Economic recovery of zinc from Mining Influenced Water (MIW)

Kathleen Whysner Linda Figueroa, PhD, PE (Colorado School of Mines) Elliott Petri (Weston Solutions) and Michael Holmes (USEPA Region 8)

U.S. EPA Hardrock Mining Conference April 5, 2012

Project Goals

- EPA Resource Conservation: "Reduce, reuse, **recycle**"
- Current paradigm for MIW: disposal But...heavy metals are a resource.
- In order to recycle effectively, we must know what is economically viable:

– Chemical forms, assays, supply chains

- **Zinc** as a case study for this paradigm shift

Presentation Outline

- 1. Current Practices in MIW Treatment
- 2. Opportunities for Recycling:

a. Smelting

- Industry Overview
- Specifications

b. Micronutrient Fertilizers

- Industry Overview
- Supply chain
- Specifications
- 3. Expanding Recycling Opportunities

Context: Mining Influenced Water

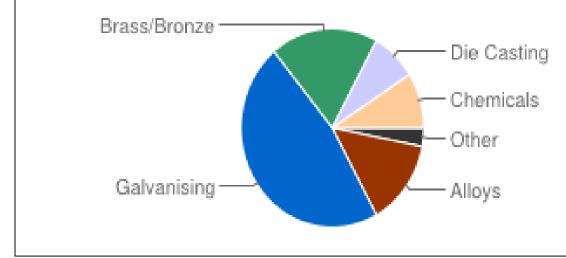
- Mining influenced water in EPA Region 8
 - 51,700 abandoned mine land (AML) sites
 - 22,000 are located in Colorado
 - Heavy metal loading
- Water Treatment Plants
 - Wellington Oro, Argo Tunnel
- Diversity of influent and effluent quality
 - pH, metal concentrations
- TCLP Tests: Hazardous or non-hazardous?

Sosbluewaters.org : Rio Tinto River

Metal	TCLP Limit (mg/L)
Arsenic	5.0
Barium	100
Cadmium	1.0
Chromium	5.0
Lead	5.0
Mercury	0.2
Selenium	1.0
Silver	5.0

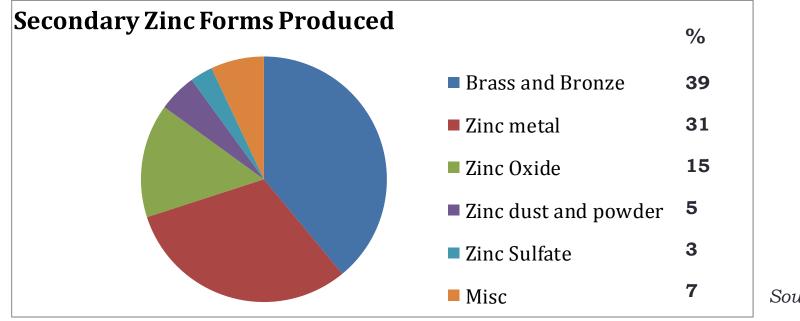
Typical Methods of Treatment

Hydroxide Precipitation


Most common for large scale application High water content sludge Product: Zn(OH)₂ typically mixed with other metals

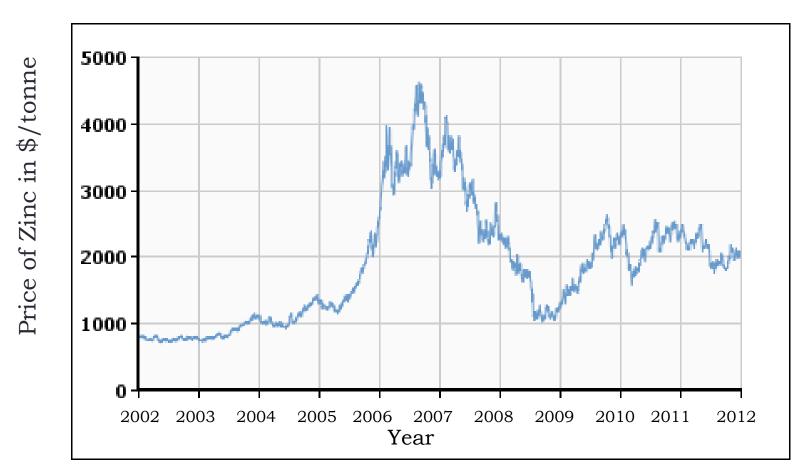
Sulfide precipitation

Typically used for higher metal loading Low water content sludge Product: ZnS may be selectively precipitated


Zinc End Uses

Zinc Use by Industry

INDUSTRY	%
Galvanising	47
Brass/Bronze	19
Alloys	14
Chemicals	9
Die Casting	8
Other	3
Total	100


Source: LME Zinc Industries

Source: USGS 1998

Zinc Pricing

- The London Metals Exchange (LME) Sets zinc price for sources
- Hovering at around 95 cents/lb zinc
- Secondary sources are priced at a percentage of LME, usually 40%

Opportunities for Recycling

Smelting

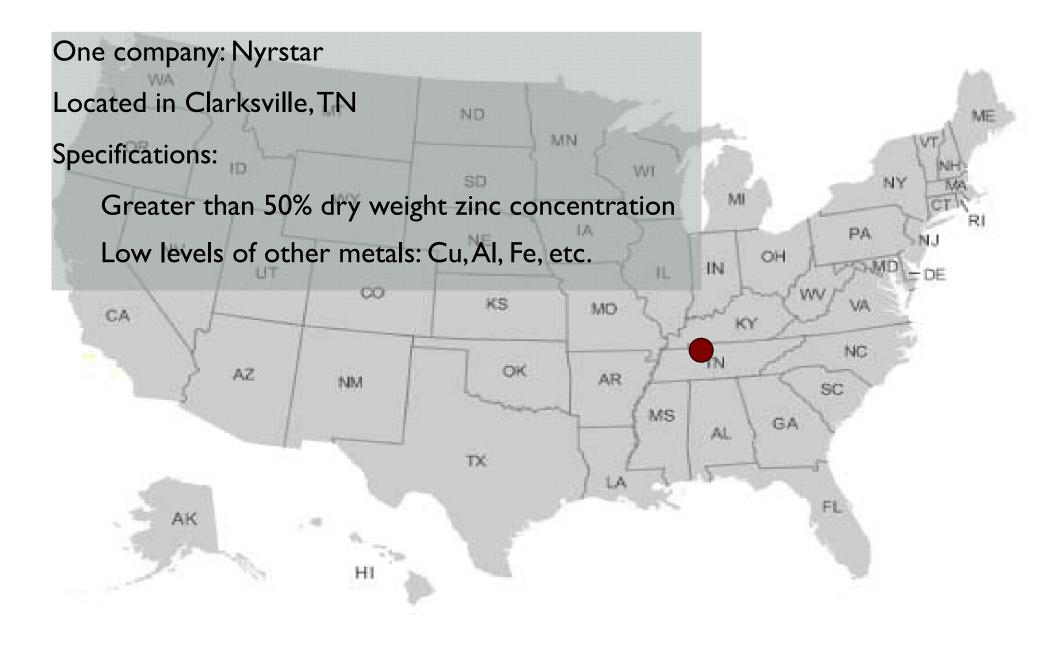
- Product: Zinc metal
- High grades desired
- Micronutrient Fertilizers^l
 - Product: various Zinc compounds
 - Solubility and limited co-contaminants desired

Regulatory Exemptions

Federal: RCRA Reuse Exemption: 40 CFR 261.4

Spent materials recovered from mining water, if not accumulated speculatively

Hazardous waste for zinc micronutrient fertilizers, given some storage and transportation regulations


Colorado: CHWR 261.4(a)

(lists exemptions from hazardous waste)

Secondary materials used in zinc fertilizers

Zinc fertilizers made from hazardous waste

Zinc Smelting Industry

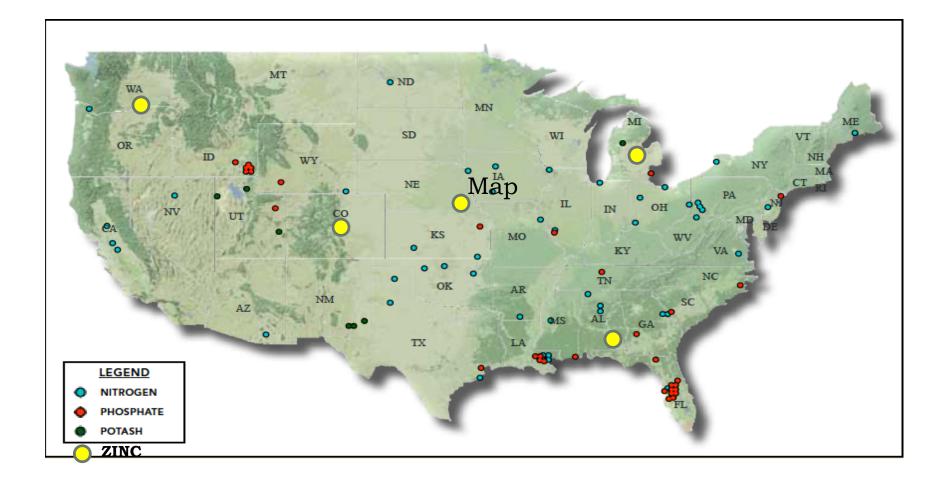
Specifications for Zinc Smelter feed Wellington Oro Zinc Sludge Composition

Constituent	Percent ¹
Moisture	18%
Zinc	57%
Sulfur	38%
Other	5%

¹ Solids percentages are based on dry weights

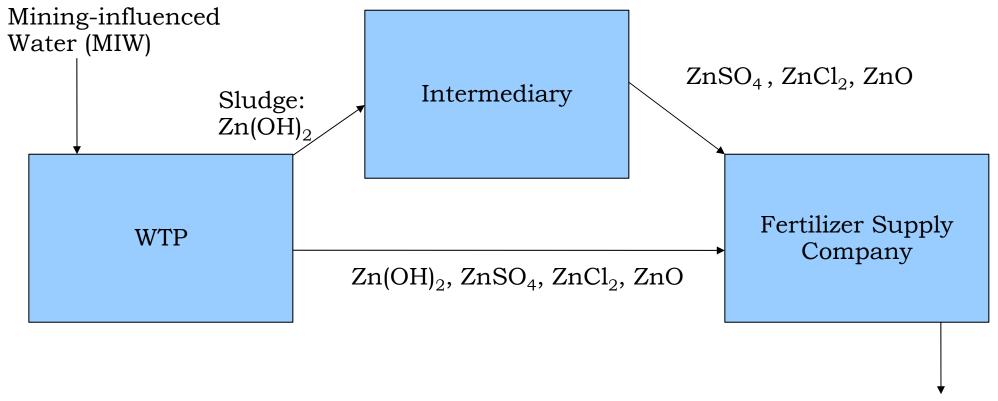
Source: Nyrstar Smelter, Material Acceptance Profile

2009 Operating Results


100,000 m^3 of water treatment 28,000 lbs of Zn recovered

2010 Operating Results

73,000 m³ of water treatment 25,000 lbs of Zn recovered


Source: BioTeq Environmental Technologies Inc.

Micronutrient Fertilizer Industry

Map of NPK Fertilizer Production Facilities, The Fertilizer Institute

Proposed Zinc Micronutrient Fertilizer Supply Chain:

Micronutrient fertilizer blends

Forms of zinc in fertilizer

Inorganic Compounds	Formula	% Zn
Zinc Sulphate Monohydrate	ZnSO ₄ , H ₂ O	36-37
Zinc Sulphate Heptahydrate	$ZnSO_4$, 7 H_2O	22-23
Zinc Oxysulfate	xZnSO ₄ , xZnO	20-50
Basic Zinc Sulphate	ZnSO ₄ , 4Zn(OH) ₂	55
Zinc Oxide ¹	ZnO	50-80
Zinc Carbonate ¹	ZnCO ₃	50-56
Zinc Chloride	ZnCl ₂	50
Zinc Nitrate	Zn(NO ₃) ₂ , 3H ₂ 0	23
Sulphurous Zinc	ZnS	67
Zinc Frits	Fritted Glass	10-30
Ammoniated Zinc Sulphate Solution	$Zn(NH_3)_4SO_4$	10

¹ Not water soluble

Source: Alloway, Brian. "Micronutrients: Think Zinc." New AG International. 2004.

Considerations for fertilizer forms:

- Liquid, solid or granular forms
- Banded or broadcast application
- Foliar or soil application
- Specific crop, soil needs

Competing sources

Current secondary sources of zinc for micronutrient fertilizers:

Material	Annual Generation (tons)	Annual Amount Used in Fertilizer Production (Tons)	Typical RCRA Status	Zinc Content (%)
EAF Dust	925,000	10,000	Hazardous (Pb, Cr, Cd)	15-25
Brass fume dust	32,200	842	Hazardous (Pb, Cd)	40-60
Tire ash	7500	3120	Hazardous (Cd)	27-35
Zinc fumes from galvanizing	Unknown	10836	Non-hazardous	80

Forms typically produced:

Zinc Sulfate, Zinc Oxide, Zinc Oxysulfate, Ammoniated Zinc Sulfate, Zinc Chloride

Source: EPA, The Micronutrient Fertilizer Industry: From By-Product to Beneficial Reuse

Fertilizer Regulations

In general, no regulations on fertilizer from non-hazardous secondary sources

State specific limits:

i.e. Colorado, Texas, Washington

Washington State Standards for Metals in Fertilizers

Constitute	WA Standards (Ibs/ac/yr)
Arsenic	0.297
Cadmium	0.079
Cobalt	0.594
Lead	1.981
Mercury	0.019
Molybdenum	0.079
Nickel	0.713
Selenium	0.055
Zinc	7.329

Source: Rogowski, Golding, Bowhay and Singleton. Screening Survey for Metals and Dioxins in Fertilizer Products and Soils in Washington State. Olympia, WA : Washington State Department of Ecology, 1999. Ecology Publication No. 99-309

Fertilizer sourcing specifications

Requirements are plant specific and negotiable, but as a blueprint for sourcing:

Zinc concentration: at least 30% dry weight
Aluminum and iron: flexible but low, i.e. Fe: <1%, Al: 0.5% or less.
Cadmium and lead: less flexible, i.e. Cd: <2% Pb: <5%
Calcium and Magnesium: less than 2%

Concentrations for EAF dust (hazardous) are a little different:

- ■Zn 62% as a minimum
- •Fe, Pb, K, Cu, Na, Chlorides less than 5%
- •Cd, Mn, As less than 0.05%

Argo Tunnel Specifications

Filter Cake Concentrations

Constituent	% dry weight
Zinc	7
Aluminum	2.3
Iron	18
Cadmium	0.019
Lead	0.003
Lime (as $CaCO_3$)	35.4
Total solids	15.1 (of wet weight)

Source: Energy Laboratories, Laboratory Analytical Report for Filter Cake from the Argo Tunnel Water Treatment Facility, 02/02/04

• Not currently viable for micronutrient fertilizer or smelting sourcing.

Economic Costs and Benefits

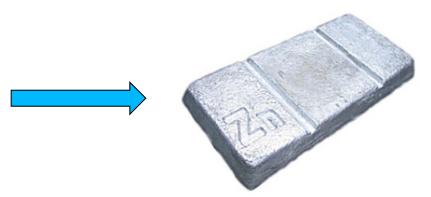
- Transportation costs
- Capital costs
- O&M costs
- Savings on disposal
 - o Volume based
- Earnings
 - o Mass based

Conclusions

The Wellington Oro WTP demonstrated viable zinc recovery and recycling A paradigm shift is needed towards **beneficial recovery** of multiple metals Recovery strategies must be included during the feasibility analysis phase

Considerations for recovery include:

- What are the potential end uses?
- What forms are technically feasible?
- What is the economically viable?


Thank for your attention

For more information contact:

Dr. Linda Figueroa lfiguero@mines.edu

Resource recovery from MIW is possible!

