In-Situ Nitrate and Selenium Reduction/Stabilization within Waste Rock

A. Ola Opara, Ph.D. Mike Peoples D. Jack Adams, Ph.D.

Problem Statement

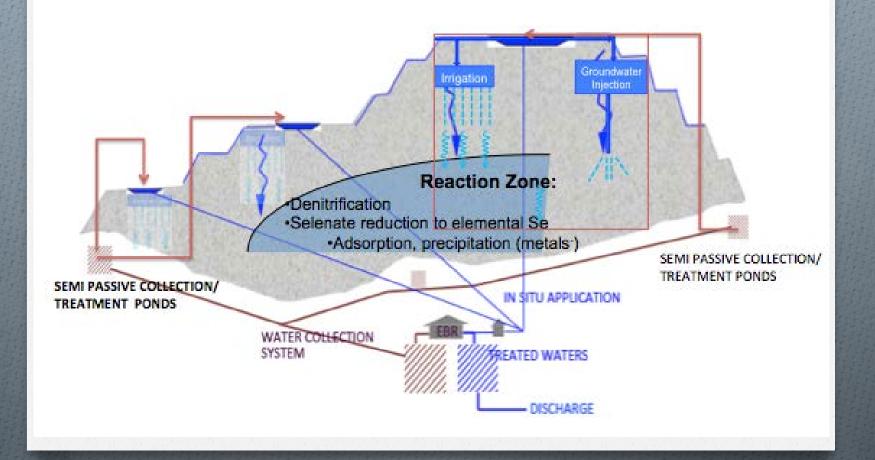
Metal and coal mine waste rock releases Se and other co-contaminants (As, Cd, Fe, CN, NO₃, SO₄, etc.).

 Nitrates are released into these waters from residual blasting compounds.

- + NO_3 is the preferred electron acceptor;
- NO₃ needs to be removed prior to Se removal;
- In situ denitrification decreases the size of the required active water treatment facility and helps stabilize metals.

The Electro-Biochemical Reactor

Low voltage (1-3 Volts potential) provides:

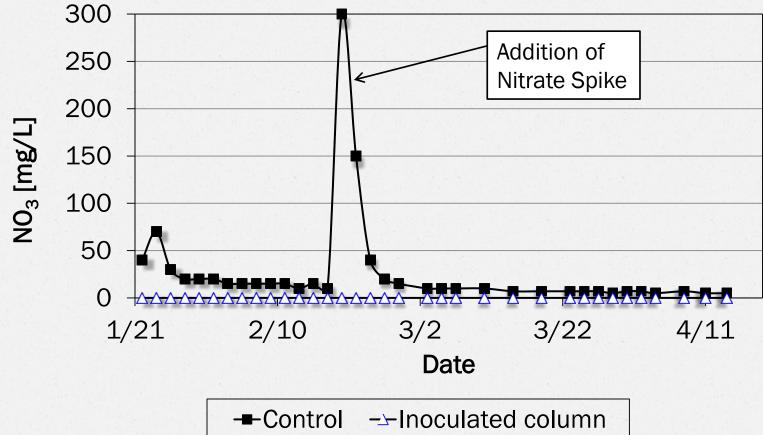

- Electrons and electron acceptor environments for controlled contaminant removal environment
- Compensation for inefficient and fluctuating electron availability through nutrient metabolism
- ♦ 1 mA provides 6.24 x 10¹⁵ electrons/second
 - Replaces excess nutrients
 - Produces much less TSS (bio-solids)
- As a comparison, other electrons donors (nutrients) provide electrons only under metabolism

Selenium Reduction $SeO_4^{2-} + 3H^+ + 2e^- <-> HSeO_3^- + H_2O$ $HSeO_3^- + 5H^+ + 4e^- <-> Se_{(s)} + 3H_2O$

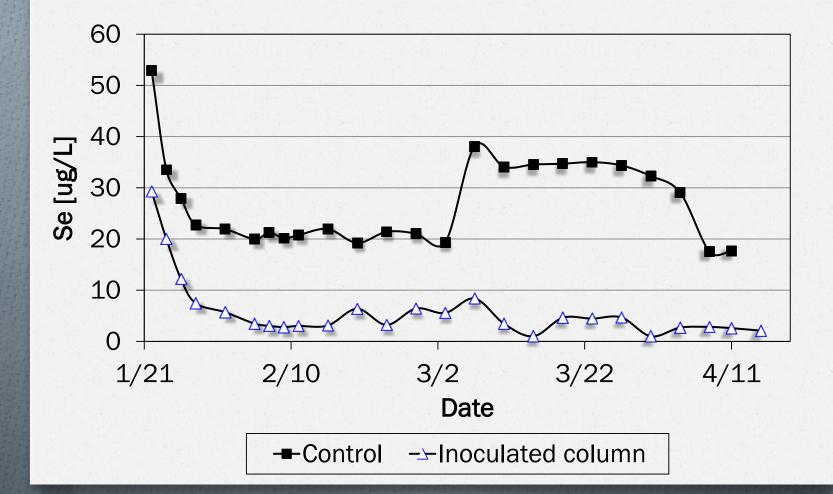
Results: EBR Performance

	Parameter	Ave. Influent	Ave. Effluent
Water A	NO ₃ -N [mg/L]	11.0	<0.1
	Se [µg/L]	355	1.2
Water B	NO ₃ -N [mg/L]	16.4	<0.1
	Se [µg/L]	35.0	1.4
Water C	NO ₃ -N [mg/L]	37.0	1.0
	Se [µg/L]	531	1.4
Water D	NO ₃ -N [mg/L]	50.0	2.0
	Se [µg/L]	105	0.5
Water E	NO ₃ -N [mg/L]	170	<0.1
	Se [µg/L]	186	1.2

Concept: EBR + In Situ



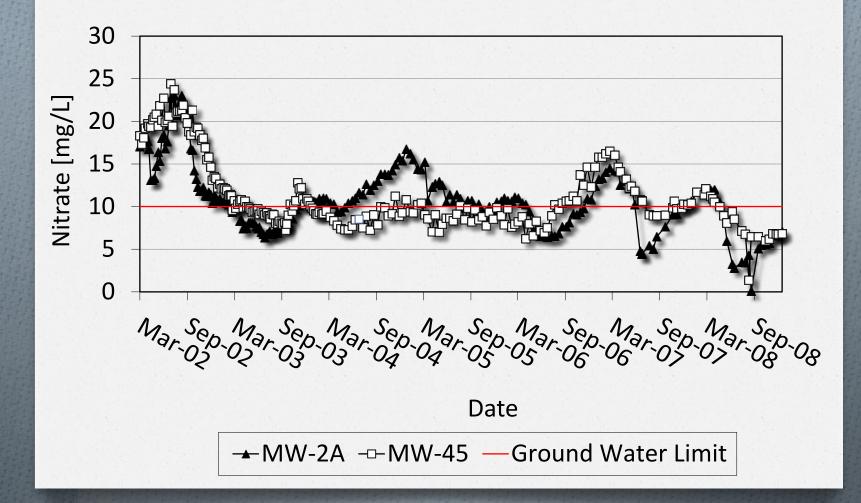
Results: EBR + In Situ


Three bench-scale columns:

- EBR, treating mine waters, was used to produce an amended microbial inoculum for the in-situ column nitrate/selenium reduction tests;
- A control, down-flow column filled with coal waste rock source materials was used to determine baseline selenium and nitrate elution rates; and
- A down-flow column filled with coal waste rock source materials was inoculated periodically with EBR amended effluents to evaluate in-situ denitrification and selenium reduction/stabilization.

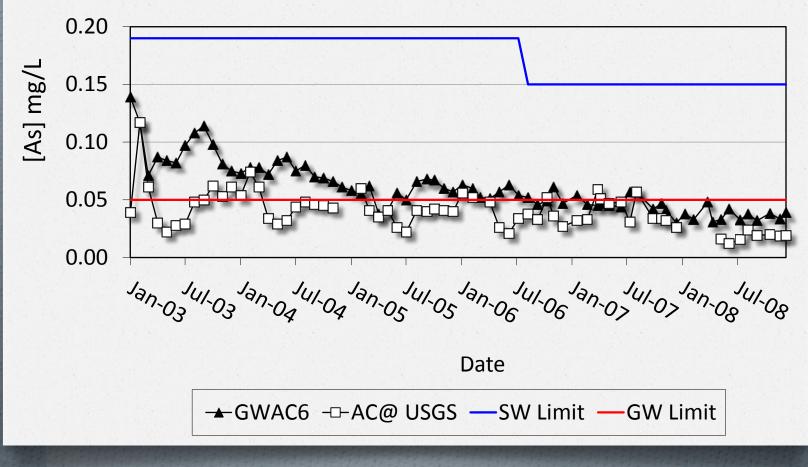
Results: EBR + In Situ

Results: EBR + In Situ


In Situ: Hardrock Mining

Example successful implementation:

- Wharf gold mine
- Located in the Black Hills, SD
- Open pit, heap leach operation



In Situ: Hardrock Mining

In Situ: Hardrock Mining

Arsenic Levels in Receiving Creek and Monitor Well GWAC6

EBR + In Situ: Hardrock Mining

Current full-scale implementation:

- Landusky Mine
- Located in the Little Rocky Mountains, MT
- Closed mine
- Open pit, heap leaching operation

Landusky Site

Semi-passive

Biotreatments

In Situ Biotreatment -

EBR Biotreatment Facility

Pump-back Ponds for Biotreatment Facility

Biological Post-treatment

Chemical Treatment Plant

Conclusions: Coal Mines

- Effective management approaches for water treatment should include in situ denitrification treatments to reduce nitrate loads;
 - Significantly reduce active treatment CAPEX and OPEX costs;
 - Demonstrated complete nitrate removal from waste rock at bench-scale;
 - Significant Se reduction and stabilization within the source materials (from 27 pbb to below 4 ppb).

Conclusions: Hardrock Mines

Treatment of nitrate-N at ranges from 60 to 320 mg/L

- + All sites treated to near or below discharge criteria
- Sites within two properties have been removed from company inventory - treated to below State closure criteria
- Treatment and stabilization of As
 - Treated to below discharge criteria <10 µg/L
- Treatment and stabilization of Se
 - Plume treated from ~16 mg/L to <1 mg/L</p>
- Treatment times ranged from 1 to 4 years

Thank You

A. Ola Opara Office: 801-966-9694 Cell: 801-230-6096 oopara@inotec.us