The Increasing Importance of Biomonitoring Data to Interpret Changing Risk Estimates for Legacy Mining Communities

Rosalind Schoof¹, Terry Moore², Cord Harris², and Dina Johnson¹

April 4, 2012

¹ENVIRON International Corporation ²BP Remediation Management

Outline

- Lead and arsenic as risk-drivers at legacy mine sites
- Changes coming for derivation of lead and arsenic cleanup levels
- Role of *blood lead studies* at legacy mine sites
- Role of *urine arsenic studies* at legacy mine sites
- Conclusions

Lead and Arsenic at Legacy Mine Sites

- Lead typically dominates at lead and zinc sites
- Arsenic typically dominates at copper sites
- Large legacy sites may have complex history of mining, smelting and refining operations with both lead and arsenic issues

Assessing Risks for Lead and Arsenic

- Nationally, several movements are underway to reassess elements of lead and arsenic risk assessment
- At legacy mine sites, human health risk estimates for lead and arsenic may be impacted by:
 - lower toxicological benchmarks for lead and arsenic
 - altered exposure parameter assumptions
- Meanwhile, actual exposures to people will be unchanged

Lead - Upcoming changes

- IEUBK model default assumptions will be changing
 - Higher default RBA
 - Diet intake, etc.
- CDC recently recommended lowering current blood lead target level
 - Driven by IQ studies, reduced levels in general population and lower analytical detection limits
 - Already lower in California and Europe, Canada considering

- Implications for legacy mine sites (short term)
 - PRG may decline from 400ppm to 250-300 ppm
- Incremental risk approach considered (long term)
 - California proposed in 2009
 - USEPA SAB instructed OPPT to consider for dust standards
 - Health Canada also considering

Arsenic – Possible Changes

- Cancer slope factor
 - Current CSF is 1.5 (mg/kgday)-1
 - CSF proposed in 2010 is 25.7 (mg/kg-day)-1
 - 17-fold increase would decrease risk-based screening level proportionately
 - EPA SAB panel recommended additional justification in D-R assessment, but didn't recommend major changes
 - Expect new CSF issued by ???

- Implications for legacy mine sites
 - Not clear if all EPA regions will accept and use the new CSF (Region 8 filed a formal memorandum of nonconcurrence on draft CSF)
 - If accepted, will force most clean up levels to be derived based on background
 - ROD reviews could result in major changes in remedies

Biomonitoring Studies Provide Reality Check on Risk Estimates

- Biomonitoring is the measurement of a chemical or its metabolites in body tissues and fluids
- Biomonitoring data can improve our understanding of exposure
 - Can contribute to a multiple lines of evidence approach
 - Enable critical assessment and validation of theoretical predicted risks
 - Guide consequential risk management decisions for all legacy mining communities into the future
 - May also allow better understanding of how our bodies interact with the environment

Case Studies Show that Blood Lead and Urine Arsenic Reflect All Exposures

- For residential soils, children 1 to 7 years old are usually the focus
- Blood lead concentrations reflect exposure from all sources over the past several months, urine arsenic reflects the past 72 hours
- Blood and urine samples are collected at peak exposure times (late summer)
- To assess exposure pathways, studies may also include samples of yard soil, indoor dust, tap water and homegrown produce, and for lead, paint analyses
- Detailed questionnaires elicit information about other household exposures
- EPA's IEUBK model for lead is based on such studies

Studies of Lead at Butte

- Over 100 years of mining history
 - Over 500 underground mines
 - Four open pit mines, including the Berkeley Pit
 - Operations included silver mills, copper and zinc concentrators/smelters

Butte

- Added to NPL September 1983
- 3rd Five-Year ROD Review released July 2011
- EPA action levels for lead
 - 1,200 mg/kg in residential yards and play areas
 - 2,300 mg/kg at waste rock dumps or other source areas outside of residential areas
- Used to determine ongoing response actions by EPA
- Also used by Butte-Silver Bow County as part of the *residential metals abatement program*, which addresses both mining and non-mining (e.g., lead-based paint) sources of lead

Butte Exposure Study and Risk Assessments

- 1990 exposure study by University of Cincinnati yielded structural equation model of exposure pathways
 - Included blood lead assessment of 294 children up to age 6
 - Geometric mean BLL of children in Butte was 3.5 µg/dL, similar to U.S. levels at that time
 - Large study sample & over-representation of high risk areas
 - Residence location (i.e., age of neighborhood) and housing age strongest predictors of paint lead, soil lead, and dust lead concentrations

Butte Exposure Study and Risk Assessments

- 1990 exposure study (cont.)
 - Lead-based paint \rightarrow lead contaminated soil \rightarrow lead contaminated house dust
 - Only house dust lead directly related to blood lead
 - Soil lead's indirect effect on blood lead is both small and weak
 - Variability in soil lead
 - 39% due to lead-based paint, rest due to heterogeneous distribution of lead in soil and lead from other sources
 - Gardening or eating home grown produce shown not to contribute to elevated BLLs
- Studies yielded low lead relative bioavailability estimates (10% to 12%) used in HHRAs
- Multiple lines of evidence supported lead clean up level

2006 Studies of Lead in Rico, Colorado

- Historical mining community undergoing remediation
- Lead exposure study undertaken in 2006 to monitor effects of remediation
- May 118 people (67% households) participated
 - BLL 3 μ g/dL in 17 children
 - BLL 1.7 μ g/dL in 95 adults
- *Sept.* 112 people participated
 - BLLs 2.6 μ g/dL in 12 children
 - BLLs 1.9 μ g/dL in 92 adults
- BLLs correlated with house dust better than with soil

Lead Study Summary

- Blood lead exposure studies were conducted in numerous mining and smelting communities during the 1980s and 1990s
- Generally, the strongest correlations for BLLs were with dust lead concentrations, and operating smelters exerted a greater effect on BLLs via outdoor dust deposition and track-in to indoor dust
- Far fewer exposure studies have been conducted since 2000, although some communities have ongoing surveillance testing of BLLs
- The nation-wide decline in BLLS since the 1990s makes it difficult to discern local trends vs. nationwide trends
- Contemporary exposure studies are needed to determine primary exposure sources and to update assumptions and parameters for exposure models

Urine Arsenic as Indicator of Exposure: Background Example

Biomonitoring studies support lack of exposure below 100 ppm

- Anaconda (1990) Mean urine arsenic increased about 30% as soil arsenic increased from 50 to 400ppm
- Bingham Creek Channel study (1993) No association between soil arsenic and urine arsenic
- Middleport, NY (2004) No association between soil arsenic and urine arsenic

1990 Butte Urine As (µg/L)			
	All soil < 50 ppm As	Soil As 50-100 ppm*	Soil As > 100 ppm*
N	31	83	26
Mean	13.0	14.1	13.1
Std. Dev.	6.5	8.9	7.1
Median	13.0	12.0	11.5
95%-tile	25.0	30.5	27.0
Maximum	26.5	43.5	28.0

*One or more samples

E N V I R O N

Studies of Arsenic at Anaconda

- Processed copper ore from Butte from about 1884 – 1980
 - Milling and smelting operations
- Added to NPL September 1983
- Site covers an area of approximately 300 square miles
- 1996 Community Soils ROD
- 4th Five-Year ROD Review completed September 2010

Anaconda Site - Soil Action Levels

• EPA action levels for arsenic

- 250 mg/kg in residential yards
- 500 mg/kg in commercial/industrial soils
- Residential action level corresponds to 8 in 100,000 risk level based on:
 - Site-specific soil ingestion study
 - Relative bioavailability 18% for soil, 26% for dust
 - Site-specific indoor dust data
 - Demonstration of reduced winter dust concentrations
 - Lower exposures demonstrated in biomonitoring study

Anaconda Exposure Study 1992 Univ. Cincinnati

Source: Adapted from Hwang et al. (1997a)

BE0021 0703 Urinary vs. Soil As

Bingham Creek Channel Arsenic Exposure Study 1993, University of Cincinnati

- 971 children less than 6 years old and 378 older siblings and adults
- Arsenic soil and water concentrations:
 - Average of 27 ppm in soil (range 4 to 623 ppm)
 - Average of 10 ppm in residential floor dust (range 1 to 130 ppm)
 - Average of 3.5 ppb in tap water (range 1 to 11 ppb)
- Urine (creatinine-corrected) 5.20 µg/l (range 0.7 to 27.5 µg/l) for children <72 months

Bingham Creek Channel Arsenic Study Conclusions

- Urinary arsenic concentrations were associated with:
 - Child's age
 - Season of sample collection
 - Time spent outdoors
 - Concentration of arsenic in drinking water
- Association between urinary arsenic and arsenic in handwipe samples not significant
 - high variability of measures within an individual over time
 - dominance of other factors (e.g. food/water) vs. dust and soil as contributors to urinary arsenic

Middleport, NY 2003 Arsenic Exposure Study, (Tsuji et al 2004)

- Former arsenic pesticide facility near Buffalo
- 439 study participants, including 77 children <7 years old
- Soil arsenic soil ranged from 5.2 to 340 ppm with an average of 28 ppm (and 22.5 ppm at homes with children < 7 years)
- Dust concentrations averaged 20 ppm (and 22ppm at homes with children < 7 years)

Key findings of the Middleport biomonitoring study

- Speciated and inorganic urinary arsenic levels were low
- Urinary arsenic levels were generally not correlated with soil or house dust
- House dust concentrations were not correlated with soil concentrations
- Site-specific risk assessment supported by study showing low relative bioavailability

$\in N \vee I R O N$

Putting Lead and Arsenic Risks in Context

- Critical importance of understanding the factors that affect site-related lead and arsenic exposures to allow:
 - a meaningful interpretation of site-specific risk estimates
 - evaluation of the protectiveness of existing or proposed remedies
- Risk assessments that incorporate site-specific exposure information alone will not address this need
- Role for biomonitoring studies
 - Complement interpretation of theoretical risk estimates for common risk drivers
 - Provide data for assessing remedy protectiveness at legacy mine sites

Longer Term Research Needs

- Contemporary biomonitoring studies (especially for lead)
- Examine exposure assumptions:
 - Soil ingestion rates
 - Evaluate role of exterior dust
 - Relative soil/dust intakes
 - Relative bioavailability
 - Lead absolute bioavailability in children
 - Blood lead GSD