Characterization of Waste Rock Borrow Material for Use as Rock Armor to Reduce Tailing Impoundment Side-slope Erosion

Jason Keller, Mike Milczarek, Tim Hawthorne, Scott Rogers, Robert Litle, Tom Klempel, Matt Grabau, Robert Rice, Margaret Buchanan

Mission Mine Tailing Reclamation

- Approximately 1200 acres of tailings
 - 350 acres of side-slopes
- Rock armor slopes per bankruptcy agreement (Previous reclamation highly eroded)
- Waste rock is cheapest source, but need:
 - Erosion resistant material
 - Non-acid generating, low metal leaching
 - 775,000 tons of material per 12 inches of depth
- Revegetation not a primary criteria

Historic Reclamation ASARCO Mission Tailing 1&2

Natural Side-Slopes (Sonoran Desert)

Natural Side-Slopes (Sonoran Desert)

Study Objectives

- Identify rock armor sources with > 50% material > 0.5 inches (12.5 mm); geochemically not reactive
- Waste rock borrow material assessment:
 - Identify potential borrow material based on previous geochemical data
 - Characterize particle size distributions (PSDs) and geochemical characteristics of various waste rock sources
 - Evaluate potential phyto-toxicity, revegetation potential
- Erosion analysis of borrow material:
 - Erosion modeling (RUSLE2)
 - Rock armor field erosion test

WASTE ROCK CHARACTERIZATION

Acid Base Accounting (ABA)

- ABA provides indication of propensity of material to produce acid mine drainage
 - Acid-neutralization potential (ANP) = assets
 - Acid-generating potential (AGP) = liabilities
 - Net neutralization potential (NNP) = ANP AGP = equity
- Favorable rock armor ABA criteria: NNP > 0 (ANP/AGP > 1)

Waste Rock Armor Sources

- Potentially acceptable rock types
 - Volcanics (low Acid Generating Potential (AGP), low Acid Neutralization Potential (ANP))
 - Argillite (moderate AGP and ANP)
 - Arkose (mix of high and low AGP, moderate ANP)
- Six different source areas

Waste Rock

Characterization Approach

- Test pits and trenches
 - Visual logging of material types and oxidation levels
 - Digital images of rock piles and trench walls
- Composite and selected sample testing:
 - Split-Net imaging Particle Size Distribution (PSD) (n=189)
 - Laboratory PSD (n=28)
 - pH and Acid-Base Accounting (ABA) (n=111)
 - Soil fertility and leachable metals (n=39)

Trenching on MND West

Split-Net Image Analysis

Characterization Results

- Initial Screening
 - WR3 Argillite. Significant oxidation and highly variable NNP
 - WR3 Volcanics: 50% material < 0.2 inches</p>
 - SOD Area: 50% material < 0.4 inches and Negative NNP</p>
 - In-Pit Argillite: Negative NNP
 - MND North Argillite, MND West Argillite, SXND Arkose meet screening criteria
- Mean Particle Diameter
 - MND North Argillite: 0.9 inches
 - MND West Argillite: 0.8 inches
 - SXND Arkose: Coarse = 1.5 inches; Fine = 0.3 inches
 - Mean diameter minus one standard deviation still meets criteria
 - More SXND Arkose material > 3.7 inches compared to MND Argillite material

Geochemical Data

MND North Argillite (n=27)	2.1% pyrite sulfur, 119 tons CaC0 ₃ /1000 tons	pH = 7.7 (91% samples pH > 7)	ANP/AGP = 1.73
MND West Argillite (n=35)	2.1% pyrite sulfur 94 tons CaC0 ₃ /1000 tons	pH = 7.6 (97% samples pH > 7)	ANP/AGP = 1.37
SXND Arkose (n=24)	1.1% pyrite sulfur 56 tons CaC0 ₃ /1000 tons	pH = 7.8 (97% samples pH > 7)	ANP/AGP = 1.83
Alluvium (n=10)	0.15% pyrite sulfur 98 tons CaC0 ₃ /1000 tons	pH = 7.6 (100% samples pH > 7)	ANP/AGP = 34

Soil Fertility and Metals Data

- All samples showed moderate salinity (4 to 5 dS/m)
- High copper values above potential phytotoxicity thresholds
- Zinc and boron above potential phytotoxicity thresholds in some samples
- Native plant species adapted to high-salinity or copper conditions may not be adversely affected

EROSION ANALYSIS

Erosion Analyses

- Model potential erosion under various scenarios (using PSD data and RUSLE2)
 - Fine, average and coarse argillite material
 - 150 to 600 foot slope length
 - Furrowing and revegetation
 - Vary percentage of "gravel" cover
- Implement argillite field erosion test pads
 - 12 inches argillite over 12 inches alluvium
 - Unripped, Ripped (6 inches and 24 inches)
- Simulated rainfall with water truck spray:
 - 2 inch rain over 30 minutes (Test #1)
 - 4.5 inch rain over 60 minutes (Test #2)

Erosion Modeling Results

- Predicted annual Argillite erosion rates increase with slope length (2X from 150 ft to 600 ft)
- Furrowing along the contour on average decreases the predicted erosion by about 10%
- Increasing the gravel cover by 10% reduces predicted erosion rates by approximately 25%
- Coarse Argillite best
- Limit Argillite use to 3:1 slopes < 300 ft

Erosion Test Results

- No significant differences in PSD between pre-and post-test ripping plots
- Argillite ripped to 24 inches was most erosion resistant
- Cascading and rilling observed where ripping not perpendicular to slope, or shallow furrows
- Ripping treatments did not show effective mixing of the alluvium and argillite rock armor material

Conclusions

- Waste rock armor that is erosion resistant and geochemically inactive is available
- Side-slope reclamation design
 - One foot of alluvium base over tailings (extra ANP, potential for rooting medium)
 - One foot of rock armor material
- Full-length slope design (no benches):
 - MND West and North Argillite areas for use on slopes < 300 feet
 - SXND Arkose areas for use on slopes > 300 feet
 - Need to segregate visibly oxidized waste rock
- Revegetation potential?? recommend salt tolerant seed mix

THE REAL EROSION TEST

Arkose

