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• What is a probabilistic model? 
• Benefits using a probabilistic approach 
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• Example presentation of results 
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• Summary 
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Session 2: Tailings Technologies 

• Scaling of lab data (temp, grain size, accelerated weathering) 
• Thermodynamic database: assume constants are correct and that 

our system is in equilibrium 
• Assume complete mixing of ponds 
• Complex mechanisms (cyanide attenuation, sorption) are simplified.  

Some are not modeled (coprecipitation) 
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Limitations of Modeling 

• We can model uncertainty using Monte Carlo methods (represent 
inputs as range of values to get range of outcomes) 

• We can avoid scaling issues by using field testing results as much as 
possible 

“All models are wrong, but some are useful”   
- George E.P. Box, statistician   

 
 



What is a probabilistic model? 
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Benefits of Probabilistic Models 

• Probabilistic models may reduce comments on 
EISs by allowing parties to “agree to disagree” 

• Why is this important?  
– Rosemont (AZ): >43,000 comments; 
– NorthMet (MN): >50,000 comments; 
– Average EIS contractor cost for the DOE in 2013:    

$2.9 million* 
– Federal Agencies are moving towards requiring EIS’s 

for changes to existing projects 

 
 

5 *U.S. Government Accountability Office, National Environmental Policy 
Act: Little Information Exists on NEPA Analyses, April 2014 



Benefits of Probabilistic Models 

• Increases understanding 
of project risks 
– Helps with: closure 

cost estimates, 
alternatives analyses, 
etc. 

• Worst-case scenario 
isn’t always obvious for 
complex, dynamic 
systems 
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Benefits of Probabilistic Models 

7 Data from INAP Pit Lake Database 



Modeling Methods 
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MODELING 



Conceptual Water Balance 
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Conceptual Solute Balance 
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Pit Wall Runoff 
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𝑃𝑃𝑃 𝑊𝑊𝑊𝑊 𝑅𝑅𝑅𝑅𝑅𝑅 = 
𝐶𝑅𝑅𝐶𝐶𝑅𝑃𝐶𝑊𝑃𝑃𝑅𝑅 ∗ 𝐹𝑊𝑅𝐹 𝑅𝑊𝑃𝐶 + 𝑆𝑅𝑊𝑅𝑃𝐶𝑆 𝑅𝐶𝑊𝐶𝑊𝑆𝐶𝑅 𝑅𝐶𝑅𝑓 𝑆𝑅𝑊𝑅𝑃𝑅𝐶 𝑂𝑂𝑃𝑅𝑊𝑃𝑃𝑅𝑅 



Session 2: Tailings Technologies 

• Data available for modeling depends on the phase of 
the project. 
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Available Data 

Static Tests 
• ABA 
• Whole rock 
• Leach Tests 

(MWMP, 
SPLP) 

• NAG 

Kinetic Tests 
• Humidity 

cells 

Field Tests 
• Field barrels 
• Test plots 

Field Data 
• Site samples 

Better Modeling Data  



Kinetic Program Comparing FB and HC  

• Field barrel acidity greater and faster 
• Humidity cells have such high flush rates that they do not develop “hot spots” 

or acidic micro-environments where the sulphide oxidizing bacteria thrive.   
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Kinetic Program Comparing FB and HC  

• Greater flush of alkalinity in the humidity cells than in the 
field barrel due to high water infiltration rates and volumes 
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Kinetic Program Comparing FB and HC  

• Greater sulphate release in the humidity cell tests than in 
field barrels due to lack of secondary mineral precipitation 
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Solute Release from Sulfide Oxidation 
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• Rate of sulfate 
formed from oxidation 
of sulfide wall rock 
was estimated based 
on humidity cell data.   

 
• Defined in model by 

slope and y-intercept 



Solute Release from Sulfide Oxidation 
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• Solute assumed to be 
released from sulfide 
oxidation if statistically 
significant correlation 
exists between sulfate 
and the solute in NAG 
Leachate 
 

• Solute release 
modeled as ratio to 
sulfate release.  



Solute Release from Sulfide Oxidation 
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• If solute is not 
correlated to sulfate 
concentrations in NAG 
leachate, then it is not 
released with sulfide 
oxidation in the model. 
 

• Solute can still be 
released from pit wall 
runoff based on leach 
test results. 
 
 



Damaged Rock Zone Properties 
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DAMAGED ROCK 

Parameter Min Max 

Thickness1 3 m 15 m 

Size Factor2 0.05  0.2 

Percent in Contact 
with Runoff3 

30% 90% 

Sulfate Leach Rate From Humidity 
Cell Data 

1Radian 1997; McClosky et al. 2003 
2Malmstrom et al. 2000; Lopez et al. 1997 
3Frostad et al. 2005; Hollings et al. 2001 



Model Input 
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• Inflow concentrations 
are defined by 
probability distribution, 
in this case normal 
distribution, defined by 
mean and standard 
error of the mean 
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Solute Balance Simulations 
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• GoldSim uses Monte Carlo 
method for propagating 
uncertainty in model inputs 
into uncertainties in model 
outputs.  

• Simulations conducted 
several thousand times 
(realizations) 

• For each realization, a 
different parameter value is 
selected from the input 
probability distribution.  
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Geochemical Controls 
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• Bulk concentrations from 
the GoldSIM are analyzed 
for geochemical controls 
using PHREEQC:  

 
• Atmospheric O2 and CO2 
• Solubility controls for 

probable mineral phases 
in pit lakes* 

• Sorption to precipitated 
ferrihydrite 

 

*Eary, L.E., Geochemical and equilibrium trends in mine pit 
lakes, Applied Geochemistry 14 (1999) 963-987 

Summary Chemical Processes  



Model Results 
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Model Results 
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Model Results 
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Model Results 
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Model Results 
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Summary 
“ Doubt is not a pleasant condition, but certainty 
is absurd” 

- Voltaire 

 
• Focus should be on capturing the uncertainty 
• Oxidation of sulfide wall rock is a large source 

of uncertainty and commonly represented 
inaccurately 

• Allows parties to “agree to disagree” 
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Ongoing Challenges 
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• When you set a percentile, there won’t be any interest 
in lower percentiles.  

 
•  90th Percentile precedent: 

• Idaho Cobalt EIS 
• PolyMet EIS 
• Ecological Risk Assessment Guidance 
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