ENHANCED SULFATE REDUCTION TREATMENT OF MINING-INFLUENCED WATER USING BIOCHEMICAL REACTORS IMPACTS ON MERCURY SPECIATION

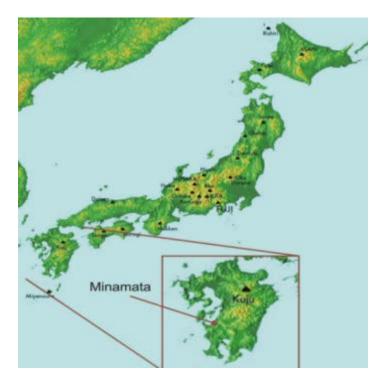
Stephen Dent, Ph.D. National Conference on Mining-Influenced Waters

Approaches for Characterization, Source Control and Treatment Albuquerque, NM

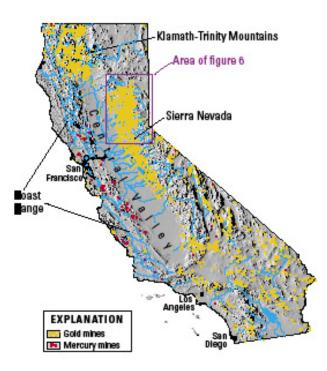
August 13, 2014

Presentation Objectives

- Mercury in the Environment
 - Prevalence
 - How a Mole Hill Turns into a Mountain
- Biochemical Reactors Mining Impacted Water
 - Formosa Treatability Study
 - ORD Bench Top Study
- General Conclusions


Outline

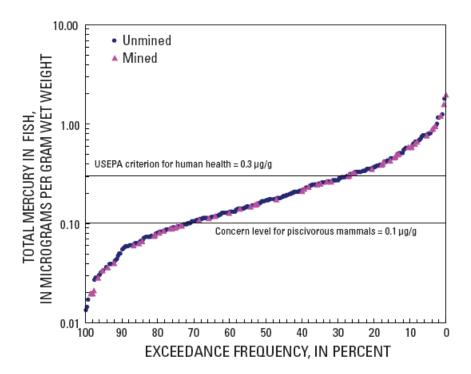
• Recommendations for Moving Forward



Anthropogenic Point Source Impacts

Minamata Bay

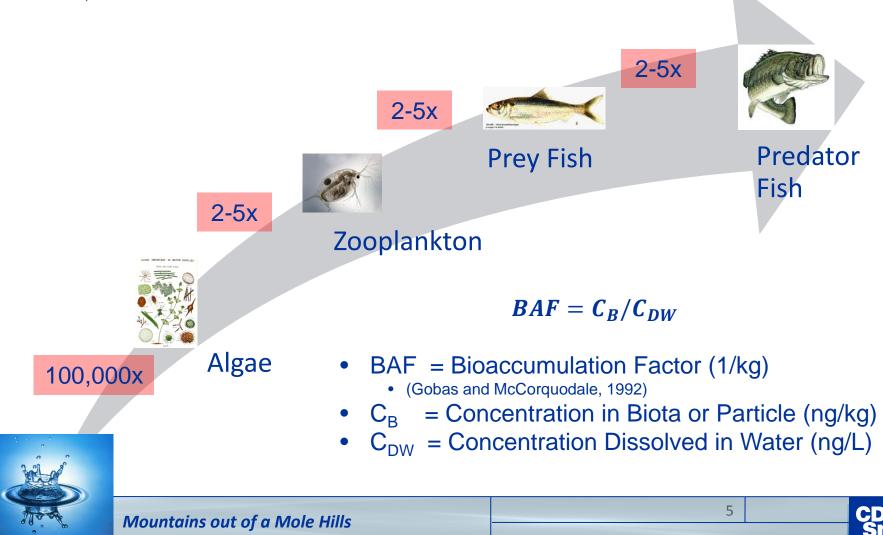
California Gold/Mercury Mines



Prevalence

Non-Point Source Impact

- 367 Stream Sites Sampled Across United States
- Sites with Fish Greater than 0.3 μg/g
 - 25% Exceedances
- Sites with Fish Greater than 0.6 μg/g
 - 10% Exceedances



Prevalence

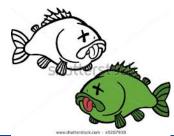
Bioaccumulation

Wood et al., 2013

Working the Problem Backwards (MeHg)

USGS: Mean, ng/L

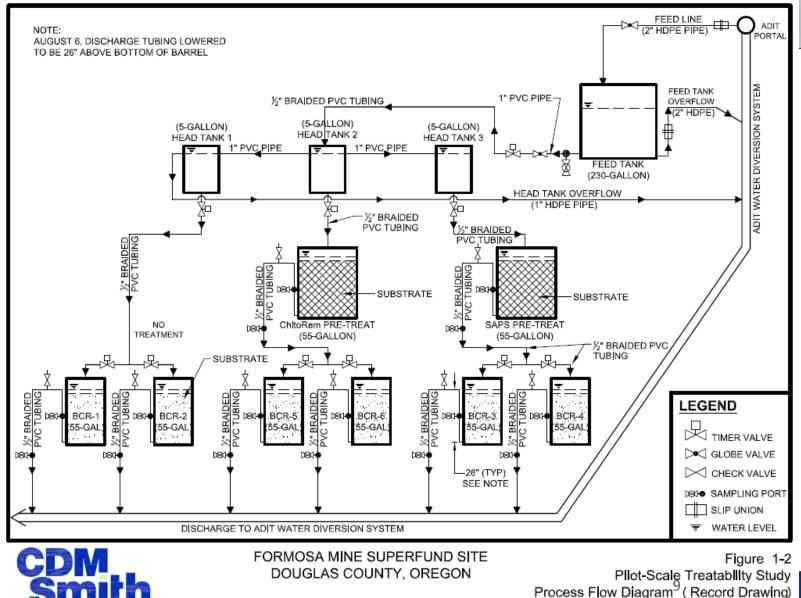
- All Sites: 0.19
- Unmined: 0.2
- Mined: 0.18
- Range, ng/L
 - All Sites: 4.11-ND
 - Unmined: 4.11 ND
 - Mined : 2.02 ND
- California Water Control Board:
 - 0.06 ng/L Implementation
 Goal


6

Mountains Out of a Mole Hills

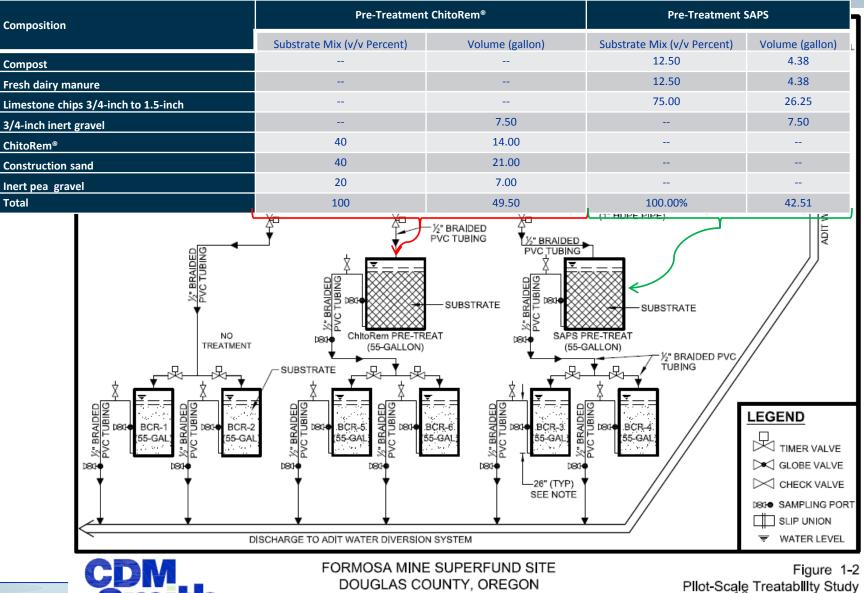
Mine Impacted Water

- "Aqueous waste generated by ore extraction and processing, as well as mine drainage and tailings runoff." ~ITRC, 2013
- AMD: Sulfidic Rock in Contact with Surface Water and Oxygen
 - pH Decreases
 - Metals Dissolve



Biochemical Reactors

- BCRs are engineered systems that use an organic substrate (electron donor) to drive microbial and chemical reactions to reduce concentrations of metals, acidity, and sulfate in MIW.
 - ChitoRem[®] SC-20
 - Woody Substrate/Manure Including Limestone
 - $-SO_4^{-2} + 2CH_2O \rightarrow HS^- + 2HCO_3^- + H^+$
 - S^{2-} + Me^{2+} \rightarrow MeS(s) and HS^{-} + Me^{2+} \rightarrow MeS(s) + H^{+}
 - See Angela Frandsen's Talk; Section 10 @ 1:30 Today



Treatability Study Flow Diagram

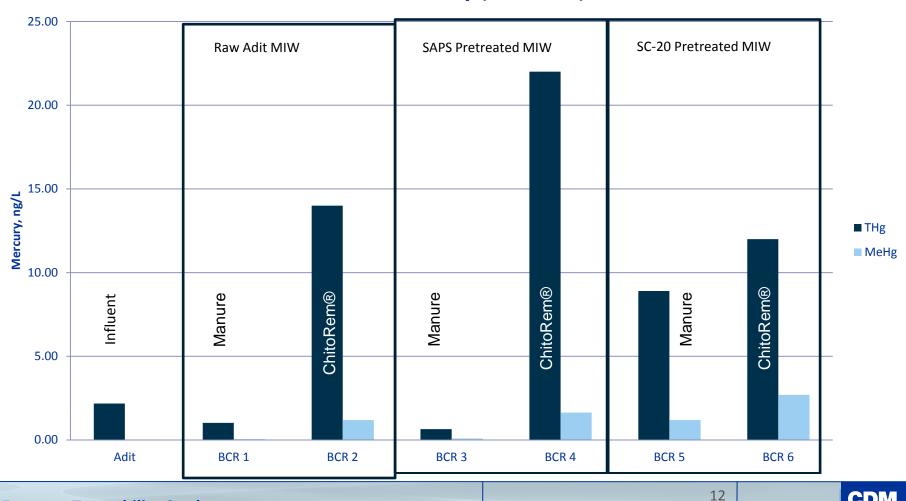
Treatability Study Flow Diagram

Pilot-Scale Treatability Study Process Flow Diagram⁰ (Record Drawing) AUGUST 2013

Treatability Study Flow Diagram

Composition	Woody Material Mixture		ChitoRem [®] and Sand Mixture	
	Substrate Mix (v/v Percent)	Volume (gallon)	Substrate Mix (v/v Percent)	Volume (gallon)
awdust	15.00	5.25		
Vood chips	30.00	10.50		
ompost	15.00	5.25		
resh dairy manure	20.00	7.00		
imestone chips 3/4-inch to 1.5-inch	20.00	7.00		
/4-inch inert gravel		7.50		7.50
hitoRem®			40.00	14.00
onstruction sand			40.00	21.00
ert pea gravel			20.00	7.00
otal	100.00	42.50	100.00	49.50
		える D810 26" (TYP) SEE NOTE	ON) TUBING BCR-4 55-GAL	EGEND TIMER VALVE GLOBE VALVE CHECK VALVE SAMPLING PORT SLIP UNION
DISCHARGE TO ADIT WATER DIVERSION SYSTEM				▼ WATER LEVEL
FORMOSA MINE SUPERFUND SITE Figure 1-				

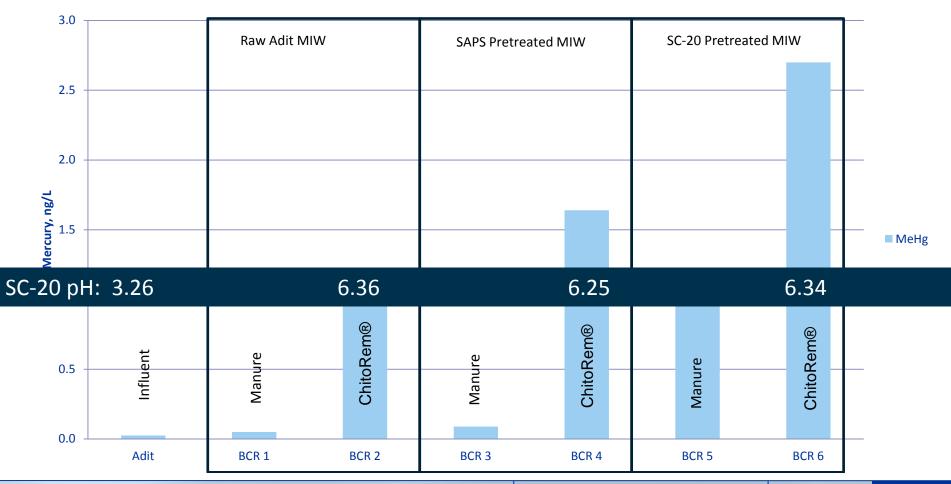
DOUGLAS COUNTY, OREGON



Pllot-Scale Treatability Study Process Flow Diagram¹ (Record Drawing)

Mercury Results

Trace Mercury (EPA 1631) ~ 2 months

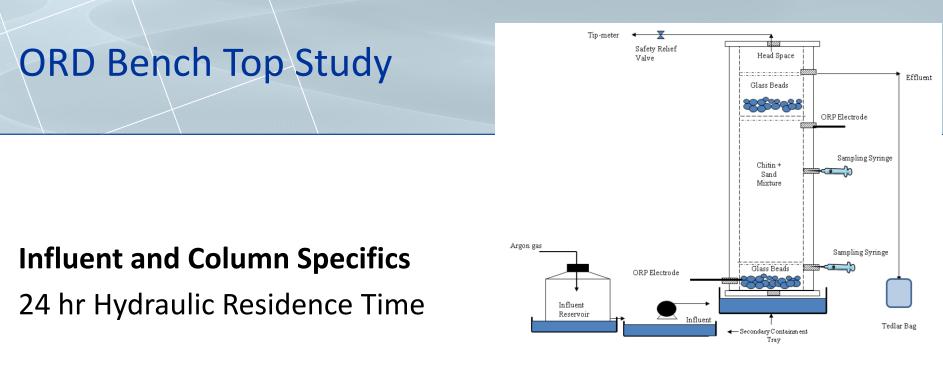

Formosa Treatability Study

CD

Smith

Mercury Results (Continued)

Methyl Mercury (EPA 1630) ~2 months

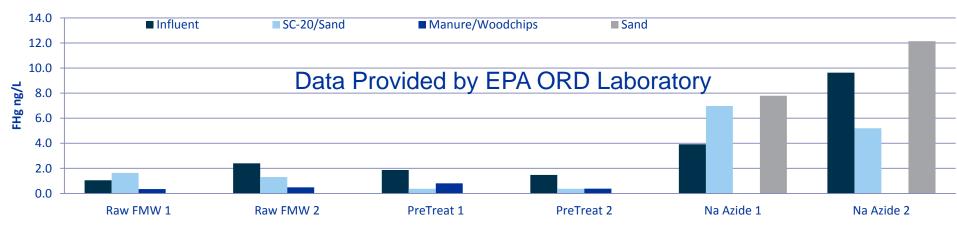

Formosa Treatability Study

13

Smith

Formosa Mercury Evaluation Summary

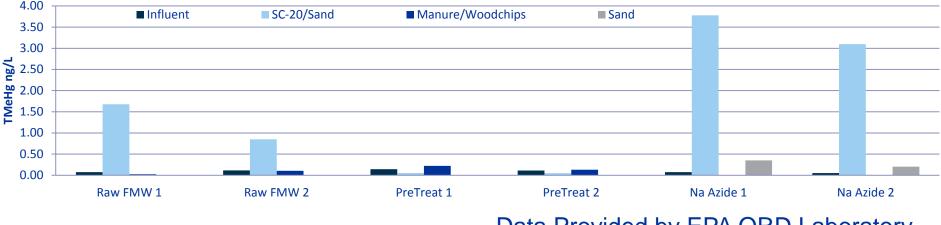
- All SC-20 BCRs Increased THg and MeHg
 - THg Increased by 10 to 20 ng/L
 - MeHg Increased by 1 to ~3 ng/L
- THg Potentially Sourced from Media
 - Crab Hg Body Burden ~ 0.16 mg/kg
- MeHg From Release Or Generation
 - Potential Resident Source:
 - Aquatic Organisms Typically Enriched in MeHg
 - Potential MeHg Generation from Resident and Influent Hg(II)
 - Evidence of SRB Activity
 - ORP, Sulfide, Volatile Fatty Acids



- Column 1: SC-20 (140 g) + sand (420 g) Pretreated MIW
- Column 2: Wood Chips (253 g) + Hay (17 g) + Manure (4 g) Pre
- Column 3: SC-20 (140 g) + Sand (420 g) Raw MIW
- Column 4: Wood Chips (253 g) + Hay (17 g) + Manure (4 g) Raw
- Column 5: SC-20 (140 g) + Sand (420 g) Na Azide Raw MIW
- Column 6: Sand (420 g) Na Azide Raw MIW

Total Filtered Mercury: 31 and 34 Weeks into Test

Filtered Trace Mercury (EPA 1631)



- Dissolved Fraction (<0.45 um) Comparable to Field Study
 - Fraction Most Available for Methylation
- Raw FMW Columns ~ GLI 1.3 ng/L
- PreTreat Columns < GLI 1.3 ng/L
- Na Azide Columns >> GLI 1.3 (With Elevated Hg Influent)

Methylmercury 31 and 34 Weeks into Test

TMeHg

Evidence of SRB Activity:

- Data Provided by EPA ORD Laboratory
- SRB Lab Test: (+) In Raw and Pretreat Columns
- Elevated Volatile Fatty Acid In Raw and Pretreat Columns
- pH Elevated in Raw and Pretreat Columns
- ORP Depressed in Raw and Pretreat Columns

Bench Top Study Observations

- SC-20 Pretreated: THg and MeHg Maintained Below Levels of Concern (1.3 ng/L for THg GLI & 0.06 ng/L for MeHg CWCB)
- SC-20 Effluent (Raw & Na Azide) ~75% MeHg in Dissolved Fraction
- Natural Production of MeHg Typically ~5% of Total
- MeHg as THg
 - Raw FMW: 0.4 to 0.5
 - Pretreat: 0.08
 - Na Azide: 0.5 to 0.6

Key Difference Between Lab and Field Test

- Duration:
 - Field Test Sampled One Time ~2 Months Into Test
 - Lab Test Sampled Twice, at 7 and 8 Months Into Test
- Flow Consistency:
 - Field Test Flow Decreased Over Time
 - Much of Media Left Unreacted
 - Lab Test Flow Remained Consistent
- Variability of Mercury Concentrations in Influent
 - Formosa Adit Stable
 - ~ 2 ng/L
 - ORD Laboratory Influent
 - Range 1.1 to 9.6 ng/L

General Conclusions

- Effect on Total Mercury
 - Field Test: THg Increased in all SC-20 BCRs
 - Lab Test: THg Decreased in all Columns
- MeHg in SC-20 Effluent Elevated relative to Influent
 - Two Possible Explanations
 - SRB Activity Methylate Hg(II) to MeHg, or
 - Resident MeHg Released from Media
- Need for More In Depth Evaluation to Quantify and Understand Mercury Dynamics Associated with the Application of SC-20 in MIW Applications

Recommendations for Further Study

- Fully Quantify Resident Mercury Concentration and Speciation in BCR Media
 - Both SC-20 and Sand
- Evaluate Conditions that Promote Mercury Release from BCR Media
- Evaluate Conditions that Promote Methylation of Hg(II)
 - From Influent Source
 - From Resident Source

Acknowledgements

- Formosa Treatability Study:
 - Performed by CDM Smith Federal Programs: Task Order 047 for Architectural and Engineering Services (AES10) Contract Number 68-S7-03-04
- ORD Bench Top Study:
 - Mercury Component Funded by the Superfund and Technology Liaison Extramural Funding (2013); Project Code TEC-961J,L,M
- EPA Contributors
 - Chris Cora, Project RPM, EPA Region 10, Seattle, WA;
 - Chris Eckley, PhD, Mining Geochemist, EPA Region 10, Seattle, WA;

- Souhail Al-Abed, PhD, Work
 Assignment Manager, EPA Region 5, Cincinnati, OH;
- Kira Lynch, Environmental Scientist, Region 10, Seattle, WA;
- John McKernan, Director of Engineering Technical Support Center, Region 5, Cincinnati, OH
- CDM Smith Contributors
 - Mike Allen, Project PM
 - Nicholas R. Anton, PE, Environmental Engineer, Denver, CO;
 - David J. Reisman, Sr. Environmental Scientist, Cincinnati, OH

Questions?

Contact Info

Stephen Dent, PhD

Cell: 971-201-6976 **Office:** 503-205-7419

e-mail: dentsr@cdmsmith.com

