at approximately the same time each day. Animals were housed individually in steel, wire-bottomed cages and fed with Certified Rodent Diet R #5002 (PMI Nutrition International, Inc, St. Louis, MO) ad libitum throughout the study. K⁺PFBS (Lot #120k0252, 98.2% pure) was provided by 3M Company (Maplewood, MN). Dose formulations were prepared by dissolving K⁺PFBS in the dosing vehicle, aqueous carboxymethyl cellulose (0.1% CMC, medium viscosity). The study authors reported using Good Laboratory Practice (GLP) principles as well as adherence to test guidelines OECD 408 and OPPTS 870.3100.

The rats were observed twice daily during the study: once before dosing and approximately 1 hour after each dose administration. Detailed clinical observations were conducted for all rats once before the first dose and at least once weekly thereafter. The eyes of all rats were examined by a veterinary ophthalmologist prior to the first dose and at termination of the study. Body weights were recorded prior to treatment, weekly during treatment, and at sacrifice. Food consumption was determined prior to treatment and weekly during treatment. Blood was collected on the day following the last administration of the test substance (Days 91–94 of the study), and the following hematological parameters were evaluated: erythrocyte count (RBC), hematocrit (HCT), hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), total leukocyte count (WBC), differential leukocyte count, platelet count (PLAT), mean platelet volume (MPV), cell morphology, prothrombin time (PT), and activated partial thromboplastin time (APTT). Two milliliters of blood were processed to obtain serum and analyze the following clinical chemistry parameters: total protein (TP), triglycerides (TRI), albumin (A), globulin (G), albumin/globulin ratio (A/G), glucose (GLU), cholesterol (CHOL), total bilirubin (TBILI), blood urea nitrogen (BUN), creatinine (CREAT), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALK), calcium (Ca), phosphorus (PHOS), sodium (Na), potassium (K), and chloride (Cl). At the scheduled termination, a gross necropsy of the thoracic, abdominal, and pelvic viscera was performed. The liver, kidney, spleen, thymus, adrenals, gonads, heart, and brain were weighed. All tissues from rats in the 0 and 600 mg/kg-day dose groups were histologically examined. In

addition, the nasal cavities, nasal turbinates, stomachs, and kidneys of rats in the 60 and 200 mg/kg-day groups were evaluated microscopically.

No treatment-related effects were noted on food consumption, mortality, or behavior. One male rat in the high-dose group died on Day 85 of the study. However, the study authors deemed this death to be unrelated to the administration of K⁺PFBS because the sudden onset of clinical observations such as urine-stained abdominal fur, decreased motor activity, and dehydration indicated a possible injury. Body weights for both male and female rats were similar for all four dose groups throughout the treatment period (see Table B-1). As shown in Table B-2, males in the 60, 200, and 600 mg/kg-day dose groups showed statistically significantly decreased (5–17%) absolute and relative spleen weights (spleen-to-body weight ratio) compared to controls. However, these reductions were not dose dependent and did not occur in female rats treated with K⁺PFBS (see Table B-3). No other treatment-related organ weight effects were observed (see Tables B-2 and B-3). Chloride levels were statistically significantly increased (3%) in male rats, but not in females, in the 600 mg/kg-day group (see Table B-4). Also, average total protein and albumin were statistically significantly decreased (7 and 10%, respectively) in female rats, but not in males, in the 600 mg/kg-day group (see Table B-4). No other changes in clinical chemistry measurements were reported in male or female rats. Dose-dependent and statistically significant decreases (5-7.5%) in HGB as well as HCT levels were observed in males, but not females, in the 200 and 600 mg/kg-day groups (see Table B-5). There was also a statistically significant decrease (7.3%) in RBCs in males in the 600 mg/kg-day group (see Table B-5). No other treatment-related changes in hematological parameters (e.g., MCV, MCH, and MCHC) were reported in males or females; thus, the biological significance of these small changes in HGB, HCT, and RBC levels is unclear. Statistically significant histopathological findings included increased incidence of hyperplasia in the medullary and papillary tubules of the kidneys of both sexes in the 600 mg/kg-day group (see Table B-6). Hyperplasia and necrosis were also observed in the stomachs of males and females in the 600 mg/kg-day group (see Table B-6), but the study authors considered this effect to be the result of repeated gavage dosing. No other biologically significant histopathological findings were reported. Based on histopathological findings in the kidneys, the high dose of 600 mg/kg-day is considered the lowest-observed-adverse-effect level (LOAEL) and the mid dose of 200 mg/kg-day is identified as the corresponding no-observed-adverse-effect level (NOAEL) for both male and female rats.

Chronic-duration Studies

No studies have been identified.

Reproductive Studies

Lieder et al. (2009b)

In a peer-reviewed, two-generation reproductive toxicity study performed by Lieder et al. (2009b), Sprague-Dawley rats were administered doses of 0, 30, 100, 300, or 1,000 mg/kg-day K⁺PFBS (Lot #2, 97.9% pure) via gavage using formulations that were prepared by dissolving K⁺PFBS in aqueous carboxymethyl cellulose with highly purified water. The parental (F0) generation consisted of 30 rats/sex/group and received daily doses of K⁺PFBS beginning at 6 weeks of age and lasting until at least 70 days prior to cohabitation. The first generation (F1) rats received the same dose as their respective sires and dams beginning at Lactation Day (LD) 22. Animals were housed individually (except during mating and lactation) in steel, wire-bottomed cages and fed with Certified Rodent Diet R #5002 (PMI Nutrition International,

Inc, St. Louis, MO) ad libitum throughout the study. The study authors reported adherence to test guidelines OECD 416 and OPPTS 870.3800.

For mating, animals were allowed to cohabitate for a maximum of 14 days. Evidence of mating was determined by the presence of spermatozoa in a vaginal smear or copulatory plug and this was considered Gestation Day (GD) 0. For the F0- and F1-generation rats, clinical observations, abortions or premature deliveries, and deaths were recorded before dosing and at 60 minutes postdosing. Body weights and food consumption for F0- and F1-generation rats were recorded weekly prior to conception; on GDs 0, 7, 10, 14, 18, 21, and 25 (if females did not give birth); and on LDs 1, 5, 8, 11, 15, and 22. Body weights and food consumption were also recorded for F1-generation rats upon attainment of sexual maturation. Second generation (F2) pup body weights were recorded on LDs 1, 5, 8, 15, and 22. The F0- and F1-generation rats were evaluated for duration of gestation, fertility and gestation indices, number and sex of offspring, number of implantation sites, condition of dams and litters, litter size, viability index, lactation index, percent survival, and sex ratio. At scheduled termination (after cohabitation for males and on LD 22 for females), F0- and F1-generation rats were euthanized by carbon dioxide (CO₂) asphyxiation, necropsied, and examined for gross lesions. The following organs were individually weighed: brain, kidneys, spleen, ovaries, testes, thymus, liver, adrenal glands, pituitary, uterus with oviducts and cervix, left epididymis, right epididymis, prostate, and seminal vesicles. The study authors stated that histopathological evaluations were performed on the liver and kidneys of all F0 and F1 animals in the control and treatment groups. However, data were only presented for the 300 and 1,000 mg/kg-day treatment groups. For the pituitary, adrenal glands, vagina, uterus, cervix, ovaries, right testis, seminal vesicles, right epididymis, and prostate, histological examinations were only performed on 10 randomly selected rats per sex from the control and 1,000 mg/kg-day groups. All F2-generation pups culled on LD 22 were euthanized by CO₂ asphyxiation and three randomly selected pups per sex per litter were examined for gross lesions. The brain, spleen, liver, thymus, and kidneys from one of the three randomly selected pups per litter were weighed. F1-generation pups were not examined for gross lesions.

No biologically significant reproductive effects were observed in F0- or F1-generation males following K⁺PFBS treatment. At the highest dose, there were statistically significant increases in the percentage of abnormal sperm in F1 animals and decreases in testicular sperm count in F0-generation males (see Table B-7). However, these effects were not dose dependent and were observed in only one generation; thus, they were not considered biologically significant by the study authors. No statistically significant changes in estrous cycling were reported in F0- or F1-generation females treated with K⁺PFBS. No treatment-related weight changes in the gonads were reported in F0- or F1-generation males and females. Fertility parameters and delivery outcomes for F0- and F1-generation dams remained unaffected by K⁺PFBS treatment (see Table B-8). Litter outcomes for F1- and F2-generation pups such as the mean number of stillborn pups, mean pup weight at birth, and mean pup weight at weaning did not exhibit statistically significant changes (see Table B-9). The mean number of live born F1 pups was statistically significantly decreased in the 30 mg/kg-day group, but this change was not dose dependent. The viability index in F1 pups and the lactation index in F1 and F2 pups showed statistically significant changes at various doses but were not dose dependent (see Table B-9).

No significant changes in food consumption were reported in F0- or F1-generation males. The terminal body weights of F0-generation males were not affected by K⁺PFBS treatment (see Table B-10). However, a statistically significant decrease in terminal body weight was noted in F1-generation males in the 1,000 mg/kg-day dose group (see Table B-10). Statistically significant increases in absolute (~12%) and relative (12–21%) liver weight were observed in F0-generation males in the 300 and 1,000 mg/kg-day dose groups (see Table B-10). In contrast, F1-generation males exhibited statistically increased relative liver weight (9%), but not absolute liver weight, only at the highest dose (see Table B-10). No other statistically significant organ weight changes were noted in males. With respect to females, the study authors reported sporadic decreases in food consumption in F0-generation rats in the 300 and 1,000 mg/kg-day dose groups between GD 10 and GD 14. No changes in food consumption were noted for F1-generation females. No statistically significant reductions in body weights were observed in F0-generation females (see Table B-11). Body weight changes in F1-generation females were statistically significant but did not reach 10% and were not dose dependent. The organ weights of F0- and F1-generation females were not affected by K⁺PFBS treatment (see Table B-11). Also, no treatment-related changes in body weight or organ weights were observed in F2-generation pups (data not shown).

There were no treatment-related gross anatomical findings in F0-, F1-, or F2-generation males and females. Increased incidences of hepatocellular hypertrophy were observed in F0- and F1-generation males in the 300 and 1,000 mg/kg-day dose groups (see Table B-12), however only incidences in the 1,000 mg/kg-day group were statistically significant. Fewer incidences of these liver effects were observed in F1-generation males when compared to F0-generation males. Also, liver effects were not observed in females; thus, the biological significance of the liver effects in males is unclear. Additional histopathological findings included statistically significant mild-to-moderate hyperplasia and focal papillary edema in the kidneys of F0- and F1-generation males and females in the 300 and 1,000 mg/kg/day dose groups (see Table B-12). The study authors did not present the incidences of histopathological findings for the 100 mg/kg-day group, although the methods section of the article states that the livers and kidneys of rats in all dose groups were histologically examined. No histopathological findings were reported in the F2 generation. Based on kidney histopathology changes observed in F0and F1-generation males and females, 300 mg/kg-day is identified as the LOAEL, with a corresponding NOAEL of 100 mg/kg-day. No dose-related effects were observed in F1 or F2 pups, therefore the highest dose of 1,000 mg/kg-day is considered the NOAEL for reproductive toxicity. Identification of a LOAEL for reproductive toxicity is precluded.

Developmental Studies

No studies have been identified.

Inhalation Exposures

No inhalation studies have been identified on the subchronic-duration, chronic, developmental, or reproductive toxicity or on the carcinogenicity of PFBS or K⁺PFBS in animals.

OTHER DATA

Other studies that utilized PFBS or K⁺PFBS are described here. These studies are not adequate for the determination of provisional reference dose (p-RfD), provisional reference concentration (p-RfC), provisional oral slope factor (p-OSF), or provisional inhalation unit risk (p-IUR) values but provide supportive data supplementing a weight-of-evidence approach. These data may include genotoxicity, metabolism, mechanistic, and other studies (see Table 4).

	Table 4. Other Studies						
Test	Materials and Methods	Results	Conclusions	References			
Mutagenicity test	Salmonella typhimurium (strains TA98 and TA100) and <i>E. coli</i> (strain pKM101) in the presence or absence of S9. Doses of PFBS were between $0-5,000 \mu g/plate$.	Test was negative for TA100 and pKM101 strains and equivocal for TA98 strain.	There is no in vitro evidence of PFBS mutagenicity.	<u>NTP (2005)</u>			
Genotoxicity test	Human hepatoma (HepG2) cells were treated with 0.4 μ M to 2 mM PFBS. Intracellular ROS production was measured by use of 2',7'-dichlorofluorescein diacetate and DNA damage was measured with the comet assay.	The amount of ROS and DNA strand breaks remained unaffected by PFBS treatment.	PFBS did not generate ROS or DNA damage in human liver cells.	Eriksen et al. (2010)			
Metabolism/ toxicokinetic	Blood and urine samples were collected from the following species: Sprague-Dawley rats (3M/3F) treated with a single intravenous (i.v.) or oral (gavage) dose of 30 mg K ⁺ PFBS/kg body weight; cynomolgus monkeys (3M/3F) treated with a single i.v. dose of 10 mg K ⁺ PFBS/kg body weight; and human workers (5M/1F) engaged in the production of K ⁺ PFBS prior to study initiation but not during 6 mo of follow-up.	The mean terminal serum elimination half-life of K ⁺ PFBS is 3.96–4.51 hours in rats, 83.2–95.2 hours in monkeys, and 25.8 days in humans.	K ⁺ PFBS appears to be eliminated at a slower rate in humans than in monkeys or rats.	<u>Olsen et al.</u> (2009)			

Tests Evaluating Genotoxicity and Mutagenicity

PFBS was negative for mutagenicity in *E. Coli* strain pKM101 and *Salmonella typhimurium* strain TA100 (NTP, 2005). Mutagenicity test results were equivocal in *S. typhimurium* strain TA98. PFBS did not generate reactive oxygen species (ROS) or oxidative DNA damage in HepG2 cells (Eriksen et al., 2010) (see Table 4).

Metabolism/Toxicokinetic Studies

Olsen et al. (2009) evaluated the toxicokinetics of K⁺PFBS in Sprague-Dawley rats, cynomolgus monkeys, and humans. The following parameters were evaluated: (1) elimination of K⁺PFBS after intravenous (i.v.) dosing in rats and monkeys; (2) oral uptake and elimination of K⁺PFBS in rats; and (3) human serum K⁺PFBS elimination in a group of workers with occupational exposure. In rats, the mean terminal serum K⁺PFBS elimination half-lives, after i.v. administration of 30 mg/kg K⁺PFBS, were 4.51 ± 2.22 hours for males and 3.96 ± 0.21 hours for females. Although there was no statistical difference between the terminal serum half-lives in male and female rats, clearance was statistically significantly greater in female rats $(469 \pm 40 \text{ mL/hour})$ than in male rats $(119 \pm 34 \text{ mL/hour})$. These differences were not observed between male and female monkeys. For rats receiving an oral dose, terminal serum K⁺PFBS elimination half-lives were 4.68 ± 0.43 hours for males and 7.42 ± 0.79 hours for females. In monkeys, the mean terminal serum elimination half-lives, after i.v. administration of 10 mg/kg K⁺PFBS, were 95.2 ± 27.1 hours in males and 83.2 ± 41.9 hours in females. Based on estimates obtained for the volume of distribution in rats and monkeys, K⁺PFBS appears to be primarily distributed in the extracellular space. Among 6 human subjects (5 male, 1 female) followed up to 180 days after cessation of further K⁺PFBS work-related activity, the geometric mean serum elimination half-life for K⁺PFBS was 25.8 days (95% confidence interval = 16.6-40.2). These findings indicate that K⁺PFBS is eliminated at a slower rate from human serum than from that of rats or monkeys. Urine appeared to be a major route of elimination in all three species tested.

DERIVATION OF PROVISIONAL VALUES

Tables 5 and 6 present summaries of noncancer and cancer reference values, respectively.

Table 5. Summary of Noncancer		Reference Values for +PFBS (CASRN 2942	•	N 375-73-5)	and Rel	ated (Compound
Toxicity Type (units)	Species/Sex	Critical Effect	p-Reference Value	POD Method	POD ^a	UFc	Principal Study
Subchronic p-RfD (mg/kg-day) for K ⁺ PFBS (salt)	Rat/F	Increased incidence of kidney hyperplasia.	2×10^{-1}	BMDL ₁₀	18.9	100	Lieder et al. (2009a)
Subchronic p-RfD (mg/kg-day) for PFBS (free acid)	Rat/F	Increased incidence of kidney hyperplasia.	2×10^{-1}	BMDL ₁₀	18.9	100	Lieder et al. (2009a)
Chronic p-RfD (mg/kg-day) for K ⁺ PFBS (salt)	Rat/F	Increased incidence of kidney hyperplasia.	2×10^{-2}	BMDL ₁₀	18.9	1,000	Lieder et al. (2009a)
Chronic p-RfD (mg/kg-day) for PFBS (free acid)	Rat/F	Increased incidence of kidney hyperplasia.	2×10^{-2}	BMDL ₁₀	18.9	1,000	Lieder et al. (2009a)
Subchronic p-RfC (mg/m ³) for K ⁺ PFBS	NDr	•	·		·		·
Subchronic p-RfC (mg/m ³) for PFBS	NDr						
Chronic p-RfC (mg/m ³) for K ⁺ PFBS	NDr						
Chronic p-RfC (mg/m ³) for PFBS	NDr						

^aHED expressed in mg/kg-day.

NDr = not determined.

г

Table 6. Summary of Provisional Cancer Values for PFBS (CASRN 375-73-5) and Related Compound K*PFBS (CASRN 29420-49-3)						
Toxicity Type	Species/Sex	Tumor Type	Cancer Value	Principal Study		
p-OSF	NDr					
p-IUR	NDr					

NDr = not determined.

DERIVATION OF ORAL REFERENCE DOSES

The database of oral toxicity studies for PFBS and the related compound K⁺PFBS includes one subchronic-duration study and one reproductive toxicity study, both of which were conducted in rats using the potassium salt (K⁺PFBS). From the subchronic-duration rat study by Lieder et al. (2009a), a NOAEL of 200 mg/kg-day and a LOAEL of 600 mg/kg-day were identified for both males and females based on histopathological findings in the kidneys (mild to moderate hyperplasia). No treatment-related effects were reported in the liver. Although a statistically significant decrease in hematocrit and hemoglobin levels was observed at 200 mg/kg-day in male rats, these effects were considered mild, were not accompanied by bone marrow abnormalities or any other hematological findings is uncertain. The Lieder et al. (2009a) study was peer-reviewed, used GLP guidelines, and met the standards of study design and performance with regards to the number of animals used, examination of potential toxicity endpoints, and presentation of information.

The reproductive toxicity study in rats by Lieder et al. (2009b) identified a NOAEL of 100 mg/kg-day and a LOAEL of 300 mg/kg-day in F0- and F1-generation animals based on increased incidences and severity of kidney histopathology observed in both sexes. Although increased liver weights and hepatocellular hypertrophy were noted in males, these hepatic effects were not observed in females and no increased response was seen in F1-generation males when compared to F0-generation males. Furthermore, no liver changes in either sex were observed in the subchronic-duration study by Lieder et al. (2009a); thus, the biological relevance of liver effects in males of the reproductive toxicity study is not clear. Hematological parameters were not assessed in this study. There were no abnormal clinical or necropsy observations in the F2 generation. This report was peer-reviewed, employed an adequate number of animals, and was performed according to U.S. EPA guidelines.

Both the subchronic-duration study by Lieder et al. (2009a) and the reproductive toxicity study by Lieder et al. (2009b) in rats suggest the kidney as a major target organ of K⁺PFBS toxicity, with kidney effects (hyperplasia) observed both in males and females. Thus, increased incidence of kidney hyperplasia is selected as the critical effect. Benchmark dose (BMD) analyses were conducted on the kidney hyperplasia data from males and females for both studies using the U.S. EPA's Benchmark Dose Software (BMDS version 2.3). Results of BMD modeling are summarized in Appendix C. BMD modeling of the kidney hyperplasia data was performed using a benchmark response (BMR) of 10%. For kidney hyperplasia data from the subchronic-duration study by Lieder et al. (2009a), the Exponential model provided the best fit with a BMDL₁₀ of 96.7 mg/kg-day for males and a BMDL₁₀ of 78.7 mg/kg-day for females (see Tables C-1 and C-2). Kidney hyperplasia data from the reproductive study by Lieder et al. (2009b) provided a BMDL₁₀ of 73.2 mg/kg-day and a BMDL₁₀ of 126 mg/kg-day for F0generation and F1-generation males, respectively (see Tables C-3 and C-4). The reproductive toxicity study also provided a BMDL₁₀ of 26.6 mg/kg-day for F0-generation females and a BMDL₁₀ of 52.4 mg/kg-day for F1-generation females (see Tables C-5 and C-6) for kidney hyperplasia, which are lower than the BMDLs obtained with data from the subchronic-duration study. However, the analyses from the reproductive toxicity study provide less reliable BMD estimates because they do not contain a data point near the BMR (unlike the subchronic-duration study), which is recommended for adequate BMD modeling (U.S. EPA, 2012b). Therefore, the BMDL₁₀ of 78.7 mg/kg-day based on increased incidence of kidney hyperplasia in females from

the subchronic-duration study is selected as the point of departure (POD) for derivation of the subchronic p-RfD.

Derivation of Subchronic p-RfD

The U.S. EPA endorses a hierarchy of approaches to derive human equivalent oral exposures from data from laboratory animal species, with the preferred approach being physiologically based toxicokinetic modeling. Another approach may include using chemical-specific information, including what is known about the toxicokinetics and toxicodynamics of the chemical, to derive chemical-specific adjustments. In lieu of chemical-specific information to derive human equivalent oral exposures, U.S. EPA endorses body-weight scaling to the 3/4 power (i.e., BW^{3/4}) as a default to extrapolate toxicologically equivalent doses of orally administered agents from all laboratory animals to humans for the purpose of deriving an RfD under certain exposure conditions (U.S. EPA, 2011b). More specifically, the use of BW^{3/4} scaling for deriving an RfD is recommended when the observed effects are associated with the parent compound or a stable metabolite but not for portal-of-entry effects or developmental endpoints. Although the pharmacokinetic study by Olsen et al. (2009) suggests a longer half-life for K⁺PFBS in humans than in rats, these results were obtained by single-dose administration and it is uncertain whether this reflects the compound's half-life after repeated dosing. Furthemore, clearance is a more relevant parameter than serum half-life to determine chemical elimination, but no information on the clearance rate in humans is provided by Olsen et al. (2009). Thus, due to a lack of definitive information regarding potential pharmacokinetic differences between species, the use of BW^{3/4} scaling to obtain a human equivalent dose (HED) is considered appropriate in this case.

Following U.S. EPA guidance, the POD for the rat subchronic-duration study is converted to an HED through an application of a dosimetric adjustment factor (DAF) derived as follows:

$$DAF = (BW_a^{1/4} \div BW_h^{1/4})$$

Where:

DAF = dosimetric adjustment factor BW_a = animal body weight BW_h = human body weight

Using a BW_a of 0.25 kg for rats and a standard BW_h of 70 kg for humans the resulting DAF is 0.24. Applying this DAF to the BMDL₁₀ obtained from modeling the kidney hyperplasia data from the K⁺PFBS rat subchronic-duration study yields a BMDL_{10HED} as follows:

The subchronic p-RfD for K⁺PFBS, based on the BMDL_{10HED} of 18.9 mg/kg-day for kidney hyperplasia in female rats, is derived as follows:

Subchronic p-RfD for K⁺PFBS = $BMDL_{10HED} \div UF_C$ = $18.9 \text{ mg/kg-day} \div 100$ = $2 \times 10^{-1} \text{ mg/kg-day}$

The data for K⁺PFBS can be used to derive a subchronic p-RfD for the free acid (PFBS), as K⁺PFBS is fully dissociated in water at the environmental pH range of 4–9 (<u>NICNAS, 2005a</u>). In order to calculate the subchronic p-RfD for the free acid, the subchronic p-RfD for the potassium salt is adjusted to compensate for differences in molecular weight between K⁺PFBS (338.19) and PFBS (300.10). The subchronic p-RfD for PFBS (free acid) is calculated as follows:

```
Subchronic p-RfD = p-RfD for K<sup>+</sup>PFBS salt × (MW free acid ÷ MW salt)
for PFBS (free acid) = 2 \times 10^{-1} mg/kg-day × (300.10 ÷ 338.19)
= 2 \times 10^{-1} mg/kg-day × (0.89)
= 2 \times 10^{-1} mg/kg-day
```

Table 7 summarizes the uncertainty factors for the subchronic p-RfDs for PFBS and K⁺PFBS.

Tab	le 7. U	ncertainty Factors for the Subchronic p-RfD for PFBS (CASRN 375-73-5) and the Related Compound K ⁺ PFBS (CASRN 29420-49-3)
UF	Value	Justification
UFA	3	A UF _A of 3 (10 ^{0.5}) is applied to account for uncertainty in characterizing the toxicodynamic differences between mice and humans following oral K ⁺ PFBS/PFBS exposure. The toxicokinetic uncertainty has been accounted for by calculation of a human equivalent dose (HED) through application of a dosimetric adjustment factor (DAF) as outlined in the EPA's <i>Recommended Use of Body Weight</i> ^{3/4} <i>as the Default Method in Derivation of the Oral Reference Dose</i> (U.S. EPA, 2011b).
UFD	3	A UF _D of 3 is applied because the database includes one acceptable two-generation reproductive toxicity study in rats (Lieder et al., 2009b), but there is no acceptable developmental toxicity study via the oral route.
UF _H	10	A UF _H of 10 is applied for inter-individual variability to account for human-to-human variability in susceptibility in the absence of quantitative information to assess the toxicokinetics and toxicodynamics of K ⁺ PFBS/PFBS in humans.
UFL	1	A UF _L of 1 is applied for LOAEL-to-NOAEL extrapolation because the POD is a BMDL.
UFs	1	A UFs of 1 is applied because a subchronic-duration study was selected as the principal study.
UF _C	100	Composite Uncertainty Factor = $UF_A \times UF_D \times UF_H \times UF_L \times UF_S$

The confidence in the subchronic p-RfD for PFBS and K⁺PFBS is medium as explained in Table 8 below.

Table 8. Confidence Descriptors for Subchronic p-RfD for PFBS (CASRN 375-73-5) and
the Related Compound K+PFBS (CASRN 29420-49-3)

Confidence Categories	Designation ^a	Discussion
Confidence in study	Н	Confidence in the key study is high. <u>Lieder et al. (2009a)</u> utilized an adequate subchronic-duration study design in rats. This study is also peer-reviewed, and experiments were performed according to GLP guidelines.
Confidence in database	М	The database includes one subchronic-duration study in rats <u>Lieder et al. (2009a)</u> and one reproductive toxicity study in rats (<u>Lieder et al., 2009b</u>). However, no developmental toxicity studies have been identified.
Confidence in subchronic p-RfD ^b	М	The overall confidence in the subchronic p-RfD is medium.

 $^{a}L = low, M = medium, H = high.$

^bThe overall confidence cannot be greater than lowest entry in table.

Derivation of Chronic Provisional RfD (Chronic p-RfD)

There are no chronic-duration studies available for PFBS and K⁺PFBS. Therefore, based on the same database and similar considerations, the chronic p-RfD for K⁺PFBS is derived as follows using the BMDL_{10HED} of 18.9 mg/kg-day for increased incidence of kidney hyperplasia in female rats from the subchronic-duration study by Lieder et al. (2009a) as the POD:

Chronic p-RfD for K ⁺ PFBS	=	$BMDL_{10HED} \div UF_C$
		18.9 mg/kg-day ÷ 1,000
	=	2×10^{-2} mg/kg-day

The chronic p-RfD for PFBS (free acid) is calculated using the ratio of molecular weights, as follows:

Chronic p-RfD	=	p-RfD for salt \times (MW free acid \div MW salt)
for PFBS (free acid)	=	$2 \times 10^{-2} \text{ mg/kg-day} \times (300.10 \div 338.19)$
	=	$2 \times 10^{-2} \text{ mg/kg-day} \times (0.89)$
	=	2×10^{-2} mg/kg-day

Table 9 summarizes the uncertainty factors for the chronic p-RfD for PFBS and K⁺PFBS.

Tab	le 9. Un	certainty Factors for the Chronic p-RfD for PFBS (CASRN 375-73-5) and the Related Compound K ⁺ PFBS (CASRN 29420-49-3)
UF	Value	Justification
UFA	3	A UF _A of 3 (10 ^{0.5}) is applied to account for uncertainty in characterizing the toxicodynamic differences between mice and humans following oral K ⁺ PFBS/PFBS exposure. The toxicokinetic uncertainty has been accounted for by calculation of a human equivalent dose (HED) through application of a dosimetric adjustment factor (DAF) as outlined in the EPA's <i>Recommended Use of Body Weight</i> ^{3/4} <i>as the Default Method in Derivation of the Oral Reference Dose</i> (U.S. EPA, 2011b).
UFd	3	A UF _D of 3 is applied because the database includes one acceptable two-generation reproductive toxicity study in rats (Lieder et al., 2009b), but there is no acceptable developmental toxicity study via the oral route.
UF _H	10	A UF_H of 10 is applied for inter-individual variability to account for human-to-human variability in susceptibility in the absence of quantitative information to assess the toxicokinetics and toxicodynamics of K ⁺ PFBS/PFBS in humans.
UFL	1	A UF _L of 1 is applied for LOAEL-to-NOAEL extrapolation because the POD is a BMDL.
UFs	10	A UFs of 10 is applied to extrapolate from less than chronic-duration exposure.
UF _C	1,000	Composite Uncertainty Factor = $UF_A \times UF_D \times UF_H \times UF_L \times UF_S$

The confidence in the chronic p-RfD for PFBS and K⁺PFBS is medium as explained in Table 10 below.

Table 10. Confidence Descriptors for Chronic p-RfD for PFBS (CASRN 375-73-5) and
the Related Compound K⁺PFBS (CASRN 29420-49-3)

Confidence Categories	Designation ^a	Discussion
Confidence in study	Н	Confidence in the key study is high. <u>Lieder et al. (2009a)</u> utilized an adequate subchronic-duration study design in rats. This study is also peer-reviewed, and experiments were performed according to GLP guidelines.
Confidence in database	М	The database includes one subchronic-duration study in rats <u>Lieder</u> <u>et al. (2009a)</u> and one reproductive toxicity study in rats <u>Lieder et</u> <u>al. (2009b)</u> . However, no developmental toxicity or chronic- duration studies have been identified.
Confidence in chronic p-RfD ^b	М	The overall confidence in the subchronic p-RfD is medium.

 $^{a}L = low, M = medium, H = high.$

^bThe overall confidence cannot be greater than lowest entry in table.

DERIVATION OF INHALATION REFERENCE CONCENTRATIONS

No suitable published studies investigating the effects of subchronic- or chronic-duration inhalation toxicity of PFBS and the related compound K⁺PFBS in humans or animals have been identified.

CANCER WEIGHT-OF-EVIDENCE DESCRIPTOR

Table 11 identifies the cancer weight-of-evidence (WOE) descriptor for PFBS and the related compound K⁺PFBS.

Table 11. Cancer WOE Descriptor for PFBS (CASRN 375-73-5) and the Related Compound K+PFBS (CASRN 29420-49-3)					
Possible WOE Descriptor	Designation	Route of Entry (oral, inhalation, or both)	Comments		
"Carcinogenic to Humans"	NS	NA	There are no human carcinogenicity data identified to support this descriptor.		
"Likely to Be Carcinogenic to Humans"	NS	NA	There are no animal carcinogenicity studies identified to support this descriptor.		
"Suggestive Evidence of Carcinogenic Potential"	NS	NA	There are no animal carcinogenicity studies identified to support this descriptor.		
"Inadequate Information to Assess Carcinogenic Potential"	Selected	Both	This descriptor is selected due to the lack of any information on carcinogenicity of PFBS and the related compound K ⁺ PFBS.		
"Not Likely to Be Carcinogenic to Humans"	NS	NA	Although the genotoxicity studies were negative or equivocal, there are no data to indicate that PFBS or K ⁺ PFBS is not carcinogenic.		

NA = not applicable; NS = not selected.

DERIVATION OF PROVISIONAL CANCER RISK VALUES

The lack of data on the carcinogenicity of PFBS and the related compound K⁺PFBS precludes the derivation of quantitative estimates for either oral (p-OSF) or inhalation (p-IUR) exposure.

APPENDIX A. SCREENING PROVISIONAL VALUES

No screening values for PFBS or the related compound K⁺PFBS are identified.

APPENDIX B.	DATA	TABLES
--------------------	------	--------

Table B-1. Body Weight Data on Sprague-Dawley Rats Exposed to K ⁺ PFBS via Gavage
for 90 Days ^{a,b}

		Body weigh	t at Day 1(g)	Terminal body weight (g)		
Dose (mg/kg-day)	Number of animals (M/F)	Males	Females	Males	Females	
0	10/10	192.1 ± 7.3	161.5 ± 9.6	510.9 ± 47.0	276.5 ± 24.0	
60	10/10	192.9 ± 6.8 (100)	161.0 ± 7.7 (100)	482.6 ± 60.4 (94.5)	286.0 ± 21.5 (103)	
200	10/10	190.0 ± 7.2 (98.9)	157.9 ± 11.2 (97.8)	479.6 ± 30.3 (93.9)	284.8 ± 30.1 (103)	
600°	10/10	193.1 ± 7.2 (101)	158.1 ± 10.9 (97.9)	$485.3 \pm 49.4(95.0)^{c}$	264.6 ± 19.5 (95.7)	

^aValues obtained from Lieder et al. (2009a), Table 1, page 47.

^bData are presented as mean values \pm SD (% of control); % of control calculated by U.S. EPA.

^cTerminal body weights for this dose in males exclude the value for one rat found dead on Day 85 of study.

Table B-2. Selected Organ Weight Data on Male Sprague-Dawley Rats Exposed to
K ⁺ PFBS via Gavage for 90 Days ^{a,b,c}

Dose in mg/kg-day (Number of animals)					
Organ measurement 0 (N = 10) 60 (N = 10) 200 (N = 10) 600 (N = 10)					
Absolute liver weight (g)	14.48 ± 1.76	13.83 ± 2.67 (95.5)	13.50 ± 1.28 (93.2)	14.78 ± 1.78 (102)	
Relative liver weight (%)	2.832 ± 0.198	2.846 ± 0.273 (100)	2.814 ± 0.175 (99.4)	3.049 ± 0.220 (108)	
Absolute kidney weight (g)	4.18 ± 0.48	4.15 ± 0.55 (99.3)	3.93 ± 0.30 (94.0)	4.18 ± 0.33 (100)	
Relative kidney weight (%)	0.818 ± 0.058	0.859 ± 0.053 (105)	0.818 ± 0.053 (100)	0.864 ± 0.049 (106)	
Absolute spleen weight (g)	0.93 ± 0.13	0.77 ± 0.10 ** (82.8)	0.83 ± 0.06* (89.2)	0.80 ± 0.11** (86.0)	
Relative spleen weight (%)	0.181 ± 0.018	0.158 ± 0.015** (87.3)	0.172 ± 0.017 (95.0)	0.163 ± 0.020* (90.1)	

^aValues obtained from Lieder et al. (2009a), Table 2, page 48.

^bValues expressed as mean \pm SD (% of control); % of control calculated by U.S. EPA. Relative weights denote organ weight to terminal body weight ratios.

^cDosage occurred on Days 1 through 90, 91, 92, or 93 of study.

^dExcludes values for one rat found dead on Day 85 of study.

*Significantly different from controls, p < 0.05.

Table B-3. Selected Organ Weight Data on Female Sprague-Dawley Rats Exposed to K ⁺ PFBS via Gavage for 90 Days ^{a,b,c}						
		Dose in mg/kg-da	ay (Number of animals	s)		
Organ measurement 0 (N = 10) 60 (N = 10) 200 (N = 10) 600 (N = 10)						
Absolute liver weight (g)	7.71 ± 0.78	8.30 ± 0.72 (108)	8.23 ± 0.91 (107)	7.79 ± 0.36 (101)		
Relative liver weight (%)	2.788 ± 0.152	2.902 ± 0.154 (104)	$2.890 \pm 0.100 \ (104)$	2.951 ± 0.204 (106)		
Absolute kidney weight (g)	2.34 ± 0.22	2.40 ± 0.30 (103)	2.40 ± 0.18 (103)	2.39 ± 0.41 (102)		
Relative kidney weight (%)	0.847 ± 0.069	0.838 ± 0.071 (98.9)	$0.846 \pm 0.059 \ (99.9)$	0.906 ± 0.150 (107)		
Absolute spleen weight (g)	0.58 ± 0.09	0.59 ± 0.11 (102)	0.57 ± 0.07 (98.3)	0.65 ± 0.11 (112)		
Relative spleen weight (%)	0.209 ± 0.033	0.208 ± 0.037 (99.5)	$0.202\pm 0.030\ (96.7)$	0.248 ± 0.046 (119)		

Table P. 2. Selected Organ Weight Date on Female Sprague Davider Date Exposed to

^aValues obtained from <u>Lieder et al. (2009a)</u>, Table 3, page 48. ^bValues expressed as mean ± SD (% of control); % of control calculated by U.S. EPA. Relative weights denote organ weight to terminal body weight ratios.

^cDosage occurred on Days 1 through 90, 91, 92, or 93 of study.

*Significantly different from controls, p < 0.05.

Exposed to K ⁺ PFBS via Gavage for 90 Days ^{a,b,c}								
Dose in mg/kg-day (Number of animals)								
Measurement	0 (<i>N</i> = 10)	60 (<i>N</i> = 10)	200 (<i>N</i> = 10)	600 $(N = 9^{d,e})$				
Males	Males							
Total protein (g/dL)	6.6 ± 0.33	6.5 ± 0.15 (98.5)	6.4 ± 0.19 (97.0)	$6.5 \pm 0.50 \ (98.5)$				
Albumin (g/dL)	4.1 ± 0.17	4.1 ± 0.19 (100)	4.0 ± 0.11 (97.6)	4.0 ± 0.26 (97.6)				
Blood urea nitrogen (mg/dL)	15 ± 1.4	14 ± 1.5 (93.0)	14 ± 2.2 (93.0)	15 ± 1.4 (100)				
Creatinine (mg/dL)	0.3 ± 0.05	0.2 ± 0.05 (66.7)	0.3 ± 0.06 (100)	$0.3 \pm 0.05 (100)$				
ALT (U/L)	42 ± 5.8	45 ± 7.1 (107)	41 ± 4.6 (97.6)	43 ± 7.8 (102)				
AST (U/L)	84 ± 11.2	90 ± 10.9 (107)	88 ± 7.5 (105)	91 ± 12.7 (112)				
ALK (U/L)	94 ± 15.0	90 ± 12.0 (95.7)	96 ± 12.1 (102)	107 ± 12.7 (114)				
Chloride (mmol/L)	98 ± 2.0	$100 \pm 1.2 (102)$	$100 \pm 1.4 (102)$	$101 \pm 1.7^{**} (103)$				
Females								
Total protein (g/dL)	7.2 ± 0.40	7.2 ± 0.34 (100)	7.1 ± 0.40 (98.6)	6.7 ± 0.23* (93.1)				
Albumin (g/dL)	4.9 ± 0.38	4.8 ± 0.29 (98.0)	4.7 ± 0.31 (95.9)	$4.4 \pm 0.23*(89.8)$				
Blood urea nitrogen (mg/dL)	16 ± 1.9	$16 \pm 1.6 (100)$	15 ± 1.8 (93.8)	16 ± 2.9 (100)				
Creatinine (mg/dL)	0.4 ± 0.05	$0.4 \pm 0.04 \ (100)$	0.3 ± 0.05 (75.0)	$0.4 \pm 0.05 \ (100)$				
ALT (U/L)	44 ± 11.6	55 ± 23.6 (125)	49 ± 30.7 (111)	44 ± 13.3 (100)				
AST (U/L)	85 ± 15.8	95 ± 25.8 (112)	94 ± 51.0 (111)	96 ± 19.6 (113)				
ALK (U/L)	44 ± 8.0	46 ± 13.3 (105)	45 ± 12.1 (102)	59 ± 18.2 (134)				
Chloride (mmol/L)	101 ± 2.5	101 ± 2.3 (101)	$102 \pm 2.2 (101)$	$102 \pm 1.1 (101)$				

Table B-4. Selected Clinical Chemistry Data on Male and Female Sprague-Dawley Rats

^aValues obtained from <u>Lieder et al. (2009a)</u>, Table 4, page 49. ^bValues expressed as mean \pm SD (% of control); % of control calculated by U.S. EPA.

^cDosage occurred on Days 1 through 90, 91, 92, or 93 of study.

^dExcludes values for one male rat found dead on Day 85 of study.

^eExcludes one female rat that did not have sufficient sample volume.

*Significantly different from controls, p < 0.05.

	Dose in mg/kg-day (Number of animals)							
Measurement	0 (N = 10)	60 (<i>N</i> = 10)	200 ($N = 10$)	600 $(N = 9^d)$				
Males	Males							
WBC (10 ³ /mm ³)	17.0 ± 3.66	15.4 ± 3.50 (90.6)	14.7 ± 2.31 (86.5)	15.2 ± 2.80 (89.4)				
RBC (10 ⁶ /mm ³)	7.76 ± 0.469	7.62 ± 0.443 (98.2)	$7.55 \pm 0.282 \ (97.3)$	7.19 ± 0.481* (92.7)				
HGB (g/dL)	16.4 ± 0.96	16.0 ± 0.41 (97.6)	15.6 ± 0.48* (95.1)	15.5 ± 0.78* (94.5)				
НСТ (%)	44.2 ± 2.32	42.7 ± 1.44 (96.6)	41.9 ± 1.50* (94.8)	40.9 ± 2.24** (92.5)				
MCV (µm ³)	57.0 ± 1.25	56.2 ± 2.12 (98.6)	55.6 ± 1.38 (97.5)	57.0 ± 2.08 (100)				
MCH (pg)	21.2 ± 0.53	21.1 ± 1.18 (99.5)	20.7 ± 0.51 (97.6)	21.6 ± 1.01 (102)				
MCHC (%)	37.2 ± 0.50	37.5 ± 1.11 (101)	37.2 ± 0.69 (100)	37.8 ± 0.96 (102)				
Females	· ·	·	·					
WBC (10 ³ /mm ³)	12.2 ± 3.95	11.5 ± 3.10 (94.3)	12.1 ± 3.77 (99.2)	13.5 ± 3.94 (111)				
RBC (10 ⁶ /mm ³)	7.17 ± 0.315	6.95 ± 0.226 (96.9)	7.16 ± 0.309 (99.9)	6.95 ± 0.297 (96.9)				
HGB (g/dL)	15.9 ± 0.61	15.8 ± 0.57 (99.4)	15.6 ± 0.69 (98.1)	15.3 ± 0.82 (96.2)				
НСТ (%)	43.3 ± 1.85	42.1 ± 1.56 (97.2)	42.7 ± 2.14 (98.6)	41.2 ± 1.71 (95.1)				
MCV (µm ³)	60.5 ± 1.08	60.6 ± 1.47 (100)	59.5 ± 1.50 (98.3)	59.2 ± 1.21 (97.9)				
MCH (pg)	22.2 ± 0.64	22.7 ± 0.65 (102)	21.8 ± 0.61 (98.2)	22.0 ± 0.75 (99.1)				
MCHC (%)	36.7 ± 0.69	37.4 ± 0.54* (102)	36.7 ± 0.51 (100)	37.1 ± 0.70 (101)				

Table B-5. Selected Hematology Data on Male and Female Sprague-Dawley Rats Exposed to K⁺PFBS via Gavage for 90 Days^{a,b,c}

^aValues obtained from <u>Lieder et al. (2009a)</u>, Table 5, page 49.

^bValues expressed as mean \pm SD (% of control); % of control calculated by U.S. EPA.

^cDosage occurred on Days 1 through 90, 91, 92, or 93 of study.

^dExcludes values for one rat found dead on Day 85 of study.

*Significantly different from controls, p < 0.05.

Dose in mg/kg-day (Number of animals)										
	Observation	0 (<i>N</i> = 10)	60 (<i>N</i> = 10)	200 ($N = 10$)	600 (<i>N</i> = 10)					
Males		·								
Kidney	Hyperplasia, tubular/ductal epithelium papilla	1	0	0	8**					
	Edema, focal papillary	0	0	0	3					
	Necrosis, papillary	0	0	0	1					
	Basophilia, tubular, multifocal	1	0	0	3					
	Hyaline droplets, cortical tubules	2	0	0	1					
	Mineralization, multifocal	0	0	0	0					
	Mononuclear cell infiltration	1	2	4	0					
Stomach	Dilation, mucosal glands	2	1	2	1					
	Necrosis, limiting ridge	0	2	2	8**					
	Hyperplasia/hyperkeratosis, limiting ridge	0	0	0	5*					
Females		·								
Kidney	Hyperplasia, tubular/ductal epithelium papilla	0	0	1	6*					
	Edema, focal papillary	0	0	0	3					
	Necrosis, papillary	0	0	0	0					
	Basophilia, tubular, multifocal	0	0	0	1					
	Hyaline droplets, cortical tubules	0	0	0	1					
	Mineralization, multifocal	5	5	2	2					
	Mononuclear cell infiltration	0	3	0	2					
Stomach	Dilation, mucosal glands	0	3	0	0					
	Necrosis, limiting ridge	1	0	1	9**					
	Hyperplasia/hyperkeratosis, limiting ridge	0	0	0	7**					

Table B-6. Incidences of Selected Histopathological Findings in Male and Female

^aValues obtained from <u>Lieder et al. (2009a)</u>, Table 6, page 50. ^bValues expressed as number of animals with lesions.

*Significantly different from controls (p < 0.05, Fisher's Exact test), independently calculated by U.S. EPA. **Significantly different from controls (p < 0.01, Fisher's Exact test), independently calculated by U.S. EPA.

				Dose in mg/kg-d	lay	
Parameter	Generation	0	30	100	300	1,000
Motility	F0	96 ± 4 [N = 30]	$95 \pm 5 (99.0)$ [N = 30]	$94 \pm 12 (97.9)$ [$N = 30$]	$95 \pm 4 (99.0)$ [$N = 30$]	$95 \pm 5 (99.0)$ [$N = 28$]
	F1	92 ± 10 [N = 28]	$92 \pm 10 (100)$ [N = 26]	$94 \pm 6 (102)$ [N = 29]	$95 \pm 3 (103)$ [N = 27]	$92 \pm 10 (100)$ [N = 27]
Morphology (% abnormal)	F0	1.7 ± 1.5 [N = 30]	$2.0 \pm 1.3 (118)$ [N = 30]	$1.6 \pm 1.0 (94.1)$ [N = 30]	$1.5 \pm 0.6 (88.2)$ [N = 30]	$2.0 \pm 0.6 (118)$ [N = 29]
	F1	1.5 ± 0.7 [N = 29]	$1.3 \pm 0.6 (86.7)$ [N = 27]	$1.4 \pm 0.5 (93.3)$ [N = 29]	$1.5 \pm 0.6 (100)$ [N = 27]	$1.9 \pm 0.5^{*} (127)$ [N = 29]
Testicular sperm count	F0	148 ± 39 [N = 30]	$136 \pm 34 (91.9)$ [N = 30]	$146 \pm 36 (98.6)$ [$N = 30$]	$132 \pm 21(89.2)$ [N = 30]	$122 \pm 36^* (82.4)$ [N = 29]
$(10^{6}/g)$	F1	124 ± 33 [N = 29]	$109 \pm 34 (87.9)$ [$N = 27$]	$107 \pm 29 (86.3)$ [N = 29]	$110 \pm 24 (88.7)$ [N = 27]	$107 \pm 32 (86.3)$ [$N = 27$]
Epididymal sperm count (10 ⁶ /g)	FO	$1,030 \pm 209$ [N = 30]	$1,033 \pm 226 (100)$ [N = 30]	957 ± 217 (92.9) [N = 30]	$1,019 \pm 181$ (98.9) [$N = 30$]	969 ± 275 (94.1) [N = 29]
	F1	837 ± 237 [N = 29]	$770 \pm 282 (92.0)$ [$N = 27$]	$840 \pm 262 (100)$ [N = 29]	$857 \pm 222 (102)$ [$N = 27$]	$928 \pm 273 (111)$ [N = 27]

Table B-7. Sperm Analysis of F0- and F1-Generation Male Sprague-Dawley Rats Exposedto K+PFBS via Gavage^{a,b}

^aValues obtained from <u>Lieder et al. (2009b)</u>, Table 1, page 35.

^bValues expressed as mean \pm SD (% of control); % of control calculated by U.S. EPA.

*Significantly different from controls, p < 0.05.

N = number of animals examined.

			Dose in mg/k	kg-day		
Parameter	Generation	0	30	100	300	1,000
Number of	F0	26	29	29	29	25
dams delivering	F1	24	26	28	25	27
Length of	F0	22.7 ± 0.5	22.8 ± 0.4	22.8 ± 0.5	22.8 ± 0.4	22.7 ± 0.4
gestation, days (mean ± SD)	F1	22.7 ± 0.5	22.8 ± 0.5	22.6 ± 0.5	22.6 ± 0.5	22.8 ± 0.4
Deliveries (%)	F0	100	100	100	100	100
	F1	100	100	100	100	100
Percentage with	F0	100	100	100	100	100
live-born pups ^b	F1	100	100	100	100	100
Number with	F0	2	5	1	4	2
stillborn pups ^c	F1	5	1	5	5	1
Mean	F0	15.2 ± 1.8	14.6 ± 3.0	14.3 ± 2.3	14.7 ± 1.7	14.0 ± 2.3
implantation sites (mean ± SD)	F1	14.3 ± 2.3	14.6 ± 2.3	15.2 ± 2.0	15.2 ± 2.8	15.3 ± 2.0
Mean pups	F0	14.2 ± 2.2	13.9 ± 3.0	13.8 ± 3.0	14.0 ± 2.0	13.6 ± 2.3
delivered (mean \pm SD)	F1	13.2 ± 2.3	13.8 ± 2.2	14.1 ± 2.3	14.0 ± 2.1	14.0 ± 2.1

Table B-8. Delivery Outcomes of F0- and F1-Generation Sprague-Dawley Dams Exposed

^aValues obtained from <u>Lieder et al. (2009b)</u>, Table 6, page 37. ^bIndicates the number of dams producing a litter containing at least one live-born pup.

^cIndicates the number of dams with at least one stillborn pup.

*Significantly different from controls, p < 0.05.

Dose in mg/kg-day									
Parameter	Generation	0	30	100	300	1,000			
Number of	F1	26	29	29	29	25			
litters delivered	F2	24	26	28	25	27			
Mean (± SD)	F1	14.2 ± 2.2	13.5 ± 2.8**	13.7 ± 3.0	13.8 ± 2.0	13.5 ± 2.3			
live-born (N)	F2	13.0 ± 2.3	13.6 ± 2.3	13.9 ± 2.4	13.6 ± 2.6	14.0 ± 2.0			
Mean (± SD)	F1	0.1 ± 0.3	0.2 ± 06	0.1 ± 0.4	0.1 ± 04	0.1 ± 0.3			
stillborn (N)	F2	0.2 ± 0.4	0.1 ± 0.6	0.2 ± 0.5	0.4 ± 1.0	0.0 ± 0.2			
Mean (± SD)	F1	6.4 ± 0.4	6.5 ± 0.5	6.6 ± 0.5	6.4 ± 0.4	6.3 ± 0.5			
pup weight at birth	F2	6.3 ± 0.6	6.4 ± 0.5	6.4 ± 0.4	6.2 ± 0.5	6.2 ± 0.8			
Mean (± SD)	F1	40.2 ± 5.6	40.2 ± 6.8	40.8 ± 7.8	$39.2\pm5.9^{\rm b}$	39.3 ± 4.4			
pup weight at weaning (g)	F2	$36.4\pm7.7^{\circ}$	39.4 ± 7.3	37.1 ± 5.1	36.3 ± 6.6	35.0 ± 5.6^{d}			
Viability index	F1	98.1	96.7*	98.2	99.2	99.4*			
(%) ^e	F2	95.5	96.9	97.2	96.8	95.8			
Lactation	F1	99.4	98.7	97.4**	97.7**	99.7			
index (%) ^f	F2	97.0	96.5	98.2	97.3	93.1*			

Table B-0 Litter Outcomes for F1- and F2-Congration Pupe Exposed to K+PERS via

^aValues obtained from Lieder et al. (2009b), Table 7, page 38.

 ${}^{b}N = 28$. Excludes values for litters with no surviving pups.

 $^{\circ}N = 23$. Excludes values for litters with no surviving pups.

 $^{d}N = 25$. Excludes values for litters with no surviving pups.

^e(Number of pups alive on Day 4/number of pups alive on Day 1) \times 100

^f(Number of pups alive on Day 21/number of pups alive on Day 4) \times 100

*Significantly different from controls, p < 0.05.

			Dose in mg/l	kg-day		
Measurement	Generation	0	30	100	300	1,000
Terminal body weight (g)	F0	552 ± 56 [N = 30]	$569 \pm 53 (103)$ [N = 30]	$570 \pm 45 (103)$ [N = 30]	$572 \pm 69 (104)$ [N = 30]	$551 \pm 46 (99.8)$ [$N = 29$]
	F1	594 ± 45 [N = 29]	$583 \pm 61 (98.1)$ [N = 27]	$593 \pm 73 (99.8)$ [N = 29]	$598 \pm 65 (101)$ [N = 27]	$549 \pm 38^{**}(92.4)$ [N = 27]
Absolute liver weight (g)	FO	19.2 ± 2.4 [N = 30]	20.0 ± 2.9 (104) [N = 30]	20.5 ± 2.4 (107) [N = 30]	$21.5 \pm 2.9**(112)$ [N = 30]	$2.7 \pm 2.8^{\circ}$ [N = 29]
	F1	20.6 ± 2.5 [$N = 29$]	20.1 ± 2.7 (97.6) [N = 27]	21.2 ± 4.4 (98.1) [N = 29]	$21.7 \pm 3.2 (105)$ [$N = 27$]	$21.1 \pm 2.2 (102) \\ [N = 27]$
Relative liver weight (%)	F0	3.4 ± 0.3 [N = 30]	$3.5 \pm 0.4 (103)$ [N = 30]	$3.6 \pm 0.3 (106)$ [N = 30]	$3.8 \pm 0.3 **(112)$ [N = 30]	$4.1 \pm 0.4^{**}(121)$ [N = 29]
	F1	3.5 ± 0.4 [N = 29]	$3.4 \pm 0.3 (97.1)$ [N = 27]	$3.5 \pm 0.4 (100)$ [N = 29]	$3.6 \pm 0.3 (103)$ [N = 27]	$3.8 \pm 0.3^{**}(109)$ [N = 27]
Absolute left kidney weight (g)	FO	2.10 ± 0.21 [N = 30]	2.17 ± 0.20 (103) [N = 30]	2.18 ± 0.20 (104) [N = 30]	$2.20 \pm 0.28 (105)$ [$N = 30$]	$2.20 \pm 0.26 (105)$ [N = 29]
	F1	2.04 ± 0.21 [N = 29]	2.06 ± 0.23 (101) [N = 27]	2.08 ± 0.20 (102) [N = 29]	$2.14 \pm 0.24 (105)$ $[N = 27]$	1.97 ± 0.16 (96.6) [$N = 27$]
Relative left kidney weight (%)	FO	0.375 ± 0.034 [N = 30]	0.382 ± 0.035 (102) [N = 30]	0.383 ± 0.032 (102) [N = 30]	0.385 ± 0.042 (103) [N = 30]	0.400 ± 0.047 (107) [N = 29]
	F1	0.344 ± 0.030 [N = 29]	$0.352 \pm 0.021 (102) [N = 27]$	0.353 ± 0.033 (103) [N = 29]	0.358 ± 0.038 (104) [N = 27]	0.357 ± 0.029 (104) [N = 29]
Absolute right kidney weight (g)	FO	2.15 ± 0.22 [N = 30]	$2.18 \pm 0.21 (101) [N = 30]$	2.20 ± 0.21 (102) [N = 30]	$2.21 \pm 0.28 (103)$ [$N = 30$]	$2.22 \pm 0.25 (103)$ [N = 29]
	F1	2.05 ± 0.20 [N = 29]	2.08 ± 0.22 (101) [N = 27]	2.09 ± 0.20 (102) [N = 28]	$2.14 \pm 0.25 (104)$ [N = 27]	2.00 ± 0.18 (97.6) [N = 27]
Relative right kidney weight (%)	FO	0.383 ± 0.041 [N = 30]	$0.384 \pm 0.034 (100) [N = 30]$	0.385 ± 0.033 101) [N = 30]	0.387 ± 0.042 (101) [N = 30]	0.403 ± 0.040 (105) [N = 29]
. /	F1	0.346 ± 0.030 [N = 29]	0.356 ± 0.020 (103) [N = 27]	0.356 ± 0.029 (103) [N = 28]	0.359 ± 0.040 (104) [N = 27]	0.364 ± 0.032 (105) [N = 27]

Table B-10. Selected Organ Weight Data on F0- and F1-Generation Male

Table B-10. Selected Organ Weight Data on F0- and F1-Generation Male Sprague-Dawley Rats Exposed to K ⁺ PFBS via Gavage ^{a,b}											
	Dose in mg/kg-day										
MeasurementGeneration0301003001,000											
Absolute spleen weight (g)	F0	0.86 ± 0.13 [N = 30]	0.92 ± 0.18 (107) [N = 30]	0.89 ± 0.11 (103) [N = 30]	$0.88 \pm 0.19 (102)$ [N = 30]	$0.86 \pm 0.09 (100)$ [N = 29]					
	F1	0.90 ± 0.19 [N = 29]	0.88 ± 0.08 (97.8) [N = 27]	0.87 ± 0.17 (96.7) [N = 29]	0.84 ± 0.14 (93.3) [N = 27]	0.79 ± 0.12 (87.8) [N = 27]					
Relative spleen weight (%)	F0	0.153 ± 0.023 [N = 30]	0.161 ± 0.030 (105) [N = 30]	0.156 ± 0.017 (102) [N = 30]	0.153 ± 0.025 (100) [N = 30]	0.157 ± 0.019 (103) [N = 29]					
	F1	0.151 ± 0.033 [N = 29]	0.151 ± 0.018 (100) [N = 27]	0.147 ± 0.025 (97.4) [$N = 29$]	0.141 ± 0.024 (93.4) [N = 27]	0.144 ± 0.023 (95.4) [N = 27]					

Table D 10 Sal atad A Weight Dat ГЛ J F1 C 4 Ма

^aValues obtained from <u>Lieder et al. (2009b)</u>, Table 11, page 40. ^bValues expressed as mean ± SD (% of control); % of control calculated by U.S. EPA. Relative weights denote organ weight to terminal body weight ratios. N = number of animals measured.

^cThis appears to be a typographical error in the original publication.

*Significantly different from controls, p < 0.05.

			Dose in mg/k	g-day		
Measurement	Generation	0	30	100	300	1,000
Terminal body weight (g)	F0	346 ± 23 [N = 26]	$343 \pm 26 (99.1)$ [N = 29]	$351 \pm 23 (101)$ [N = 29]	$344 \pm 30 (99.4)$ [N = 28]	$336 \pm 22 (97.1)$ [N = 25]
	F1	331 ± 29 [N = 23]	$350 \pm 33^* (106)$ [N = 26]	$353 \pm 26^{**}$ (107) [N = 28]	$347 \pm 16*$ (105) [N = 25]	$348 \pm 23*$ (105) [N = 25]
Absolute left kidney weight (g)	F0	1.41 ± 0.12 [N = 26]	1.42 ± 0.15 (101) [N = 29]	1.41 ± 0.15 (100) [N = 29]	$ \begin{array}{c} 1.48 \pm 0.18 \\ (105) \\ [N = 28] \end{array} $	1.42 ± 0.17 (101) [N = 25]
	F1	1.51 ± 0.16 [N = 23]	1.51 ± 0.13 (100) [N = 26]	1.52 ± 0.14 (101) [N = 28]	1.52 ± 0.18 (101) [N = 25]	1.48 ± 0.16 (98.0) [N = 25]
Relative left kidney weight (%)	F0	0.407 ± 0.032 [N = 26]	0.416 ± 0.035 (102) [N = 29]	0.402 ± 0.034 (98.8) [N = 29]	0.430 ± 0.055 (106) [N = 28]	0.422 ± 0.051 (104) [N = 25]
	F1	0.462 ± 0.092 [N = 23]	0.434 ± 0.039 (93.9) [N = 26]	0.433 ± 0.032 (93.7) [N = 28]	0.438 ± 0.046 (94.8) [N = 25]	0.428 ± 0.047 (92.6) [$N = 25$]
Absolute right kidney weight (g)	F0	1.41 ± 0.13 [N = 26]	1.39 ± 0.14 (98.6) [N = 29]	1.42 ± 0.16 (101) [N = 29]	$ \begin{array}{c} 1.44 \pm 0.19 \\ (102) \\ [N = 28] \end{array} $	1.40 ± 0.15 (99.3) [N = 25]
	F1	1.55 ± 0.18 [N = 23]	1.58 ± 0.13 (102) [N = 26]	1.57 ± 0.14 (101) [N = 28]	$ \begin{array}{c} 1.57 \pm 0.18 \\ (101) \\ [N = 25] \end{array} $	1.56 ± 0.18 (101) [N = 25]
Relative right kidney weight (%)	F0	0.406 ± 0.035 [N = 26]	0.407 ± 0.036 (100) [N = 29]	0.406 ± 0.036 (100) [N = 29]	0.420 ± 0.053 (103) [N = 28]	0.418 ± 0.044 (103) [N = 25]
	F1	0.474 ± 0.101 [N = 23]	0.454 ± 0.042 (95.8) [N = 26]	0.446 ± 0.024 (94.0) [N = 28]	0.454 ± 0.046 (95.8) [N = 25]	0.450 ± 0.048 (94.9) [$N = 25$]
Absolute spleen weight (g)	F0	0.74 ± 0.15 [N = 26]	0.70 ± 0.12 (94.6) [N = 29]	0.71 ± 0.16 (95.9) [N = 29]	0.74 ± 0.23 (100) [N = 28]	0.67 ± 0.12 (90.5) [$N = 25$]
	F1	0.62 ± 0.12 [N = 23]	$0.70 \pm 0.11*(113)$ [N = 26]	$0.70 \pm 0.13*(113)$ [N = 28]	$0.71 \pm 0.11*$ (115) [N = 25]	0.67 ± 0.09 (108) [N = 25]

Table B-11. Selected Organ Weight Data on F0- and F1-Generation FemaleSprague-Dawley Rats Exposed to K+PFBS via Gavage^{a,b,c}

Sprague-Dawley Rats Exposed to K ⁺ PFBS via Gavage ^{a,b,c}										
	Dose in mg/kg-day									
Measurement	Generation	0	30	100	300	1,000				
Relative spleen weight (%)	F0	0.213 ± 0.045 [N = 26]	0.206 ± 0.033 (96.7) [N = 29]	0.202 ± 0.043 (94.8) [N = 29]	0.215 ± 0.061 (101) [N = 28]	0.198 ± 0.036 (93.0) [N = 25]				
	F1	0.186 ± 0.034 [N = 23]	0.201 ± 0.030 (108) [N = 26]	0.198 ± 0.035 (106) [N = 28]	0.204 ± 0.035 (110) [N = 25]	0.193 ± 0.027 (104) [N = 25]				

Table B.11 Selected Organ Weight Data on F0. and F1. Constration Female

^aValues obtained from Lieder et al. (2009b), Table 12, page 41.

^bValues expressed as mean ± SD (% of control); % of control calculated by U.S. EPA. Relative weights denote organ weight to terminal body weight ratios. N = number of animals measured.

°Study authors did not provide liver weight measurements for females but stated that "with the exception of splenic weights, all organ weights were similar to control values" in female rats.

*Significantly different from controls, p < 0.05.
Dose in mg/kg-day (Number of animals)								
Organ	Observation	Generation	0 (<i>N</i> = 30)	300 (<i>N</i> = 30)	1,000 (<i>N</i> = 30)			
Males								
Kidney	Papillary epithelial tubular/ductal hyperplasia	F0	0	9** (7+; 2++)	19** (9+; 9++; 1+++)			
		F1	3 (3+)	5 (4+; 1++)	21** (8+; 13++)			
	Focal papillary edema	F0	1 (1+)	2 (2+)	6 (5+; 1++)			
		F1	1 (1+)	0	9* (9+)			
	Focal necrosis of the papilla	F0	0	0	1 (1++)			
		F1	0	2 (2+)	0			
	Focal cortical tubular dilation	F0	0	0	1 (1+)			
		F1	0	0	1 (1+)			
Liver	Hepatocellular hypertrophy	F0	0	3 (3+)	26** (25+; 1++)			
		F1	0	3 (3+)	14** (13+; 1++)			
Females								
Kidney	Papillary epithelial tubular/ductal hyperplasia	F0	3 (1+; 2++)	16** (7+; 8++; 1+++)	21** (9+; 12++)			
		F1	2 (2+)	13** (7+; 5++; 1+++)	15** (7+; 7++; 1+++)			
	Focal papillary edema	F0	1 (1+)	8* (7+; 1++)	7* (7+)			
		F1	0	7* (6+; 1++)	4 (3+; 1++)			
	Focal necrosis of the papilla	F0	0	3 (1+; 2++)	0			
		F1	0	1 (1++)	1 (1++)			
	Focal cortical tubular dilation	F0	0	1 (+++)	1 (1++)			
		F1	1 (1++)	1 (1+)	0			
Liver	Hepatocellular hypertrophy	F0	0	0	0			
		F1	0	0	0			

Table B-12. Incidences of Selected Histopathological Findings on F0- and F1-GenerationMale and Female Sprague-Dawley Rats Exposed to K+PFBS via Gavage^{a,b}

^aValues obtained from Lieder et al. (2009b), Table 10, page 40.

^bValues expressed as number of animals with lesions (degree of severity: + = minimal severity, ++ = mild severity, +++ = moderate severity).

*Significantly different from controls (p < 0.05, Fisher's Exact test), independently calculated by U.S. EPA. **Significantly different from controls (p < 0.01, Fisher's Exact test), independently calculated by U.S. EPA.

APPENDIX C. BENCHMARK DOSE MODELING RESULTS

MODELING PROCEDURE FOR DICHOTOMOUS DATA

The benchmark dose (BMD) modeling of dichotomous data was conducted with EPA's BMD Software (version 2.3). For these data, all of the dichotomous models (i.e., Gamma, Multistage, Logistic, Log-logistic, Probit, Log-probit, Weibull, and Quantal-linear models) available within the software were fit using a 10% benchmark response (BMR). An adequate fit was judged based on the χ^2 goodness-of-fit *p*-value (p > 0.1), magnitude of the scaled residuals in the vicinity of the BMR, and visual inspection of the model fit. Among all models providing adequate fit, the benchmark dose lower confidence limit (BMDL) from the model with the lowest Akaike's Information Criteria (AIC) was selected as a potential point of departure (POD) from which to derive the reference dose (RfD).

INCREASED INCIDENCE OF KIDNEY HYPERPLASIA IN MALE RATS TREATED WITH K⁺PFBS FOR 90 DAYS VIA GAVAGE

Table C-1. Model Predictions for Increased Incidence of Kidney Hyperplasia in Male Sprague-Dawley Rats Treated with K ⁺ PFBS								
Model	p-Value ^a	AIC for Fitted Model	BMD10 (mg/kg-day)	BMDL ₁₀ (mg/kg-day)	Conclusions			
Gamma	0.3057	30.45	240	110				
Logistic	0.3372	29.14	192	119				
Log-logistic	0.3059	30.46	242	115				
Log-probit	0.305	30.45	233	116				
Multistage 2	0.3812	29.33	167	85.6				
Multistage 3	0.5824	28.48	245	96.7	Lowest AIC, best fitting			
Probit	0.271	29.47	170	109				
Weibull	0.3069	30.47	256	107				
Quantal-linear	0.0636	34.08	71.0	40.9				

^aValues <0.10 fail to meet conventional goodness-of-fit criteria.

Г

INCREASED INCIDENCE OF KIDNEY HYPERPLASIA IN FEMALE RATS TREATED WITH K+PFBS FOR 90 DAYS VIA GAVAGE

Table C-2. Model Predictions for Increased Incidence of Kidney Hyperplasia in FemaleSprague-Dawley Rats Treated with K+PFBS							
Model	<i>p</i> -Value ^a	AIC for Fitted Model	BMD10 (mg/kg-day)	BMDL ₁₀ (mg/kg-day)	Conclusions		
Gamma	0.9716	24.06	211	81.3			
Logistic	0.7182	24.86	288	179			
Log-logistic	0.9692	24.07	210	84.8			
Log-probit	0.9925	23.98	204	103			
Multistage 2	0.9926	22.15	204	78.7	Lowest AIC, best fitting		
Multistage 3	0.953	24.14	212	78.3			
Probit	0.7868	24.62	264	165			
Weibull	0.9533	24.13	215	79.7			
Quantal-linear	0.6045	24.53	97.9	55.1			

^aValues <0.10 fail to meet conventional goodness-of-fit criteria.

BMD Output for Multistage 2 Model for Increased Incidence of Kidney Hyperplasia in Female Rats after Exposure to K⁺PFBS via Gavage for 90 days


```
Degree of polynomial = 2
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
                       Default Initial Parameter Values
                           Background =
                                                          0
                              Beta(1) = 3.43191e-005
                               Beta(2) = 2.50059e-006
              Asymptotic Correlation Matrix of Parameter Estimates
              ( *** The model parameter(s) -Background -Beta(1)
                     have been estimated at a boundary point, or have been specified by
the user,
                      and do not appear in the correlation matrix ) % \left( \left( \left( {{{\left( {{\left( {{{\left( {{{\left( {{{\left( {{{c}}}} \right)}} \right)}} \right.}}}}} \right)_{i \left( {{{c}}} \right)}} \right)} \right) \right)
                    Beta(2)
                          1
   Beta(2)
```

Parameter Estimates

			95.0% Wald Confi	ldence
Interval				
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf.
Limit				
Background	0	*	*	*
Beta(1)	0	*	*	*
Beta(2)	2.52309e-006	*	*	*

* - Indicates that this value is not calculated.

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-9.98095	4			
Fitted model	-10.0729	1	0.183913	3	0.9801
Reduced model	-18.5491	1	17.1362	3	0.0006626
AIC:	22.1458				

	Goodness of Fit					
Dose	EstProb.	Expected	Observed	Size	Scaled Residual	
0.0000	0.0000 0.0090	0.000 0.090	0.000	10	0.000	
200.0000	0.0960	0.960	1.000	10 10	-0.302 0.043	
600.0000	0.5968	5.968	6.000	10	0.021	
$Chi^{2} = 0.09$	d.f. = 3	P-v.	alue = 0.9926	5		

Benchmark Dose Computation

Specified effect	=	0.1			
Risk Type	= E:	xtra risk			
Confidence level	=	0.95			
BMD	=	204.349			
BMDL	=	78.7178			
BMDU	=	291.15			
Taken together, interval for the		291.15)	is a 90	% two-sided	confidence

INCREASED INCIDENCE OF KIDNEY HYPERPLASIA IN F0-GENERATION MALE RATS TREATED WITH K⁺PFBS VIA GAVAGE—REPRODUCTIVE STUDY

Table C-3. Model Predictions for Increased Incidence of Kidney Hyperplasia in F0 MaleSprague-Dawley Rats Treated with K+PFBS in Reproductive Study						
Model	<i>p</i> -Value ^a	AIC for Fitted Model	BMD ₁₀ (mg/kg-day)	BMDL ₁₀ (mg/kg-day)	Conclusions	
Gamma	0.9188	78.2	99.5	73.2	Lowest AIC, best fitting	
Logistic	0.0191	87.7	276	208		
Log-logistic	1	80.1	93.5	45.6		
Log-probit	0.5914	79.1	168	127		
Multistage 2	0.9188	78.2	99.5	73.2	Lowest AIC, best fitting	
Multistage 3	0.9188	78.2	99.5	73.2	Lowest AIC, best fitting	
Probit	0.0233	87.0	257	197		
Weibull	0.9188	78.2	99.5	73.2	Lowest AIC, best fitting	
Quantal-linear	0.9188	78.2	99.5	73.2	Lowest AIC, best fitting	

^aValues <0.10 fail to meet conventional goodness-of-fit criteria.

Γ

INCREASED INCIDENCE OF KIDNEY HYPERPLASIA IN F1-GENERATION MALE RATS TREATED WITH K⁺PFBS VIA GAVAGE—REPRODUCTIVE STUDY

Table C-4. Model Predictions for Increased Incidence of Kidney Hyperplasia in F1 MaleSprague-Dawley Rats Treated with K+PFBS in Reproductive Study							
Model	<i>p</i> -Value ^a	AIC for Fitted Model	BMD10 (mg/kg-day)	BMDL ₁₀ (mg/kg-day)	Conclusions		
Gamma	NA	89.19	340	140	Does not meet goodness-of-fit criteria		
Logistic	0.6206	87.43	265	199			
Log-logistic	NA	89.19	339	156	Does not meet goodness-of-fit criteria		
Log-probit	NA	89.19	333	173	Does not meet goodness-of-fit criteria		
Multistage 2	0.832	87.24	311	126	Lowest AIC, best fitting		
Multistage 3	NA	89.19	348	122	Does not meet goodness-of-fit criteria		
Probit	0.5219	87.60	242	186			
Weibull	NA	89.19	346	137	Does not meet goodness-of-fit criteria		
Quantal-linear	0.0675	90.81	119	82.8			

^aValues <0.10 fail to meet conventional goodness-of-fit criteria.

Γ

 $NA = \chi^2$ -test for fit is not valid; AIC = Akaike's Information Criteria; BMD = benchmark dose; BMDL = lower confidence limit (95%) on the benchmark dose.

INCREASED INCIDENCE OF KIDNEY HYPERPLASIA IN F0-GENERATION FEMALE RATS TREATED WITH K+PFBS VIA GAVAGE—REPRODUCTIVE STUDY

Table C-5. Model Predictions for Increased Incidence of Kidney Hyperplasia in F0Female Sprague-Dawley Rats Treated with K+PFBS in Reproductive Study						
Model	<i>p</i> -Value ^a	AIC for Fitted Model	BMD ₁₀ (mg/kg-day)	BMDL ₁₀ (mg/kg-day)	Conclusions	
Gamma	0.0968	104	79.6	56.4	Does not meet goodness-of-fit criteria	
Logistic	0.01	109	173	131	Does not meet goodness-of-fit criteria	
Log-logistic	0.4561	102	44.7	26.6	Lowest AIC, best fitting	
Log-probit	0.0449	105	132	93.2	Does not meet goodness-of-fit criteria	
Multistage 2	0.0968	104	79.6	56.4	Does not meet goodness-of-fit criteria	
Multistage 3	0.0968	104	79.6	56.4	Does not meet goodness-of-fit criteria	
Probit	0.0106	108	169	131	Does not meet goodness-of-fit criteria	
Weibull	0.0968	104	79.6	56.4	Does not meet goodness-of-fit criteria	
Quantal-linear	0.0968	104	79.6	56.4	Does not meet goodness-of-fit criteria	

^aValues <0.10 fail to meet conventional goodness-of-fit criteria.

INCREASED INCIDENCE OF KIDNEY HYPERPLASIA IN F1-GENERATION FEMALE RATS TREATED WITH K+PFBS VIA GAVAGE—REPRODUCTIVE STUDY

Table C-6. Model Predictions for Increased Incidence of Kidney Hyperplasia in F1Female Sprague-Dawley Rats Treated with K+PFBS in Reproductive Study						
Model	<i>p</i> -Value ^a	AIC for Fitted Model	BMD10 (mg/kg-day)	BMDL ₁₀ (mg/kg-day)	Conclusions	
Gamma	0.036	106	135	89.9	Does not meet goodness-of-fit criteria	
Logistic	0.008	109	280	206	Does not meet goodness-of-fit criteria	
Log-logistic	0.112	104	89.0	52.4	Lowest AIC, best fitting	
Log-probit	0.0055	109	229	150	Does not meet goodness-of-fit criteria	
Multistage 2	0.036	106	135	89.9	Does not meet goodness-of-fit criteria	
Multistage 3	0.036	106	135	89.9	Does not meet goodness-of-fit criteria	
Probit	0.0087	108	266	198	Does not meet goodness-of-fit criteria	
Weibull	0.036	106	135	89.9	Does not meet goodness-of-fit criteria	
Quantal-linear	0.036	106	135	89.9	Does not meet goodness-of-fit criteria	

^aValues <0.10 fail to meet conventional goodness-of-fit criteria.

Log-Logistic Model for Increased Incidence of Kidney Hyperplasia in F0-Generation Female Rats after Oral Gavage Exposure to K⁺PFBS in Reproductive Study

15:09 07/31 2013

Log-Logistic Model for Increased Incidence of Kidney Hyperplasia in F1-Generation Female Rats after Oral Gavage Exposure to K⁺PFBS in Reproductive Study

15:17 07/31 2013

APPENDIX D. REFERENCES

- <u>ACGIH</u> (American Conference of Governmental Industrial Hygienists). (2013). 2013 TLVs and BEIs. Based on documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH.
- ATSDR (Agency for Toxic Substances and Disease Registry). (2013). Minimal risk levels (MRLs) for hazardous substances. Atlanta, GA: Agency for Toxic Substances and Disease Registry. Retrieved from <u>http://www.atsdr.cdc.gov/mrls/index.asp</u>
- <u>Cal/EPA</u> (California Environmental Protection Agency). (2011). Hot spots unit risk and cancer potency values. Appendix A. Sacramento, CA: Office of Environmental Health Hazard Assessment. <u>http://www.oehha.ca.gov/air/hot_spots/tsd052909.html</u>
- <u>Cal/EPA</u> (California Environmental Protection Agency). (2012). OEHHA toxicity criteria database. Sacramento, CA: Office of Environmental Health Hazard Assessment. <u>http://www.oehha.ca.gov/tcdb/</u>
- <u>Cal/EPA</u> (California Environmental Protection Agency). (2014a). All OEHHA acute, 8-hour and chronic reference exposure levels (chRELs) as of January 2014. Sacramento, CA: Office of Environmental Health Hazard Assessment. <u>http://www.oehha.ca.gov/air/allrels.html</u>
- <u>Cal/EPA</u> (California Environmental Protection Agency). (2014b). Chemicals known to the state to cause cancer or reproductive toxicity, April 18, 2014. (Proposition 65 list). Sacramento, CA: Office of Environmental Health Hazard Assessment. <u>http://oehha.ca.gov/prop65/prop65_list/files/P65single04182014.pdf</u>
- Eriksen, KT; Raaschou-Nielsen, O; Sørensen, M; Roursgaard, M; Loft, S; Møller, P. (2010). Genotoxic potential of the perfluorinated chemicals PFOA, PFOS, PFBS, PFNA and PFHxA in human HepG2 cells. Mutat Res 700: 39-43. http://dx.doi.org/10.1016/j.mrgentox.2010.04.024
- <u>IARC</u> (International Agency for Research on Cancer). (2013). Monographs on the evaluation of carcinogenic risks to humans. Lyon, France. http://monographs.iarc.fr/ENG/Monographs/vol103/mono103-B02-B03.pdf
- Lieder, PH; Chang, SC; York, RG; Butenhoff, JL. (2009a). Toxicological evaluation of potassium perfluorobutanesulfonate in a 90-day oral gavage study with Sprague-Dawley rats. Toxicology 255: 45-52. http://dx.doi.org/10.1016/j.tox.2008.10.002
- Lieder, PH; York, RG; Hakes, DC; Chang, SC; Butenhoff, JL. (2009b). A two-generation oral gavage reproduction study with potassium perfluorobutanesulfonate (K+PFBS) in Sprague Dawley rats. Toxicology 259: 33-45. <u>http://dx.doi.org/10.1016/j.tox.2009.01.027</u>
- <u>NICNAS</u> (National Industrial Chemicals Notification and Assessment Scheme). (2005a). Existing chemical hazard assessment report. Potassium perfluorbutane sulfonate. Canberra, Australia: Commonwealth of Australia, Australian Government Publishing. <u>http://www.nicnas.gov.au/__data/assets/pdf_file/0004/4927/Potassium_Perfluorobutane____Sulfonate_PDF.pdf</u>
- <u>NICNAS</u> (National Industrial Chemicals Notification and Assessment Scheme). (2005b). Potassium perfluorbutane sulfonate. Existing hazardous assessment report. Canberra, Australia: Commonwealth of Australia, Australian Government Publishing.
- NIOSH (National Institute for Occupational Safety and Health). (2010). NIOSH pocket guide to chemical hazards. Index of chemical abstracts service registry numbers (CAS No.). Atlanta, GA: Center for Disease Control and Prevention, U.S. Department of Health, Education and Welfare. <u>http://www.cdc.gov/niosh/npg/npgdcas.html</u>

NTP (National Toxicology Program). (2005). Perfluorobutane sulfonate. Genetic toxicology bacterial mutagenicity. Chemical effects in biological systems (CEBS). (Study ID A32037). Research Triangle Park, NC: National Institutes of Environmental Sciences, National Institutes of Health.

http://tools.niehs.nih.gov/cebs3/ntpViews/?activeTab=detail&studyNumber=A32037

- <u>NTP</u> (National Toxicology Program). (2011). Report on carcinogens: Twelfth edition (12th ed.). Research Triangle Park, NC. <u>http://ntp.niehs.nih.gov/ntp/roc/twelfth/roc12.pdf</u>
- Olsen, GW; Chang, SC; Noker, PE; Gorman, GS; Ehresman, DJ; Lieder, PH; Butenhoff, JL. (2009). A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans. Toxicology 256: 65-74. <u>http://dx.doi.org/10.1016/j.tox.2008.11.008</u>
- <u>OSHA</u> (Occupational Safety & Health Administration). (2006). Table Z-1 limits for air contaminants. Occupational Safety and Health Administration. <u>http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9992</u>
- OSHA (Occupational Safety & Health Administration). (2011). Air contaminants: occupational safety and health standards for shipyard employment, subpart Z, toxic and hazardous substances. (OSHA Standard 1915.1000). Washington, DC: U.S. Department of Labor. http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10286
- Rosal, R; Rodea-Palomares, I; Boltes, K; Fernandez-Pinas, F; Leganes, F; Petre, A. (2010). Ecotoxicological assessment of surfactants in the aquatic environment: Combined toxicity of docusate sodium with chlorinated pollutants. Chemosphere 81: 288-293. http://dx.doi.org/10.1016/j.chemosphere.2010.05.050
- Sundström, M; Bogdanska, J; Pham, HV; Athanasios, V; Nobel, S; Mcalees, A; Eriksson, J; Depierre, JW; Bergman, Å. (2012). Radiosynthesis of perfluorooctanesulfonate (PFOS) and perfluorobutanesulfonate (PFBS), including solubility, partition and adhesion studies. Chemosphere 87: 865-871. http://dx.doi.org/10.1016/j.chemosphere.2012.01.027
- U.S. EPA (U.S. Environmental Protection Agency). (1994). Chemical assessments and related activities (CARA) [EPA Report]. (600/R-94/904; OHEA-I-127). Washington, DC. http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=60001G8L.txt
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2011a). Health Effects Assessment Summary Tables (HEAST). Available online at <u>http://epa-heast.ornl.gov/</u>
- U.S. EPA (U.S. Environmental Protection Agency). (2011b). Recommended use of body weight 3/4 as the default method in derivation of the oral reference dose [EPA Report]. (EPA/100/R11/0001). Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum. http://www.epa.gov/raf/publications/interspecies-extrapolation.htm
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2012a). 2012 Edition of the drinking water standards and health adivsories. (EPA/822/S-12/001). Washington, DC: Office of Water. <u>http://water.epa.gov/action/advisories/drinking/upload/dwstandards2012.pdf</u>
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2012b). Benchmark dose technical guidance. (EPA/100/R-12/001). Washington, DC: Risk Assessment Forum. http://www.epa.gov/raf/publications/pdfs/benchmark_dose_guidance.pdf
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2012c). Integrated risk information system (IRIS). Available online at <u>http://dx.doi.org/10.1177/1091581812466418</u>
- <u>WHO</u> (World Health Organization). (2012). Online catalog for the Environmental Health Criteria Series. Available online at <u>http://www.who.int/ipcs/publications/ehc/en/</u>