The Biotic Ligand Model: Unresolved Scientific Issues and Site- and Species-specific Effects on Predicted Cu Toxicity

> Jeffrey Morris,¹ Ann Maest,¹ Alison Craven,² and Joshua Lipton¹

> > ¹ Stratus Consulting Inc. ² University of Colorado-Boulder Boulder, CO

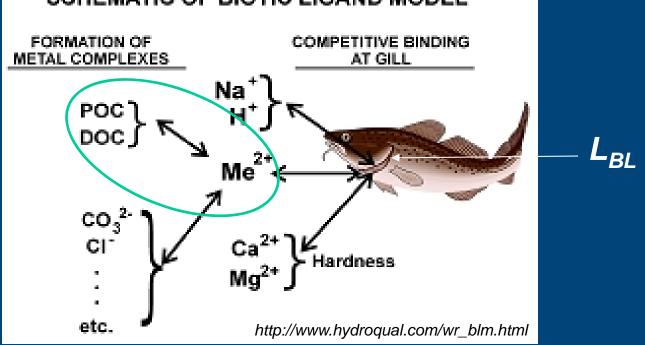
EPA Hardrock Mining Conference 2012: Advancing Solutions for a New Legacy Denver, CO April 4, 2012

Background

- The Biotic Ligand Model (BLM) is used to evaluate the site-specific toxicity of copper to aquatic organisms
 - Can be used to develop site-specific water quality criteria (EPA, 2007)
 - Ongoing investigations into different aspects of the Cu-BLM: geochemical, biological
- Current research: quantifying Cu-organic carbon complexation in low hardness waters and subsequent implications for predicting fish toxicity using the BLM

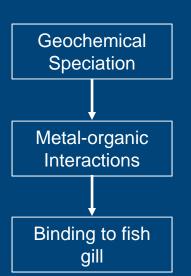
Presentation Outline

- Overview of BLM
- Site-specific Cu-binding studies and metal-DOM binding
- Cu toxicity in low-hardness waters
- Approaches to incorporating Cu binding constants of "biotic ligands" into BLM

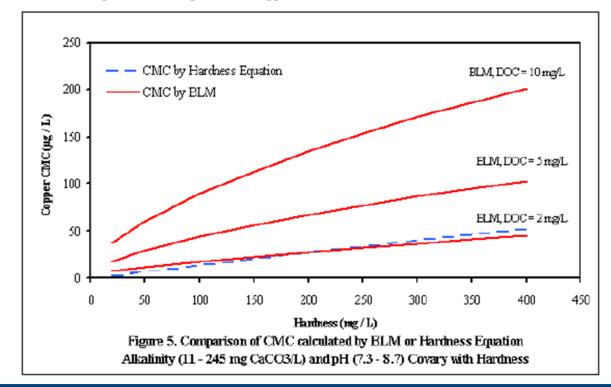

BLM: Background

- Water quality criteria for Cu (and many other metals) expressed as a function of hardness.
 - Increased hardness => decreased toxicity => higher WQC
 - Observed in many controlled experiments
- Well understood that Cu toxicity to aquatic biota is affected by other constituents in water
 - Dissolved organic carbon has been found to reduce Cu toxicity
- BLM developed to numerically address the influence of multiple chemical factors on Cu toxicity

BLM: Conceptual Model


Cu speciation/sorption to gill binding sites ("biotic ligand") affects bioavailability and toxicity

SCHEMATIC OF BIOTIC LIGAND MODEL


BLM: Conceptual Model (cont.)

- BLM: predict concentration of dissolved Cu that would cause toxicity to aquatic biota over a range of water quality conditions
 - BLM uses "lethal accumulation" on gill to estimate toxicity
- Three elements of model
 - Geochemical speciation code CHESS (Santore and Driscoll, 1995)
 - Calculates inorganic metal speciation
 - WHAM V model (Tipping, 1994)
 - Calculates degree of metal-organic interaction
 - Biotic ligand (e.g., fish gill) binding constant (Di Toro et al., 2001)

BLM Illustration: Acute WQC in the Presence of DOC

Site-water chemistry parameters are needed to evaluate a criterion. This is analogous to the situation that previously existed for the hardness-based WQC, where a hardness concentration was necessary in order to derive a criterion. Examples of CMC calculations at various water chemistry conditions are presented in Figure 5 and Appendix G.

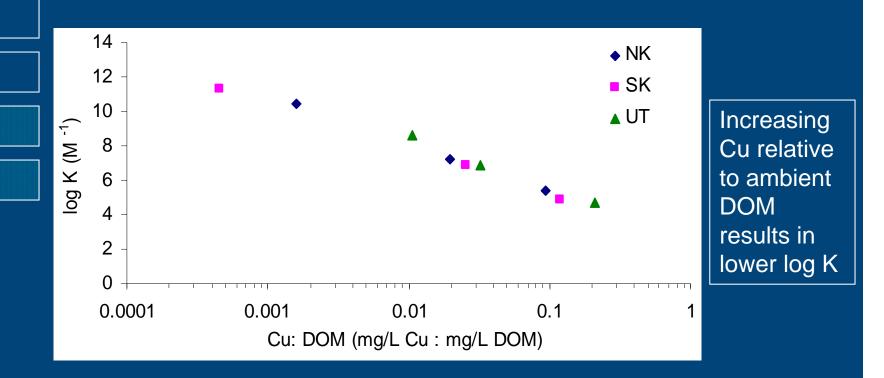
Evaluating Cu-Organic Complexation in a Low-hardness Stream

Site-specific Cu Binding Studies

- Purpose: Evaluate Cu binding properties of ambient DOM
- Performed laboratory studies of site-specific
 Cu binding in low-hardness waters
 - Finding: Stream DOM had less ability to complex Cu than calculated by the BLM

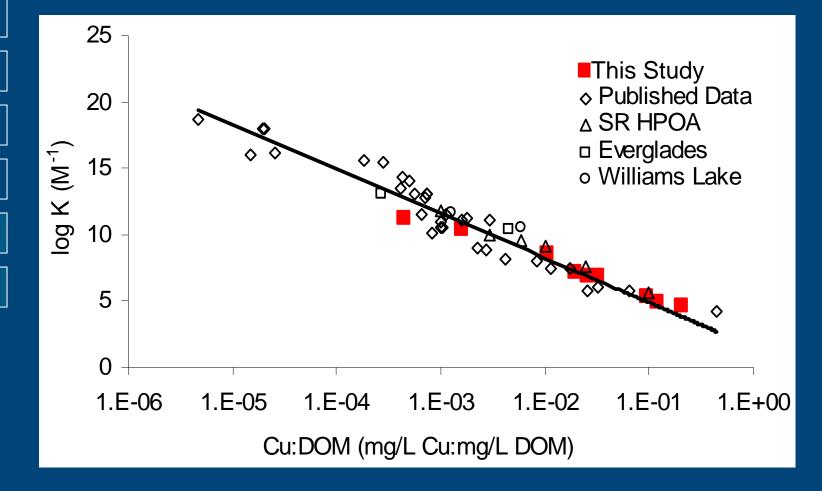
Methods

- Isolated DOM from three low hardness headwater streams in AK
- Cu-ISE titration
 - Fit to a 2-ligand model
- CLE-SPE (competitive ligand exchange-solid phase extraction)
 - Environmentally relevant [Cu]
- Used MINTEQ and empirically derived "effective log K" to estimate free Cu²⁺
- Compared to BLM free Cu



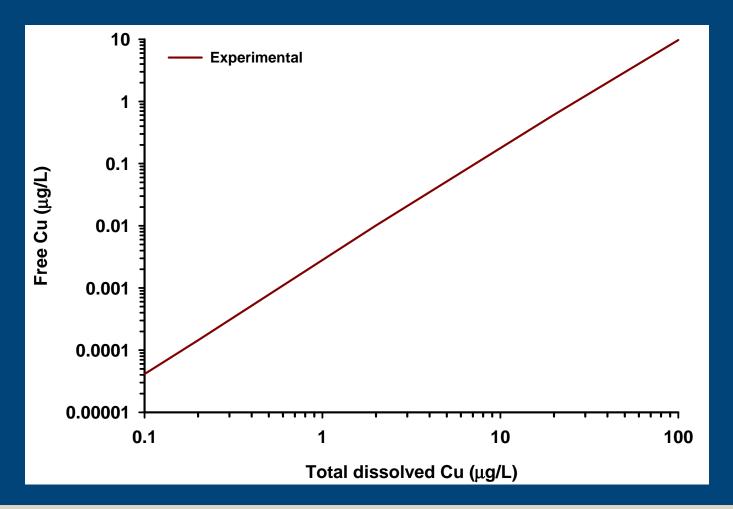
Ambient Water Quality

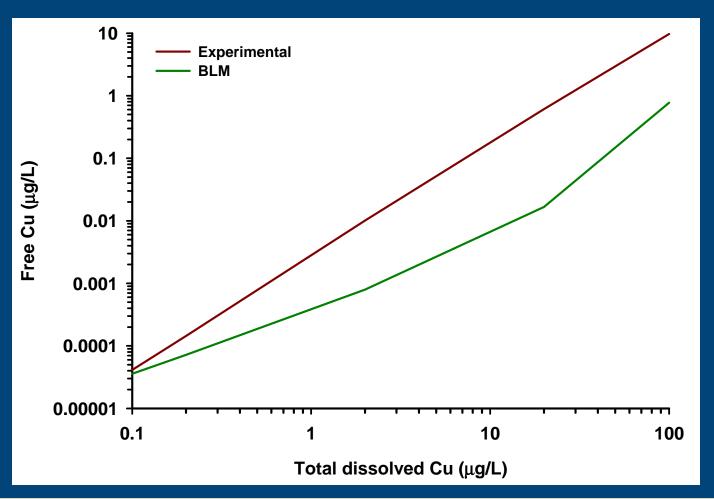
- □ pH: 7.1–7.6
- Alkalinity: 13.5–33.9 mg/L as CaCO₃
- Hardness: 13.4–28.4 mg/L as CaCO₃
- Dissolved Cu: 0.2–1.3 μg/L
- DOC: 1.3–2.2 mg/L


Results: Titration and CLE-SPE

"Effective log K" (net Cu complexation) of site waters a function of Cu:DOM ratio

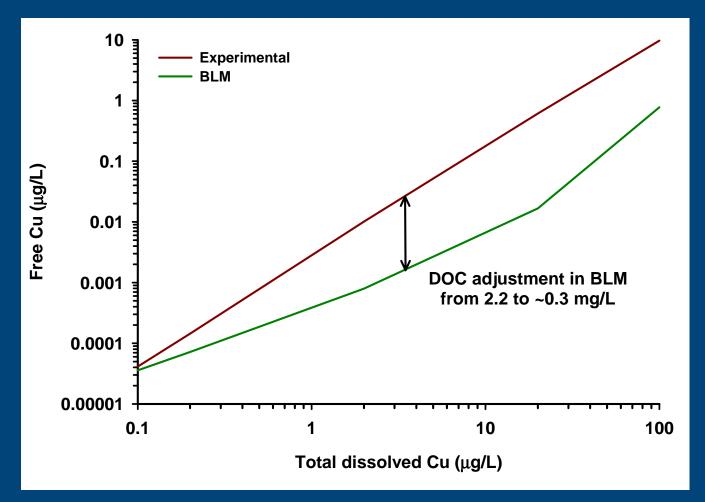
STRATUS CONSULTING

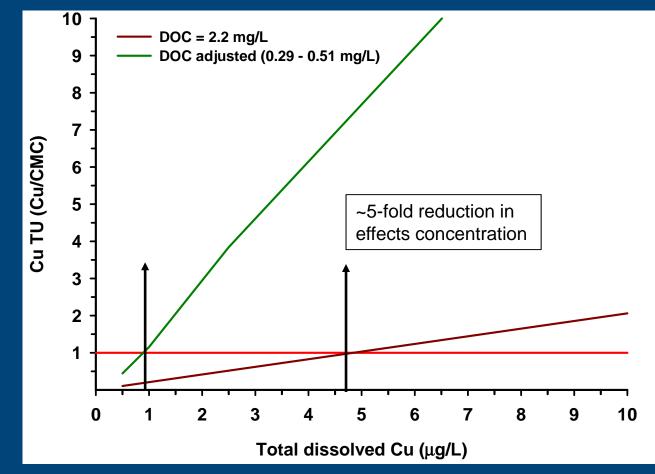

Comparison with Other Studies


Site-Specific Cu Binding Summary

- Cu-organic binding a function of relative amounts of Cu and DOM present – net affinity changes as more Cu is added
 - Distribution of binding sites in DOM
 - High affinity (high log K) sites less abundant than lower affinity sites
 - As Cu concentrations increase, progressive shift to binding with lower affinity sites
- Cu:DOM ratio is important in predicting complexation

Modeling Free Cu: Empirical Data

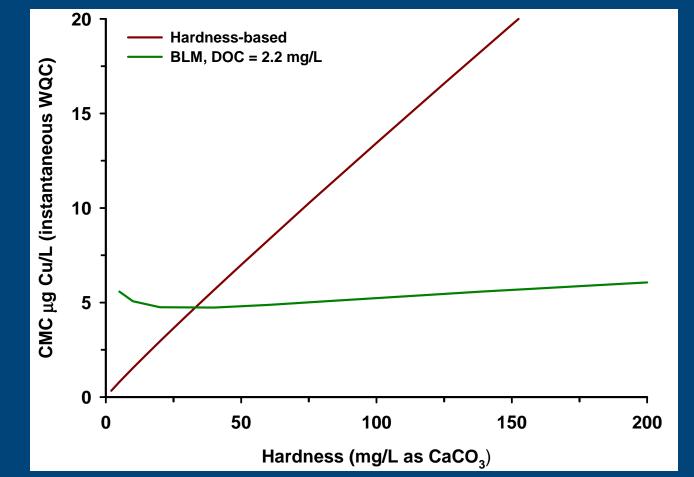

Modeling Free Cu: Comparison to BLM


Adjusting DOC Concentrations in BLM to "Match" Empirical Data

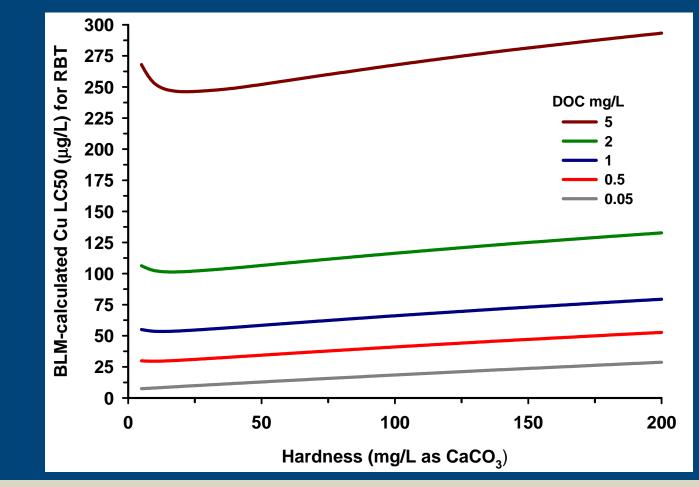
- Previous authors (De Schamphelaere et al., 2004; Welsh et al., 2008) proposed adjusting DOC concentration (input to BLM) to match Cu-DOC complexation toxicity results
 - Adjustment factor of 2 used
- This study: adjust [DOC] from 2.2 mg/L to approx.
 0.3 mg/L to match experimental data
 - Adjustment factor of approximately 8

Adjusting DOC Concentrations

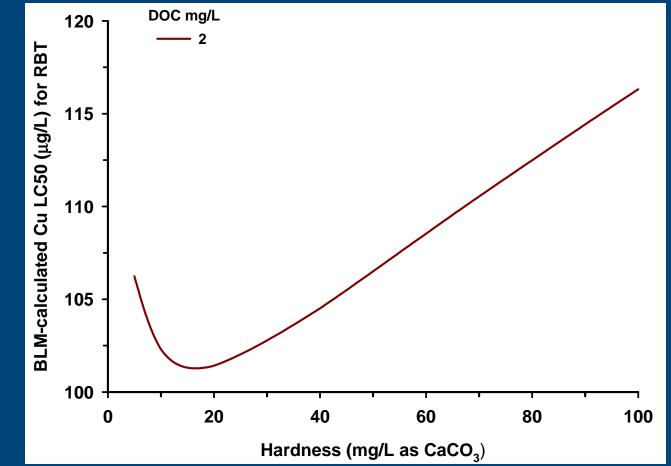
Implications: Estimating Cu Toxicity with Adjusted DOC

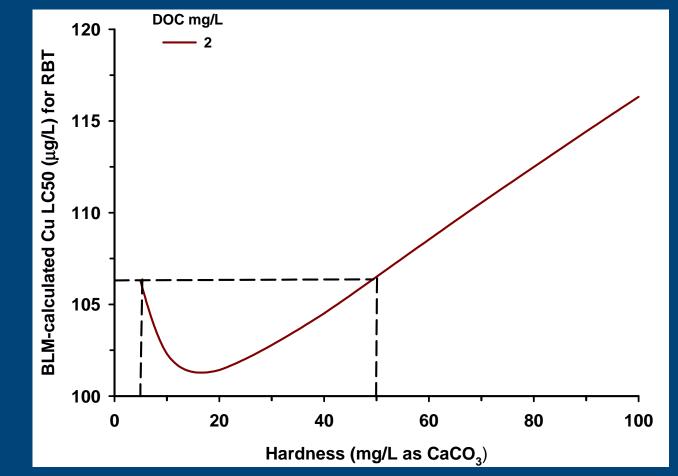

Summary of Cu Binding Results

- BLM under-predicted free Cu compared to site-specific estimates
- Needed to lower DOC in BLM to attain same free Cu results – similar findings to other researchers (e.g., De Schamphelaere et al., 2004; Welsh et al., 2008), but somewhat greater magnitude of adjustment
- Results in a ~ 5-fold decrease in instantaneous WQC compared to BLM


Other Issues: Modeling Cu in Low Hardness Waters?

- Ran series of BLM simulations to further evaluate implications of Cu-DOC complexation in low hardness waters
- Used site-water data as base water quality
 - Temperature = 19°C
 - pH = 7.13
 - DOC = 2.17 mg/L (HA = 10%)
 - Ca, Mg = 4.09, 1.1 mg/L (hardness = 14.7 mg/L CaCO₃)
 - K = 0.1 mg/L
 - SO₄ = 1.7 mg/L
 - Cl = 0.5 mg/L
 - Alkalinity = 22.3 mg/L CaCO₃
 - S = 0.001 mg/L (default, non-functional)


Simulation Results: Varying Hardness; Unadjusted DOC


Simulation Results: Rainbow Trout LC50 Varying Hardness and DOC

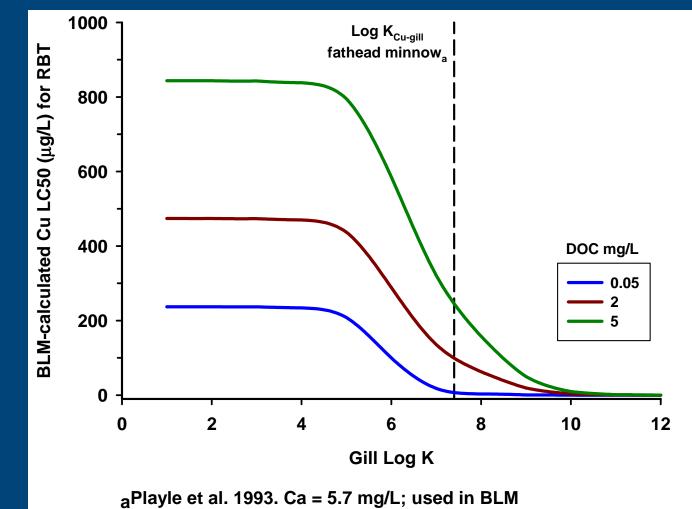
Hardness Simulation: Artifact of DOC Complexation?

Equivalent LC50, 10-fold Difference in Hardness

BLM Simulations: Summary

- Outputs at low hardness in BLM suggests Cu preferentially bound to DOC rather than the biotic ligand (gill)
- BLM may under-predict toxicity of Cu because of DOC complexation (log K data)
- Degree of under-predicted toxicity of Cu may be exacerbated in soft water

Predicting Cu Toxicity: Implications of Biotic Ligand Component


- Cu toxicity a function of relative complexation: log K of DOC v. log K of biotic ligand
- Biotic ligand not as refined as other two BLM components
- Current BLM uses a constant log K value for the biotic ligand
 - Shifts in relative log K of DOC in water v. constant log K in biotic ligand alter predicted toxicity

Biotic Ligand (gill) Log K in the BLM

	Format View		epad						-								
Column m	odel param	eter fi	le, Ver	3.00													
12, 6,	f Componen 0, 0 t Charge 1, 2, -1, 2, -1, 2, 1, 1, -2, -1, -2, -1, -2, -1, -2, -1,			Site		06	ists										
BL-Cu,	Type Act. 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1,	0, 0, 0, 0, 0,	0, 0 0, -1 0, 0 0, 0 0, 1	, 1, , 1, , 0, , 0,	0, 0, 0, 0,	0, 0,	0,	Na 0, 0, 0, 0, 1,	ο,	504 0, 0, 0, 0, 0, 0,	0.		0, 0, 0,	L 1, 1, 1, 1, 1, 1, 1,	Log K V 7.400 -1.300 3.600 3.600 5.400 3.000	r Log K 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
Linked L	ists																
Phase	іТетр іМо	nte H	CU DOC	Ca	мg	Na	K 50	4 c	1 co)3	S BL	LO	g Ks	va	r Log K	Delta H	тетр
	and Syste S\CHESS315		0.wк1		with s of fil	-			-			-	next	lin	e)		

Shifts in Apparent Gill Log K with Hardness?

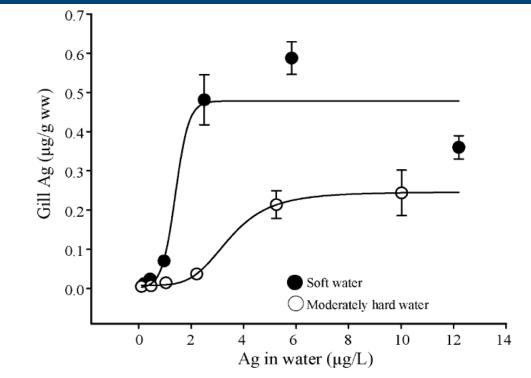
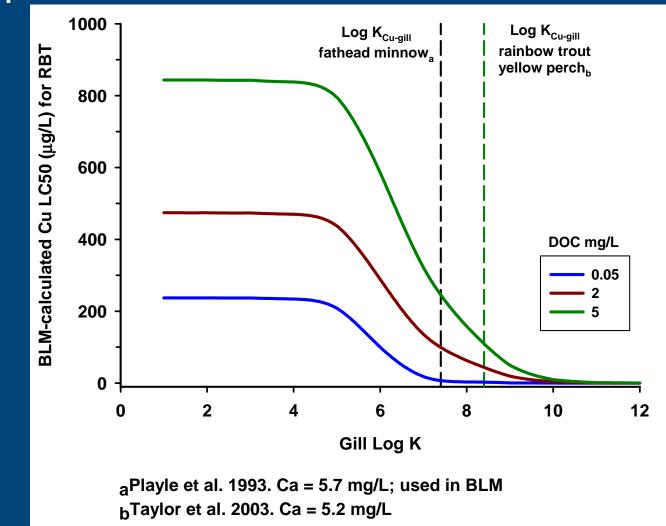
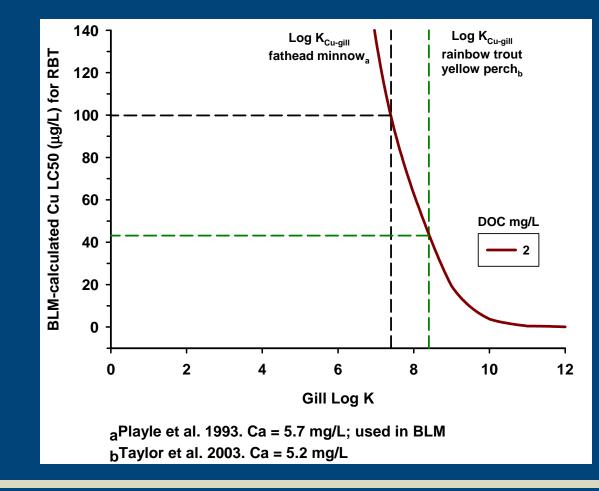



Fig. 4. Silver (Ag) accumulation on the gill (wet weight; ww) of *Pimephales promelas* (previously acclimated to soft water or moderately hard water) during 1-h Ag exposure in soft water. Error bars represent standard error.


Bielmyer et al., 2008.

Measured Gill Log Ks in Different Species

Effects of Varying Log K on Predicted Toxicity

Biotic Ligand Log K Summary

- Gill Log K known to change with water chemistry – dynamic
- Using Log Ks developed for different species may result in ~ 2-fold change in LC50 at DOC = 2 mg/L
- Variable log K in gill + variable log K in site
 water = variable predicted toxicity

Conclusions

- BLM under-predicted free Cu compared to site-specific estimates
- Needed to lower DOC in BLM to attain same free Cu results – similar findings to other researchers (e.g., De Schamphelaere et al., 2004; Welsh et al., 2008), but somewhat greater magnitude of adjustment
 - ~ 5-fold decrease in instantaneous WQC

Conclusions (cont.)

- Simulation modeling with BLM suggests Cu preferentially bound to DOC rather than the biotic ligand (gill) at low hardness
- Degree of under-predicted Cu toxicity
- Variable log K in gill + variable log K in site water = variable predicted toxicity
- Uncertainty in Cu toxicity can be reduced with supplemental site-specific data
 - Cu-DOC complexation
 - Species-specific toxicity testing