

May 8, 2018

Mr. Sam Shiver Environmental Specialist II Florida Department of Health Division of Disease Control & Health Protection 7551 Forest Oaks Boulevard Spring Hill, FL 34606 Via email at Samuel.shiver@flhealth.gov

RE: Level 2 Remedial Action Plan AA Discount 181 West Kings Highway Center Hill, Sumter County, FL FDEP Facility #: 60 / 8516863 Purchase Order #: B1F490 – Task 2 MAS Project #M50033

Dear Mr. Shiver:

MAS Environmental, LLC. (MAS) is pleased to provide you with the following Level 2 Remedial Action Plan for the above referenced location. The goal of the completed scope of work is to provide a remedial approach to address the remaining subsurface impacts and to provide the design specifications for the remedial system design.

Should you have any questions regarding this Remedial Action Plan, please, do not hesitate to contact us directly at (813) 658-8823 or via e-mail at <u>tbennett@mas-env.com</u> and <u>rschroeder@mas-env.com</u>.

Sincerely, MAS Environmental, LLC

for

Robert Schroeder Project Manager

Thomas H. Bennett, PE Senior Engineer

1808 N Franklin Street | Tampa, FL 33602 | Phone 813.658.8823 | Fax 888.694.2822

Level 2 Remedial Action Plan

AA Discount 181 West Kings Highway Center Hill, Florida FDEP Facility #: 60 / 8516863

Prepared for:

Samuel Shiver Environmental Specialist II Florida Department of Health Division of Disease Control & Health Protection 7551 Forest Oaks Boulevard Spring Hill, Florida 34606

Prepared by:

Robert Schroeder

Reviewed by:

Thomas H. Bennett, P.E.

MAS ENVIRONMENTAL, LLC

1808 N. Franklin Street Tampa, Florida 33602 (813) 658- 8823

1808 N Franklin Street | Tampa, FL 33602 | Phone 813.658.8823 | Fax 888.694.2822

P.E. CERTIFICATION

AA Discount 181 West Kings Highway Center Hill, Sumter County, Florida FDEP FACILITY ID #: 60/8516863

Statement of Professional Review

I hereby certify that in my professional judgment, the components of this Level 2 Remedial Action Plan satisfy the requirements in accordance with Chapter 62-780 Florida Administrative Code (FAC), and the conclusions in this document provide reasonable assurances that the objectives have been met.

I, Thomas H. Bennett, P.E. 55559, certify that I currently hold an active license in the State of Florida and am competent through education or experience to provide the engineering service contained in this report. I also certify that MAS Environmental, LLC holds the active certificate of authorization # 29295 to provide engineering service.

Thomas H. Bennett, P.E. Professional Engineer Florida License No. 55559 Date: 05 MAS Environmental. L Certificate of Authorization 29295

1808 N Franklin Street | Tampa, FL 33602 | Phone 813.658.8823 | Fax 888.694.2822

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	General	. 1
2.0	SITE BACKGROUND	1
3.0	SUMMARY OF ASSESSMENT ACTIVITIES	2
3.1	Lithology	.2
3.2	Soil Quality	. 2
3.3	Groundwater Elevation and Flow Direction	
3.4	Groundwater Quality	
3.5	Potable Water Considerations	
5.0	CONTAMINATION MASS CALCULATIONS	
6.0	REMEDIATION TECHNOLOGY FEASIBILITY ASSESSMENT	4
6.1	Monitoring Only or No Further Action	
6.2	Soil Vapor Extraction	
6.3	Air Sparging.	
6.4 6.5	Chemical Oxidation via Hydrogen Peroxide, Ozone, and/or Air Injection	
6.6	High Vacuum Dual Phase Extraction (HVDPE) Biosparging	
6.7	Excavation, Transportation, Disposal, and Restoration	
6.8	Remediation Technology Selection	
7.0	TREATMENT SYSTEM DESIGN	6
7.1	Conceptual Design	.6
7.2	Treatment System Layout and Design	
7.3	Basis for Design	
7.4	Air Sparge System Equipment Selection and Operation	
7.5	Soil Vapor Extraction Equipment Selection and Operation	
7.6 7.7	Soil Vapor Extraction System Off-Gas Treatment Effluent System Groundwater Discharge Monitoring	
8.0	TREATMENT SYSTEM STARTUP, OPERATION, AND MAINTENANCE	
8.1 8.2	System Startup and Optimization Routine Maintenance and Operation	
8.2 8.3	Permits	
9.0	REMEDIATION MONITORING, SAMPLING, AND REPORTING	
9.1 9.2	Air Sparge/Soil Vapor Extraction System Monitoring and Sampling Groundwater Monitoring and Sampling	
9.2 9.3	Reports	
10.0	CLEANUP TIME, COST ESTIMATE, AND PAY-FOR-PERFORMANCE	
10.1	Cleanup Time	
10.1		1.
10.2	Cost Estimate	

LIST OF FIGURES

1808 N Franklin Street | Tampa, FL 33602 | Phone 813.658.8823 | Fax 888.694.2822

Figure 1	Site Map
Figure 2	Soil OVA Summary Map
Figure 3	Soil Analytical Summary Map
Figure 4	Groundwater Elevation Contour Map
Figure 5	Groundwater Analytical Summary Map
Figure 6	Air Sparge Radius of Influence Map
Figure 7	Soil Vapor Extraction Radius of Influence
Figure 8	Combined AS and SVE Radius of Influence Map
Figure 9A	Proposed Remedial System Layout
Figure 9B	Proposed Trenching Layout
Figure 10	Air Sparge Well Detail
Figure 11	Soil Vapor Extraction Well Detail
Figure 12	Air Sparge Process & Instrumentation Diagram
Figure 13	Process & Instrumentation Diagrams Legend
Figure 14	Soil Vapor Extraction Process & Instrumentation Diagram
Figure 15	Infiltration Gallery
Figure 16	Stub-up Details
Figure 17	Equipment Compound Layout-Fence Detail
Figure 18	Electrical Drop Details and Tie Down Detail

LIST OF TABLES

Table 1	Soil Screening Summary
Table 2A-C	Soil Analytical Summary
Table 3	Groundwater Elevation Table
Table 4A-C	Groundwater Analytical Summary

LIST OF APPENDICES

- Appendix A Potable Well Survey
- Calculations & Manufacturer Specifications Appendix B
- Appendix C System and Well Monitoring Schedule & Milestones
- Appendix D Appendix E RAP Summary and Checklist
- **UIC** Forms
- Appendix F **Construction Schedule**

1.0 INTRODUCTION

1.1 General

This Remedial Action Plan (RAP) has been prepared for the AA Discount facility located at 181 West Kings Highway, Center Hill, Sumter County, Florida. The FDEP identification number for the site is FAC ID # 60/8516863.

2.0 SITE BACKGROUND

The site is an active petroleum gas station and convenience store located (**Figure 1**). Currently, the site consists of two (2) 10,000-gallon capacity underground storage tanks (USTs) that were installed in March 2008.

On December 9, 1993, a discharge was reported and the Site was placed in the Petroleum Liability and Restoration Insurance Program (PLRIP).

According to the FDEP Storage Tank Facility Closure Site Inspection Report (FDEP Tank Closure Report) dated March 12, 2008, the Site previously consisted of four (4) 6,000-gallon capacity USTs (FDEP registered as Tank Numbers 4, 5, 6 and 7). In a Source Removal Report dated May 8, 2008, on March 12, 2008 the previous USTs, associated piping and surrounding soils were excavated and removed. Approximately 155 tons of petroleum contaminated soils were removed from site in the 1500 square feet excavation area to a depth of 13 feet below land surface (bls).

According to the FDEP Storage Tank Facility Installation Site Inspection Report dated March 13, 2008, two new USTs were installed and consisted of one (1) 10,000-gallon capacity regular grade gasoline UST and one (1) 10,000-gallon capacity UST, divided with one (1) 6,000-gallon diesel fuel compartment and one (1) 4,000-gallon premium grade gasoline compartment. The newly installed UST is located on the northeast side of the property and the UST construction consists of double wall steel primary material and fiberglass secondary material. The USTs associated piping consists of double wall fiberglass material.

In January 2009, Site cleanup activities were paused when the FDEP priority score funding threshold was raised. In March, 2010 site cleanup activities were resumed. The site currently has a priority score of 56.

The site has been in Natural Attenuation Monitoring (NAM) since April 2012 and the groundwater monitoring activities were completed by MAS.

3.0 SUMMARY OF ASSESSMENT ACTIVITIES

The following sections describe the results of the historical assessment activities and of the most recent assessment activities conducted at this site. The assessment activities appear to have sufficiently identified the target areas that require remediation.

3.1 Lithology

One (1) soil boring was advanced during the pilot test wells installation activities to a depth of 45 feet bls before installation of air sparge well AS-1. Based on the information from the soil boring, and historical soil boring data, the site is underlain by sandy clay from 15 to 25 feet bls and soft clay from 27 to 45 feet bls. An increase in density was observed between 14 to 21 feet bls.

3.2 Soil Quality

Based on the most recent soil screening data, no soil impacts were noted within the vadose zone (Figures 2 and 3, Tables 1, 2A-2C).

3.3 Groundwater Elevation and Flow Direction

Current and historical groundwater elevation summary data is provided in **Table 3**. **Figure 4** provides a graphical representation of the most recent data. Based on the top of casing elevations and the depth to water, the groundwater flow direction was inferred to be toward the west.

Groundwater has typically been observed fluctuating between 20 and 32 feet bls. Therefore, smear zone is estimated to extend vertically within that interval. In addition, the historical records do show that groundwater elevations rose above those typically seen in 2004.

3.4 Groundwater Quality

On June 23, 2017 groundwater samples were collected from existing monitoring wells. Laboratory analysis of the collected samples identified the presence of groundwater impacts at levels above their respective Groundwater Cleanup Target Levels (GCTLs) from monitoring wells MW-5I and MW-8I. Monitoring wells MW-5R and MW-8R have had less than (one) 1 foot of water or been dry on the two most recent sampling dates, however, the most recent analytical results from August 20, 2014 indicated several constituents of concern above GCTLs. The historical and the most recent groundwater analytical data are provided in **Tables 4A**, **4B**, and **4C** and depicted on **Figure 5**. The primary constituents of concern are the BTEX and MTBE.

The groundwater analytical results are older than 270 days, therefore, MAS recommends baseline prior to the construction activities.

3.5 Potable Water Considerations

A potable well survey dated August 25, 2015 included well information from the Florida Department of Health survey in the vicinity of the site. The well survey did not identify the presence of any small public or private supply wells within $\frac{1}{4}$ of mile radius of the site (**Appendix A**). The well survey identified the presence of two (2) large public supply wells within a $\frac{1}{2}$ mile radius of the site.

4.0 SUMMARY OF PILOT TEST ACTIVITIES

On February 14, 2018, two (2) phases of the 8-hour soil vapor extraction (SVE) and air sparge (AS) test were conducted at the site using a mobile, trailer-mounted AS/SVE system provided by MAS.

Breakthrough pressure was noted at 27 pounds per square inch (psi). A flow rate of 2 cubic feet per minute (cfm) was deemed to be optimal and the observed pressure at the compressor was 26.5 to 27 psi. The highest pressure reading of 28.5 psi was observed at 6 cfm. The flow of 6 cfm was tested to evaluate whether higher flow rates would be achievable, however, the pressures observed were close to fracture pressure of approximately 31 psi and deemed inappropriate to continue testing. The Radius of Influence (ROI) was estimated to be 11 feet, for the given 43 to 45 feet bls screen interval, and the design depth to water of 20 feet bls.

During the SVE portion of the pilot test, a ROI of 15 feet was estimated. A minimum vacuum of 0.5 inches of water column (in wc) was observed at point 17.5 feet away from the SVE point, while vacuum of 0.3 in wc was observed 28 feet away from the SVE point. It should be noted that a preferential pathway most likely exists between the SVE and MW-8R wells. The SVE well was constructed with four-inch diameter Schedule 40 PVC pipe with screen interval between 15 and 25 feet bls. The SVE well was installed approximately one foot into the water table, however, no water was entrained during the pilot test activities. Approximately 20 cfm air flow was observed at 75 inches of water column vacuum, or 2 cfm per foot of well screen.

Based on the results of the pilot test, AS/SVE was deemed to be an appropriate technology for the site. The proposed specifications for the remedial action plan design are as follows:

- ROI for the SVE wells is 10 feet;
- ROI for the AS is 5 feet conservative ROI is recommended for the RAP design;
- SVE wells to be constructed using 4-inch diameter PVC with screen interval set between 18 and 28 feet bls, to avoid short circuiting with the former excavation and disturbed soils;
- Sparge points to be constructed using 2-inch diameter PVC with screen interval set between 30 and 32 feet bls. During the pilot test, a pressure of 26 psi was observed for the 20 feet of water column, indicating significant backpressure introduced by lithology. Therefore, reduced depth is recommended for the RAP.

Based on the pilot test, and local lithology, the remediation system will provide medium to high vacuum, which will aid in desorption of the petroleum impacts, while air sparge component will operate at reduced, but sustainable flow rates.

5.0 CONTAMINATION MASS CALCULATIONS

Based on the groundwater sampling activities of 2017, groundwater impacts are limited to the southern edge of former excavation and dispenser islands (Figure 5). Based on the concentrations of petroleum constituents in the monitoring wells MW-5R, MW-5I, MW-8R, and MW-8I historically impacted wells and the rate of attenuation, the area of groundwater impacts is estimated at approximately 900 square feet (Appendix B). The dissolved mass was estimated as 0.01 lbs. Typically, the ratio of the mass of dissolved petroleum in the groundwater plume, to the total mass of petroleum constituents in all media (vadose soil, smear zone and dissolved groundwater plume) is 1 to 100. Therefore the total mass of petroleum constituents beneath the site is approximately 1 total pounds of contaminant mass.

6.0 **REMEDIATION TECHNOLOGY FEASIBILITY ASSESSMENT**

Various remediation technologies were evaluated to determine the most appropriate method to remediate the remaining dissolved-phase hydrocarbons present in the subsurface. The following remediation technologies were evaluated to determine the most effective remediation strategy: monitoring only (MO) or no further action (NFA), soil vapor extraction (SVE), air sparging (AS), chemical oxidation via hydrogen peroxide and/or ozone injection, high vacuum dual phase extraction (HVDPE), biosparging (BS), and excavation, transportation, disposal and restoration. These technologies are described briefly below.

6.1 Monitoring Only or No Further Action

If the vadose zone soil is neither a risk to the public health nor a source contributing to groundwater contamination, soil remediation may not be required. When the affected vadose zone soil is covered by an impervious surface (i.e. buildings, driveways, etc.), the public is not at risk of direct exposure. Therefore, active soil remediation may only be required if the underlying groundwater is affected or if the petroleum hydrocarbon concentrations exceed SCTLs per Chapter 62-777, FAC.

Vadose zone MO is achieved by monitoring the concentration of dissolved petroleum hydrocarbons in the groundwater over time. If a noticeable increase in the groundwater concentrations is observed in any particular area of the site, the vadose zone in that area should be re-assessed to estimate whether a previously unidentified source of dissolved hydrocarbons exists. In contrast, if the groundwater concentrations in the monitoring wells show a steady

decrease over time due to remediation, NFA can be proposed. The site has been in monitoring only for approximately six (6) years with no varying concentrations of hydrocarbons over time.

6.2 Soil Vapor Extraction

SVE is a commonly utilized remediation technique for the treatment of impacted soil in the vadose zone. SVE systems utilize blowers to apply vacuums at extraction wells, allowing for the recovery of soil vapors from unsaturated soils. As air moves through soils in the vadose zone, volatile organic compounds (VOCs), including adsorbed-phase hydrocarbons, are transferred into the vapor stream for recovery. SVE systems also promote aerobic bioremediation due to the introduction of oxygen into subsurface soils. Typically, SVE systems effectively remediate compounds that have high vapor pressures (>1 millimeter of mercury) or that are aerobically biodegradable. However, utilizing SVE without groundwater pumping or air sparging has not proven effective for sites with impacts in the saturated zone.

6.3 Air Sparging

During air sparging, compressed air is injected into wells that are screened below the water table. Air bubbles travel upward and outward in the aquifer, resulting in the mass transfer of adsorbed and dissolved VOCs into the vapor stream. The sparged air stream becomes VOC laden as it travels upward toward the surface. Typically, air sparge systems are used in conjunction with SVE systems, so the sparged vapors can be recovered for treatment. Air sparging is most effective at sites with volatile contaminants and a permeable aquifer matrix.

6.4 Chemical Oxidation via Hydrogen Peroxide, Ozone, and/or Air Injection

The chemical oxidation process uses an injection pump to dispense a known volume and concentration of hydrogen peroxide and/or ozone into the subsurface through injection points (such as air sparge wells). During the process, hydroxyl radicals, which are powerful oxidizers, are formed. The exothermic oxidation process breaks down petroleum hydrocarbons in the groundwater into the by-products of carbon dioxide, and water. Hydrogen peroxide and ozone addition is viable at sites with moderate hydrocarbon impacts in the groundwater. Low pressure air injection can be utilized in conjunction with hydrogen peroxide and ozone injection to aid in dispersing the chemicals and provide additional oxygen for enhanced biodegradation of hydrocarbons.

6.5 High Vacuum Dual Phase Extraction (HVDPE)

High vacuum dual-phase extraction (HVDPE), also known as multi-phase extraction or vacuumenhanced extraction systems use recovery wells to recover groundwater, soil vapors, and separate phase hydrocarbons (SPH) through a recovery well. The recovery well is connected to a high-vacuum blower through a piping network. A high-vacuum blower should be able to produce a vacuum up to 28 inches of Mercury (Hg) on each DPE well. The actual vacuum observed is inversely related to the vapor flow rate and dependent on the characteristics of the surrounding

soil. The vapor that is drawn through the soil profile removes VOCs from the unsaturated soil pore spaces while Figure in clean air from non-impacted areas. This process volatilizes VOCs from the impacted soil and increases the available oxygen within the subsurface. HVDPE enhances the recovery of groundwater and SPH due to the high vacuum that increases the pressure gradient towards the recovery well. HVDPE allows for the remediation of adsorbed VOCs from the below the static water table via the simultaneous recovery of groundwater and soil vapors. HVDPE also provides hydraulic control.

6.6 Biosparging

The intent of biosparging is to increase dissolved oxygen concentrations in the subsurface to increase the rate of biodegradation. Oxygenation of the subsurface is accomplished by the injection of air/oxygen into the saturated zone. The ability of these techniques to enhance oxygen concentrations in the subsurface has been proven effective in the remediation of petroleum hydrocarbon-impacted soil and groundwater at sites with suitable soil conditions, and can be implemented individually or in combination with other technologies.

6.7 Excavation, Transportation, Disposal, and Restoration

Excavation involves the physical removal of petroleum impacted soils. If soils are unstable, the extent of hydrocarbons is vertically and horizontally extensive, and/or the impacted soils are beneath permanent structures (buildings, parking structure), it may not be cost effective to excavate. Disposal simply involves transporting the excavated soil to a landfill or some other type of permitted disposal facility (i.e. thermal treatment facility, solid waste landfill, etc.).

6.8 Remediation Technology Selection

MAS determined the appropriate technology to propose through review of the available site data and recently completed pilot test. Based on the site specific conditions, MAS recommends the use of SVE with AS to remediate the hydrocarbon constituents identified beneath this site. Based on the historical and current hydrocarbon concentrations in the groundwater, the lack of evidence indicating the presence of free product, the size and orientation of the hydrocarbon plume, site-specific lithology, current site conditions/use and the need for a remediation approach to minimize cleanup time, this appears to be the most cost effective approach.

7.0 TREATMENT SYSTEM DESIGN

7.1 Conceptual Design

Based on nature of groundwater impacts and local lithology, AS/SVE has been selected as the primary technology to remediate the petroleum impacted groundwater identified at the subject site. Other factors were also considered such as soil permeability, volatility of the compounds, and other site features and local infrastructure.

Due to the identified lithology and the results of the pilot test, the remediation system will use a medium to high vacuum vapor extraction component, with a lower volume air sparging component to remediate the petroleum impacts.

7.2 Treatment System Layout and Design

MAS proposes to install 13 air sparge wells (AS-1R, AS-2 through AS-13) onsite. Due to the depth of AS-1, it will not be integrated into the remediation system. The 13 new air sparge wells will be utilized to facilitate the volatilization of dissolved phase hydrocarbons, and the stripping of petroleum constituents adhered to soil particles, in the plume area with the highest concentrations at the site. The treatment system will utilize six (6) soil vapor extraction wells, proposed to be designated SVE-1 through SVE-6. The remediation system installation would include the installation of five (5) SVE wells (SVE-2 through SVE-6) and the use of the existing SVE-1. The vapor extraction wells are proposed for the capture of hydrocarbon vapors as they are volatilized from the groundwater by the AS wells. SVE well locations were chosen based on the current site features, such underground lines and proximity to landscaping.

Each AS and SVE well will be piped separately to the equipment compound to allow for system control and operational flexibility.

The proposed remedial system compound will be located to the west side of the building on site, near the southwest corner of property. This location is proposed to accommodate local traffic and is located within a landscaped area.

The proposed locations of the system wells are illustrated on **Figures 6, 7, and 8**. **Figure 9** illustrates the proposed trench layout. Trench plates will likely be required during the system trenching to allow for the use of the site during the system installation.

The proposed system location is outside of the facility's general traffic pattern and relatively close to the remediation wells and electric supply. Because the proposed trailer location is very close to the neighboring properties, the trailer will be provided with silencers, penetration hoods and wall insulation as noise attenuation measures.

7.3 Basis for Design

The following parameters were used for remedial system design, based on our experience at sites with similar lithology and the recently completed pilot test (**Appendix B**):

	REMEDIATION SYSTEM DESIGN PARAMETERS									
	Pressure / Vacuum at Compressor/ Blower	Pressure / Vacuum at well head	Number of Wells	Flow Rate (cfm/per well)	Total System Flow Rate (cfm)	Radius of Influence (ft)				
SVE System	128.6 in. w.c. ¹	75	6	20 cfm	120 cfm	10				
AS System	31.42 psi ²	23.13	12	2 cfm	24 cfm	5				

¹Vacuum required at blower to achieve 75 inches of water column (in w.c.) vacuum at each SVE well (factoring friction and pressure losses through system.) Additionally, this pressure will allow the vacuum blower to accommodate the maximum demand at 75% of capacity.

²Pressure required at air compressor to achieve 2 cfm at each AS well (factoring friction losses through system). Additionally, this pressure will allow the compressor to accommodate the maximum demand at 75% of capacity.

Air Sparge Wells

The design area of influence for the sparge system was determined based on pilot test observations. Based on the pilot test, operational pressure was observed at 26.5-27 psi. It is expected that reduced pressure will be required with the recommended well screens set to a more shallow depth.

MAS proposes to install thirteen (13) new sparge wells (AS-1R through AS-13). The air sparge wells will be installed to a total depth of 32 feet below grade and will be constructed using 2-inch diameter Schedule 40 PVC with 2 feet of 0.010-inch slotted screen threaded to 30 feet of solid riser. Construction details for the air sparge wells are illustrated on **Figure 10**.

Soil Vapor Extraction Wells

SVE was designed using a vacuum influence 10 feet for the source area. As such, a SVE ROI of 10 feet was selected to provide vapor capture over the treatment area based on conservative approach. The combined influence of the points should also exceed the design influence for each individual point, thereby providing additional coverage of the impacted area. Calculations have been included in **Appendix B**. A SVE well detail diagram is presented on **Figure 11**.

MAS proposes to install 5 new vapor recovery wells (SVE-2 through SVE-6). The SVE wells will be installed to a total depth of 28 feet below grade and will be constructed using 4-inch diameter Schedule 40 PVC with 10 feet of 0.020-inch slotted screen threaded to 18 feet of solid riser. Construction details for the SVE wells are illustrated on **Figure 11**.

7.4 Air Sparge System Equipment Selection and Operation

Based on the pilot test activities and depth to water during the pilot test (approximately 24 feet bls), backpressure exerted due to lithology was estimated at 18.83 psi (**Appendix B**). Therefore, this estimate is utilized in the further design.

Based on the calculation below (and a riser length of 30 ft, total well depth of 32 ft), the air sparging system should be operated at a minimum of 4.3 psi + backpressure due to lithology at the injection wellheads. This value represents the minimum pressures necessary to overcome hydrostatic pressure and the formation resistance at each well. The calculations are based on the following equation (Leeson, et al, 2002):

 $P_{\text{minimum}}(\text{psig}) = 0.43 \text{ H}$

Where H = 10 feet, the depth below the static water table surface (approximately 20 feet) to the top of the injection well screen (ft).

P minimum, AS-13 (psig) = 0.43 * (10)P minimum, AS-13 (psig) = 4.3 psig at the well head

Taking into account friction losses, backpressure, the minimum necessary system pressure (measured at the compressor) to overcome hydrostatic pressure and friction losses is estimated to be 31.42 psi (see the air compressor design calculations in **Appendix B**). For design purposes additional 18.83 psi were added to the total estimate.

Additionally, the following equation is utilized to calculate the pressure at which significant fracturing of the aquifer can occur and at which the air injection should not be operated above:

 $P_{\text{fracture}} (\text{psig}) = 0.73 \text{ D}$

Where D = 30 feet, the depth below ground surface to the top of the air injection well screened interval (ft).

P fracture, AS-13 (psig) = 0.73 * (43)P fracture, AS-13 (psig) = 21.90 psig

Therefore, 21.9 psig is the maximum pressure at the wellhead in which air should be injected into the aquifer. The air injection system will typically be operated above 21.9 psi at the well head. Taking into account friction losses, the maximum required system pressure measured at

the compressor is estimated to be 31.42 psi (see the air compressor design calculations in **Appendix B**).

Pilot Test activities indicated that breakthrough pressure was 27.5 psi. Based on these calculations an Ingersoll Rand UP6-7.5, 7.5 horsepower (HP) rotary screw compressor (or equal) will provide air for the sparge system (**Appendix B**). The compressor is capable of providing a maximum pressure of 125 psi and a maximum flow of 28 cfm. The AS wells will be operated at an injection rate of 2 cfm per well, and the pressure regulator on the compressor will limit the pressure at the wells to less than the fracture pressure. The compressor will be connected to a twelve (12) pipe manifold with each AS well operated by a dedicated manual control valve. The proposed manifold configuration will provide maximum operational flexibility by allowing any combination of air injection points to be in operation at any given moment. Operating flows and pressures at each sparge point will be monitored by dedicated pressure gauges and flow meters. The compressor will be equipped with a single-phase motor and inlet filter/silencer.

The AS compressor will be deactivated in the event of an SVE blower failure or shutdown. Appendix B contains sparge system friction loss calculations. The air compressor and associated equipment will be located in the proposed equipment compound, as illustrated on Figure 9. A process and instrumentation diagram and a legend for the air injection system are provided in Figures 12 and 13.

7.5 Soil Vapor Extraction Equipment Selection and Operation

Based on our experience at similar sites, a system design flow rate of 120 cfm may be expected during operation of the SVE system. The 10 feet radius of influence for the vapor extraction system includes the 10 feet radius of influence identified for the AS wells. The SVE design and friction loss calculations are provided in **Appendix B**. A Roots, URAI 53 frame (or equivalent), 10-HP positive displacement blower was selected based on system flow rate and system friction loss calculations. The blower will be equipped with a single-phase TEFC motor, inlet filter/silencer, and a moisture separator with a high level alarm and a vacuum relief valve.

The SVE blower will be connected to a 6 pipe manifold (6 active wells) with each SVE operated by a manual control valve. Sample ports, control valves and vacuum gauges will be fitted to each individual pipe to provide maximum system performance data and operational flexibility. The SVE blower and associated equipment will be housed in a secure trailer. Manufacturer specifications for the blower have been included in **Appendix B**. A process and instrumentation diagram for the soil vapor extraction system is provided as **Figure 14**. The diagram legend for all system processes and instrumentation diagrams is included as **Figure 13**.

Stub-up details, compound layout, electrical drop and tie down details are provided in **Figures 16, 17 and 18.**

7.6 Soil Vapor Extraction System Off-Gas Treatment

Petroleum concentrations in the vapor stream are expected to drop during the system operation. In accordance with 62-780 FAC, air emissions controls are required for the first 30 days of operation.

Based on the groundwater concentrations, it is estimated that 0.02 pounds of mass are expected to be recovered per day, given the flow of 120 cfm. Concentrations typically decrease rapidly. Calculations of carbon usage are provided in **Appendix B**.

Extracted vapors are proposed to be treated with two (2) vapor phase granular activated 200 lbs carbon units (GAC) vessels in series. Off-gas treatment technologies capable of treating high mass flow rates of recovered mass more efficiently (such as catalytic oxidizers or thermal oxidizers) will not be required.

The carbon media in the vapor filtration drums reaches saturation after removing petroleum mass approximately equal to 10% of the carbon mass. Each 200 lb drum should have the capacity to remove approximately 20 lbs of petroleum vapors. The first vessel may need to be changed following 216 days of the system operations.

Throughout the operation of the system air samples of the influent and effluent will be collected for analysis with EPA Method 18 to determine total VOC concentrations. The VOC analytical results will be used to calculate the mass of VOCs recovered per day based on the measured air flow rate. Air analytical data will be utilized to ensure that the hydrocarbon emission rate remains below the 13.7 lbs/day.

7.7 Effluent System Groundwater Discharge Monitoring

Due to the observed depth to groundwater at the facility, the SVE system is not expected to entrain groundwater, although minimal entrainment is expected based on the average moisture of the air, expected rainy season and a seasonal elevated water table. In the event that groundwater is recovered through the SVE system, it will be treated using liquid phase carbon. Groundwater will be transferred through the carbon vessels using the transfer pump and discharged into the infiltration gallery installed inside the compound. The construction drawing for the infiltration gallery is presented in **Figure 15**.

The gallery will be 3' x 3' x 12' in dimension. The gallery will be constructed of 10 feet of 4" 0.020" slot screen installed within the top foot of #57 stone (no limestone), which has demonstrated positive characteristics in the past when used in this capacity. Filter fabric will line the sides and top of the gallery. The screen will be capped on one end with a slip cap, and the other end will be attached to 2 feet of solid pipe, connected to a 90-degree elbow and a riser, extending through a 12" manhole. The gallery access will be terminated with a female adapter and a threaded plug. The existing conditions of the surface will be restored. Construction details for the infiltration gallery are illustrated on **Figure 15**. The transfer pump will be controlled by

the level switches in the moisture separator and the level switch at the infiltration gallery. The level control switches are depicted on the Soil Vapor Extraction Process and Instrumentation Diagram (**Figure 14**).

Under normal operations, the level switches in the moisture separator will operate the transfer pump. The LSH (level switch high) will activate the pump, which will transfer the collected water through the carbon to the gallery and the LSL (Level Switch Low) will deactivate the transfer pump. Under abnormal conditions, the system would collect water faster than the transfer pump can transfer it to the gallery, and the LSHH (Level Switch High, High) would activate and shut the SVE system down.

MAS does not anticipate extracting more than 0.25 gallon per minute, treating the groundwater and discharging the treated groundwater to the gallery. The proposed flow rate will be accommodated by the proposed discharge method. Calculations are provided in **Appendix B**. The sampling schedule is summarized in **Appendix C**.

8.0 TREATMENT SYSTEM STARTUP, OPERATION, AND MAINTENANCE

Periodic monitoring and maintenance of the air sparge/vapor extraction system is essential to ensure that the systems are performing efficiently. The implementation of this RAP will include a monitoring and maintenance schedule. This schedule will include an initial system startup, an optimization phase (weekly visits during the first month of operation), and regular monitoring and maintenance. The equipment will be enclosed with fence equipped with awareness signs.

8.1 System Startup and Optimization

System startup and optimization will be performed during the first week of system operation. Prior to system startup all remedial system components will be inspected to ensure that safe and proper installation has been completed. During system startup each system component will be operated across its respective performance range to confirm equipment operating capabilities. Startup testing will be conducted in accordance with the manufacturer's recommendations.

The vapor extraction system will be activated and tested prior to initiation of air sparging activities to ensure that sufficient influence is being achieved. Radial influence will be determined by measuring the induced vacuum at the nearby monitoring or observation wells, including wells MW-5R, MW-5I, MW-8R, MW-8I, MW-12, MW-13, MW-21D, OB-1, and OB-2. Based upon the applied vacuum observed at the manifold and extraction wellhead, the operational ROI of the system can be calculated. If this ROI is less than the design predictions, operation of the system may be modified to improve its overall capture. Readings of vapor concentrations and vacuum will be taken through a sample port on each individual manifold leg using a PID. Flow rates will be measured at the manifold with differential pressure gauge installed in-line and compared to interpolation graph.

After the vapor extraction system has been evaluated, the air sparge system will be operated at the design flow rates. Vacuum influence readings will again be taken to verify that capture is maintained. During this period soil vapor hydrocarbon concentrations and recovery rates will also be confirmed. When capture can be maintained and hydrocarbon recovery rates are appropriate for the off-gas treatment selected, the air sparge system will be operated.

The hydraulic influence of the sparging system will be confirmed during startup operations to optimize the system performance. Adjustments will be made to the sparging rate if excessive mounding or hydrocarbon vapor concentrations are observed.

Weekly site visits will be performed during the first month of remedial actions to ensure proper equipment operation and to evaluate and adjust system operating parameters.

8.2 Routine Maintenance and Operation

Monthly site visits will be performed during treatment system operation. During each site visit the following routine maintenance activities will be performed:

- The filters for the air compressor and the vapor extraction blower will be inspected and cleaned or replaced as required;
- The moisture separator will be cleaned and drained as required;
- The moisture separator vacuum relief valve will be inspected for proper operation;
- The compressed air system pressure relief valve will be inspected for proper operation;
- The aboveground piping system will be inspected for leaks and cracks;
- The system well heads will be inspected for leaks or cracks in the piping.

8.3 Permits

All permits shall also be obtained as necessary from the following regulatory entities:

- Sumter County
- State of Florida
- Florida Department of Environmental Protection

9.0 REMEDIATION MONITORING, SAMPLING, AND REPORTING

9.1 Air Sparge/Soil Vapor Extraction System Monitoring and Sampling

Vapor extraction system monitoring will include vacuum and flow measurements for each extraction well and in-situ vacuum measurements at the existing monitoring wells selected. Total system flow rates and hydrocarbon mass removal rates will also be calculated.

Vapor extraction off-gas sampling will be performed during each routine site visit to ensure that recovered vapors are below maximum discharge rates. Vapor sampling will be accomplished in

the field by screening air samples from each active extraction point, the combined system influent, and the effluent of the off-gas treatment system.

Vapor samples will also be collected from the influent, mid-carbon and effluent of the off-gas treatment for subsequent laboratory analysis. Sampling for BTEX and total petroleum hydrocarbons will be achieved by filling Tedlar bags with vapor extracted from sample ports situated before and after the carbon. The bags will be forwarded to a laboratory for subsequent analysis in accordance with EPA Method 18. Vapor samples will be collected during the first three days of startup activities, weekly for the first month, monthly for the first quarter and quarterly thereafter, Mass removal will be calculated from the analytical results and vapor flow rate to estimate mass removal and predict carbon usage. Effluent sampling and analysis will continue for a minimum of three months after termination of SVE off-gas treatment.

Air sparge system monitoring will include flow and pressure measurements for each AS well, groundwater elevation and DO measurements at the observation wells. This data will provide documentation of groundwater mounding and verify the estimated 5 foot sparge radius of influence.

The effluent water generated by SVE system will be sampled during the first three days or as accumulated, whichever comes first and analyzed using rush turnaround for BTEX/MTBE and PAHs. The sampling schedule is summarized in **Appendix C.**

9.2 Groundwater Monitoring and Sampling

Groundwater quality data from the selected monitoring wells will be used to document remediation of the dissolved hydrocarbons. The data will also be used to adjust air injection quantity and flow rates as necessary to focus remedial action on any areas of concern. Groundwater samples will be collected from monitoring wells MW-5R, MW-5I, MW-8R, MW-8I, MW-12, MW-13, MW-21D, OB-1, and OB-2 on quarterly basis. The proposed groundwater monitoring and sampling and milestones schedule is provided in **Appendix C**.

9.3 Reports

A system installation and startup report will be submitted to the FDEP within 60 days of completion of the treatment system installation and startup tasks. This report will include a summary of the system shakedown results and operating parameters. A set of signed and sealed as-built Figures will be included with the startup report.

Quarterly progress reports will be prepared and submitted to the FDEP within 45 days of the end of each quarter of remedial actions. These reports will describe the progress achieved in the preceding reporting period and will contain the following items:

- A brief summary of the progress and operating effectiveness of the remedial system.
- A brief summary of system operating parameters and adjustments.
- An evaluation of system influence.

- Total estimated mass of VOCs treated.
- Tabular and graphical results for groundwater quality data, water level data and system influence.
- Recommendations for modifying the groundwater monitoring program, if appropriate.
- Recommendations for future remedial actions or modifications, if necessary.

Reports will be prepared in accordance with guidelines set forth under Chapter 62-780, FAC.

10.0 CLEANUP TIME, COST ESTIMATE, AND PAY-FOR-PERFORMANCE

10.1 Cleanup Time

The Air Sparging Model of Predicting Groundwater Cleanup Rate (Sellers & Schreiber, 1992) was used to predict the cleanup timeframe for BTEX and naphthalenes impacts identified at the site.

Diffusion coefficients in water for some chemicals are tabulated, and others can be estimated from empirical relationships (Bird et al., 1960). Given the approximate nature of this theoretical analysis and the observation that many diffusion coefficients in water fall in the range of 1 to 2 x 10^{-5} cm²/s, the ratio of diffusion coefficients in water can be treated as unity (Bruce et al., 2000), and the model can be used to evaluate cleanup time for multiple chemical parameters.

This model yields an estimate of 0.2 years to achieve cleanup of benzene in groundwater at the site. Calculations are provided in **Appendix B**. However, based on the historical data, nature of the contaminants and unknown concentrations of petroleum constituents near or beneath the building, MAS estimates that the cleanup will be achieved in 0.5-years, based on our experience with similar site and petroleum constituents. RAP Summary is provided in **Appendix D**. UIC form is provided in **Appendix E**. Construction schedule is provided in **Appendix F**.

The cleanup goal for the site is GCTLs per Chapter 62-780, FAC.

10.2 Cost Estimate

The following generalized cost estimate for implementation of the RAP has been prepared as required by Chapter 62-780, FAC. The following is a cost breakdown for the system installation and operation for a duration of one year:

Task #	Assumptions	Costs
Task 1: Office Activities,		\$3,000
permitting		
Task 2:	Baseline Sampling	\$2,500.00
Task 3:Well Installation,	• Installation of AS and SVE wells;	\$70,000
Trenching, Startup	• Trenching;	
	Removal of concrete/asphalt;	

	 Baseline sampling: 10 wells for BTEX/M, PAHs,; 	
Task 3: 1 st Quarter of Operation and Maintenance	• System Installation and Integration; Stortum: 2 days of sin (infl and offl)	\$25,000
Operation and Maintenance	Startup; 3 days of air (infl and effl) and water (effluent) sampling;	
	• Electric Pole and utility connection (excludes utility pay)	
	• 1 st Quarter: monthly visits	
Task 4: 2 nd quarter of O&M		\$25,000
TOTAL (includes 10% safety	factor):	\$138,050.00

Facility Name: FDEP FAC#:

	SAMPLE					OVA SCREENING RESULTS
BORING	DATE	SAMPLE	TOTAL	CARBON	NET	
NO.	COLLECTED	INTERVAL	READING	FILTERED	READING	SOIL BORING DESCRIPTION
		(ft bls)	(ppm)	(ppm)	(ppm)	
		1	BDL	BDL	BDL	silty sand, fine to very fine grain, qtz, organics,drk brn
	2	BDL	BDL	BDL	dark brown, silty sand, qtz, organics	
	3	BDL	BDL	BDL	light brown, silty sand, qtz,augular to sub augular	
		4	BDL	BDL	BDL	light color silty sand, very augular to augular
		6	BDL	BDL	BDL	clayey sand, rust staining, dark orange brown
		8	BDL	BDL	BDL	sandy clay, browninsh gray, iron staining
SB-1	9/14/2005	10	BDL	BDL	BDL	sandy clay, iron rust staining
05.	0/14/2000	12	4	BDL	4	light gray, sandy gray
		14	BDL	BDL	BDL	very fine silty sand, clay stringers, orange rust color
		16	2	BDL	2	sandy clay, iron staining, brownish gray
		18	BDL	BDL	BDL	sandy clay, iron staing, some limstone, light gray
		20	BDL	BDL	BDL	silty clay with limstone, light gray
		22	1	BDL	1	silty clay with limestone
		24	BDL	BDL	BDL	silty clay,iron staining, extra limestone, greenish gray
		1	0.5	BDL	0.5	silty sand, fine to very fine grain, qtz, organics,drk brn
		2	BDL	BDL	BDL	dark brown, silty sand, qtz, organics
		3	BDL	BDL	BDL	light brown, silty sand, qtz,augular to sub augular
		4	BDL	BDL	BDL	light color silty sand, very augular to augular
		6 8	1	BDL BDL	1 BDL	clayey sand, rust staining, dark orange brown
		° 10	BDL BDL	BDL	BDL	sandy clay, browninsh gray, iron staining sandy clay, iron rust staining
SB-2	9/14/2005	10	BDL	BDL	BDL	light gray, sandy gray
		12	BDL	BDL	BDL	very fine silty sand, clay stringers, orange rust color
		14	3	BDL	3	sandy clay, iron staining, brownish gray
		18	BDL	BDL	BDL	sandy clay, iron staining, sownish gray
		20	BDL	BDL	BDL	silty clay with limstone, light gray
		22	4	BDL	4	silty clay with limestone
		24	BDL	BDL	BDL	silty clay,iron staining, extra limestone, greenish gray
		1	BDL	BDL	BDL	silty sand, fine to very fine grain, qtz, organics,drk brn
		2	2	BDL	2	dark brown, silty sand, qtz, organics
		3	BDL	BDL	BDL	light brown, silty sand, qtz,augular to sub augular
		4	BDL	BDL	BDL	light color silty sand, very augular to augular
		6	BDL	BDL	BDL	
						clayey sand, rust staining, dark orange brown
		8	BDL	BDL	BDL	sandy clay, browninsh gray, iron staining
SB-3	9/14/2005	10	BDL	BDL	BDL	sandy clay, iron rust staining
		12	BDL	BDL	BDL	light gray, sandy gray
		14	2	BDL	2	very fine silty sand, clay stringers, orange rust color
		16	BDL	BDL	BDL	sandy clay, iron staining, brownish gray
		18	BDL	BDL	BDL	sandy clay, iron staing, some limstone, light gray
		20	BDL	BDL	BDL	silty clay with limstone, light gray
		22	BDL	BDL	BDL	silty clay with limestone
		24	BDL	BDL	BDL	silty clay, iron staining, extra limestone, greenish gray
		1	50	1	49	silty sand, fine to very fine grain, qtz, organics,drk brn
		2	1	BDL	1	medium brown, silty sand, qtz, organics
			1			
		3		BDL	1	light brown, silty sand, qtz, sub angular
		4	BDL	BDL	BDL	light color silty sand, very angular to angular
		6	BDL	BDL	BDL	clayey sand, rust staining, dark orange brown
		8	BDL	BDL	BDL	sandy clay, browninsh gray, iron staining
SB-4	9/14/2005	10	BDL	BDL	BDL	sandy clay, iron rust staining
36-4 3/14/2003		12	1	BDL	1	light gray, sandy gray
		14	BDL	BDL	BDL	fine silty sand, clay stringers, orange rust color
		16	2	BDL	2	sandy clay, iron staining, brownish gray
		18	BDL	BDL	BDL	sandy clay,moderate iron staing, some limstone, light gray
		20	BDL	BDL	BDL	silty clay with limstone, light gray
		20	1	BDL	1	silty clay with limestone pebbles
		24	BDL	BDL	BDL	silty clay, iron staining veins, extra limestone, greenish gray

Facility Name: FDEP FAC#: AA Discount 60/8516863

SAMPLE OVA SCREENING RESULTS BORING DATE SAMPLE TOTAL CARBON NET COLLECTED INTERVAL READING FILTERED READING SOIL BORING DESCRIPTION NO. BDL BDL BDL med brn, silt sand sng-sub ang, med sort, orgs, qtz 1 BDL BDL BDL 2 med brn, silt sand sng-sub ang, med sort, orgs, qtz 3 BDL BDL BDL med brn, silt sand sng-sub ang, med sort, orgs, qtz BDL 4 BDL BDL med brn, silt sand sng-sub ang, med sort, orgs, qtz 6 BDL BDL BDL Igt brown silt sand, ang-sub ang, med sort, qtz 8 BDL BDL BDL dk gry orange, silty sandy clay, signif iron stain BDL 10 dk gry orange, silty sandy clay, 1 1 SB-6 9/15/2005 12 BDL BDL BDL med gry sandy clay BDI BDI BDI 14 med gry silty sandy clay, some iron stain 16 5 BDL 5 Igt gry sandy clay some iron stain 18 >5000 BDI <5000 Igt gry silty clay some iron stain 20 2600 BDL 2600 Ight gry & orang silty sandy clay signif iron stain 22 4400 BDL 4400 Ight \$ dk gry silty clay some iron stain 24 4300 BDI 4300 Igt gry silty sandy clay Imstn frags BDL 1 BDL BDL dk brn silty sand, med sort, vry fine, qtz, orgs, ang-sub ang 2 BDL BDL BDL md brn med sort, ang-sub ang very fine grain, silty sand BDL BDL BDL Iter brn med sort ang-sub ang silty sand, smll frags, orgs,qtz 3 4 BDL BDL BDL It orang brn ang-sub angmed sort, qtz few org, BDL md dk orang brn, iron staining, clayey sand 6 BDL BDL BDL 8 BDL BDL dk gry iron staind, sandy clay w/ seams of dker mostly clay BDL BDL 10 BDL vry It colord w/ Irg iron staining, sandy clay, dkr gry streams 9/15/2005 SB-7 BDL BDL 12 BDL It gry sandy clay clayey sand, some iron staining 14 BDL BDL BDL vry It gry sandy clay, clayey sand, few amt iron staining 16 BDL BDL BDL med brn, iron staining, silty sand, moderately sorted 18 BDL BDL BDL sandy clay, light gray, iron staining, limestone fragments 20 BDL BDL BDL silty clay, light gray, limestone frgmnts, iron staining sandy clay, It tan gray, iron stain, limestone frgmnts 22 BDL BDL BDL 24 BDL BDL BDL silty clay, iron staining, extra limestone, greenish gray BDL BDL BDL dk brn silty sand, ang-sub ang med sorted qtz, orgs 1 2 BDL BDL BDI dk brn silty sand, ang-sub ang med sort qtz, orgs, iron modules BDI BDI BDI 3 md brnish gry silty sand ang-sub ang med sort, qtz BDL BDL 4 BDL Ighter brnish gry silty sand, ang-sub ang, med sort, qtz 6 BDL BDL BDL clayey sand md brnish orang very iron stained BDL BDL BDL 8 sandy clay md brnish gry iron staining small Imstn frags 10 BDL BDL BDL sandy clay Igt gry sign iron stain SB-8 9/14/2005 BDL BDI BDL 12 It gry sandy clay Imstn frags 14 BDL 1 1 sandy clay orang & It gry lots of iron stain, Imstn frags 16 1 BDL 1 silty clay md brn gry, some iron stain Imstn frags 18 5 BDL 5 silty clay md gry, some iron stain Imstn frags 20 3 BDL 3 silty clay md gry, some iron stain 16 BDL 22 16 silty clay It tan gry, some iron stain Imstn frags 24 80 BDL 80 org grnish silty clay signif iron stain

Facility Name: FDEP FAC#:

	SAMPLE					OVA SCREENING RESULTS	
BORING	DATE	SAMPLE	TOTAL	CARBON	NET		
NO.	COLLECTED	INTERVAL	READING	FILTERED	READING	SOIL BORING DESCRIPTION	
			1	BDL	BDL	BDL	dk brn silty sand, ang-sub ang med sorted qtz, orgs
		2	BDL	BDL	BDL	dk brn silty sand, sub ang med sort qtz, orgs, iron stain	
		3	BDL	BDL	BDL	md brnish gry silty sand ang-sub ang med sort, qtz	
		4	BDL	BDL	BDL	Ighter brnish gry silty sand, ang-sub ang, med sort, qtz	
		6	BDL	BDL	BDL	clayey sand md brnish orang very iron stained	
		8	BDL	BDL	BDL	sandy clay md brnish gry iron staining small Imstn frags	
		10	BDL	BDL	BDL	sandy clay Igt gry sign iron stain	
		12	BDL	BDL	BDL	It gry sandy clay Imstn frags	
SB-9	9/14/2005	14	BDL	BDL	BDL	sandy clay orang & It gry lots of iron stain, Imstn frags	
		16	BDL	BDL	BDL	silty clay md brn gry, some iron stain Imstn frags	
		18	BDL	BDL	BDL	silty clay md gry, some iron stain Imstn frags	
		20	BDL	BDL	BDL	silty clay md gry, some iron stain	
		22	BDL	BDL	BDL	silty clay It tan gry, some iron stain Imstn frags	
		24	BDL	BDL	BDL	org grnish silty clay signif iron stain	
		26	BDL	BDL	BDL		
		28	BDL	BDL	BDL		
		30	BDL	BDL	BDL		
		1	BDL	BDL	BDL	dk brn silty sand, ang-sub ang med sorted qtz, orgs	
		2	BDL	BDL	BDL	dk brn silty sand, ang-sub ang med sort qtz, orgs, iron modules	
		3	BDL	BDL	BDL	md brnish gry silty sand ang-sub ang med sort, qtz	
		4	BDL	BDL	BDL	Ighter brnish gry silty sand, ang-sub ang, med sort, qtz	
		6	BDL	BDL	BDL	clayey sand md brnish orang med iron staining	
		8	BDL	BDL	BDL	sandy clay md brnish gry iron staining small lmstn frags	
		10	BDL	BDL	BDL	sandy clay Igt gry sign iron stain	
		12	BDL	BDL	BDL	It gry sandy clay Imstn frags	
SB-10	9/14/2005	14	BDL	BDL	BDL	sandy clay orang & It gry lots of iron stain, Imstn frags	
		16	1	BDL	1	silty clay md brn gry, few iron stain Imstn frags	
		18	BDL	BDL	BDL	silty clay md gry, some iron stain Imstn frags	
		20	1	BDL	1	silty clay md gry, some iron stain	
		22	2	BDL	2	silty clay It tan gry, some iron stain Imstn frags	
		24	BDL	BDL	BDL	org grnish silty clay signif iron stain	
		24	BDL	BDL	BDL		
		28	BDL	BDL	BDL		
		30	BDL	BDL	BDL		
		1	BDL	BDL	BDL	dk brn silty sand, ang-sub ang med sort, orgs, qtz	
		2	BDL	BDL	BDL	dk brn silty sand, ang-sub ang med sort, orgs, qtz	
		3	BDL	BDL	BDL	ight brnish gry silty sand, ang-sub ang med sort, orgs, qtz	
		4	BDL	BDL	BDL	Ight brnish gry silt sand ang-sub ang med sort, qtz	
		6	BDL	BDL	BDL	md orang brown clayey sand, signif iron stain	
		8	BDL	BDL	BDL	md orang brown clayey sand, signif iron stain	
		10	BDL	BDL	BDL	md brn gry sand clay some iron stain	
SB-11	9/16/2005	10	BDL	BDL	BDL	vry lgt sandy clay, some iron stain	
		12	BDL	BDL	BDL	Ight gry orange sand clay signif iron stain	
		14	BDL	BDL	BDL	Ight gry silty clay some iron stain	
		18	BDL	BDL	BDL		
		20	1	BDL	1	vry lght gry silty sandy clay lime grn orange silty clay signif iron stain	
		20	2	BDL	2		
		22	8			md orang brown silty clay, signif iron stain	
		24	ŏ	BDL	8	md grysilty sandy clay, signif iron stain	

Facility Name: FDEP FAC#:

	SAMPLE					OVA SCREENING RESULTS
BORING	DATE	SAMPLE	TOTAL	CARBON	NET	
NO.	COLLECTED	INTERVAL	READING	FILTERED	READING	SOIL BORING DESCRIPTION
		1	BDL	BDL	BDL	dk brn, silty sand, very fine, med sort, ang-sub ang, qtz,orgs
		2	BDL	BDL	BDL	med brn, silt sand, very fine, med sort, ang-subang, qtz, orgs
		3	BDL	BDL	BDL	gry brn, silt sand, fine, med sort, ang-subang, qtz,orgs
		4	BDL	BDL	BDL	lgt brn, silt sand, very fine, some orgs, qtz
		6	BDL	BDL	BDL	med org gry clayey sand, signif iron stain
		8	BDL	BDL	BDL	med org grey clayey sand signif iron stain
		10	BDL	BDL	BDL	med orange brown sandy clay signif iron stain
		12	BDL	BDL	BDL	Igt gry sandy clay some iron stain
SB-12	9/17/2005	14	BDL	BDL	BDL	lgt gry sandy clay
		16	BDL	BDL	BDL	gry brn, silty sand, fine grained, clay stringers
		18	BDL	BDL	BDL	lgt green gray sandy clay, signif iron stain, Imstn frags
		20	BDL	BDL	BDL	green orng silty caly signif iron stain
		22	BDL	BDL	BDL	grnish gryish org silty clay signif iron stain
		24	BDL	BDL	BDL	grnish org silty clay signif iron stain
		26	BDL	BDL	BDL	
		28	BDL	BDL	BDL	
		30	BDL	BDL	BDL	
		1	BDL	BDL	BDL	silty sand, fine to very fine grain, qtz, organics,drk brn
		2	BDL	BDL	BDL	dark brown, silty sand, qtz, organics
		3	BDL	BDL	BDL	light brown, silty sand, qtz,augular to sub augular
		4	BDL	BDL	BDL	light color silty sand, very augular to augular
		6	BDL	BDL	BDL	clayey sand, rust staining, dark orange brown
		8	BDL	BDL	BDL	sandy clay, browninsh gray, iron staining
		10	BDL	BDL	BDL	sandy clay, iron rust staining
		12	BDL	BDL	BDL	light gray, sandy gray
SB-13	9/16/2005	14	BDL	BDL	BDL	very fine silty sand, clay stringers, orange rust color
		16	BDL	BDL	BDL	sandy clay, some iron staining, brownish gray
		18	BDL	BDL	BDL	sandy clay, iron staing, some limstone, light gray
		20	BDL	BDL	BDL	silty clay with limstone, light gray
		22	BDL	BDL	BDL	silty clay with limestone pebbles
		24	BDL	BDL	BDL	silty clay,iron staining, extra limestone, greenish gray
		26	BDL	BDL	BDL	
		28	BDL	BDL	BDL	
		30	BDL	BDL	BDL	
		1	BDL	BDL	BDL	dk brn, silty sand, very fine, med sort, ang-sub ang, qtz,orgs
		2	BDL	BDL	BDL	med brn, silt sand, very fine, med sort, ang-subang, qtz, orgs
		3	BDL	BDL	BDL	med gry brn, silt sand, very fine, med sort, ang-subang, qtz,orgs
		4	BDL	BDL	BDL	Igt brn, silt sand, very fine, some orgs, qtz
		6	BDL	BDL	BDL	med org gry clayey sand, signif iron stain
		8	BDL	BDL	BDL	med org grey clayey sand signif iron stain
		10	BDL	BDL	BDL	med orange brown sandy clay signif iron stain
SB-14	9/16/2005	12	BDL	BDL	BDL	lgt gry sandy clay some iron stain
		14	BDL	BDL	BDL	Igt gry sandy clay
		16	BDL	BDL	BDL	med gry brn, silty sand, fine grained, clay stringers
		18	BDL	BDL	BDL	Igt greenish gry sandy clay, signif iron stain, Imstn frags
		20	BDL	BDL	BDL	green orang silty caly signif iron stain
		20	BDL	BDL	BDL	grish gryish org silty clay signification stain
		24	BDL	BDL	BDL	grnish org silty clay significon stain
			DDL	DDL	DDL	grinan organcy day argin non atali

Facility Name: FDEP FAC#:

	SAMPLE					OVA SCREENING RESULTS
BORING	DATE	SAMPLE	TOTAL	CARBON	NET	
NO.	COLLECTED	INTERVAL	READING	FILTERED	READING	SOIL BORING DESCRIPTION
		1	BDL	BDL	BDL	dk brn silty sand, ang-sub ang, med sort , orgs, qtz
		2	BDL	BDL	BDL	dk brn silty sand, ang-sub ang, med sort , orgs, qtz
		3	BDL	BDL	BDL	It brn silty sand, ang-sub ang, med sort, qtz
		4	BDL	BDL	BDL	It brn silty sand, ang-sub ang, med sort, qtz
		6	BDL	BDL	BDL	md orang brn clayey san signif iron stain, iron module
		8	BDL	BDL	BDL	md orang brn clayey san signif iron stain,
SB-15	9/16/2005	10	BDL	BDL	BDL	It gry sandy clay, some iron stain, smll imstn frags
02.0	0.10.2000	12	BDL	BDL	BDL	It gry sandy clay, vry little iron staining
		14	BDL	BDL	BDL	It gray, clayey sand, some iron staining
		16	1	BDL	1	It gry w/ dkr gry silty sandy, some iron stain
		18	BDL	BDL	BDL	It gry silty clay, some iron stain, Imstn frags
		20	BDL	BDL	BDL	lime grn & orang silty clay signif iron stain
		22	BDL	BDL	BDL	It orang brn silty sand signif iron stain
		24	1	BDL	1	It brnish gry sandy clay Irg Imstn frags
		2	0	0	0	
		4	0	0	0	
A1	3/12/08	6	0	0	0	
		8	0	0	0	
		10	2500	0	2500	
		2	0	0	0	
		4	0	0	0	
A2	3/12/08	6	5	0	5	
		8	0	0	0	
		10	5	0	5	
		2	0	0	0	
		4	0	0	0	
A3	3/12/08	6	0	0	0	
		8	0	0	0	
		10	0	0	0	
		2	0	0	0	
		4	20	0	20	
B1	3/12/08	6	32	0	32	
		8	2	0	2	
		10	0	0	0	
		2	0	0	0	
		4	20	0	20	
B2	3/12/08	6	28	0	28	
		8	0	0	0	
		10	1500	0	1500	
		2	2	0	0	
		4	6	0	20	
B3	3/12/08	6	20	0	28	
•		8	0	0	0	
		10	0	0	0	
B4	3/12/08	2	2	0	0	
04	3/12/00	-	-	U	v	

Facility Name: FDEP FAC#:

	SAMPLE					OVA SCREENING RESULTS
BORING	DATE	SAMPLE	TOTAL	CARBON	NET	
NO.		INTERVAL		FILTERED	READING	SOIL BORING DESCRIPTION
B5	3/12/08	2	2	0	0	
B6	3/12/08	2	2	0	0	
		2	0	0	0	
		4	4	0	4	
C1	3/12/03	6	30	0	30	
		8	0	0	0	
		10	NR	0	NR	
		2	0	0	0	
		4	25	0	25	
C2	3/12/08	6	20	0	20	
		8	1	0	1	
		10	0	0	0	
		2	0	0	0	
		4	2	0	2	
C3	3/12/08	6	35	0	35	
		8	0	0	0	
		10	850	0	850	
C4	3/12/08	2	0	0	0	
		8	0	0	0	
C5	3/12/08	2	2	0	0	
00	5/12/00	8	0	0	0	
C6	2/42/08	2	0	0	0	
60	3/12/08	8	0	0	0	
		2	0	0	0	
		4	0	0	0	
D1	3/14/08	6	15	0	15	
		8	1	0	1	
		10	1	0	1	
		2	0	0	0	
		4	2	0	2	
D2	3/14/08	6	4	0	4	
		8	3	0	3	
		10	0	0	0	
		2	0	0	0	
		4	0	0	0	
D3	3/14/08	6	0	0	0	
		8	0	0	0	
		10	0	0	0	
		2	0	0	0	
		4	0	0	0	
D4	3/14/08	6	0	0	0	
		8	0	0	0	
		10	0	0	0	
		2	0	0	0	
D5	3/14/08	4	0	0	0	
55	3/14/00	6	0	0	0	
		8	0	0	0	
		2	0	0	0	
D6	3/14/08	4	0	0	0	
00	3/14/00	6	0	0	0	
		8	0	0	0	

Facility Name: FDEP FAC#:

i	SAMPLE					OVA SCREENING RESULTS
BORING	DATE	SAMPLE	TOTAL	CARBON	NET	OVA SCREENING RESUELS
NO.	COLLECTED				READING	SOIL BORING DESCRIPTION
	COLLECTED	1	< 1		< 1	
		2	< 1		< 1	
		3	< 1		< 1	
		4	< 1		< 1	
		5	< 1		< 1	
		7	9		9	
		9	10		10	
		11	9		9	
		13	11		11	
0.0.4	0/0/0040	15	4		4	
OB-1	2/8/2018	17	<1		<1	
		19	1		1	
		21	2		2	
		23	2		2	
		25	2		2	
		27	3		3	
		29	8		8	
		31	62		62	
		33	73		73	
		35	60		60	
		1	< 1		< 1	
		2	<1		<1	
		3	< 1		< 1	
		4	< 1		< 1	
		5	< 1		< 1	
		7	3		3	
		9	4		4	
		11	3		3	
		13	2		2	
		15	2		2	
OB-2	2/8/2018	17	2		2	
		19	2		2	
		21	<1		<1	
		23	<1		<1	
		25	1		1	
		27	1		1	
		29	< 1		<1	
		31	<1		<1	
		33	<1		<1	
		35	<1		<1	
 		1	< 1		< 1	
		2	<1		<1	
		3	<1		<1	
		4	<1		<1	
		5	<1		<1	
		7	2		2	
		9	13		13	
SVE-1	2/8/2018	11	5		5	
···- ·		13	2		2	
		15	2		2	
		15	2		2	
		17	3		3	
		21	2		2	
		21	2		2	
		25	6		6	
					5	

Facility Name:
FDEP FAC#:

AA Discount 60/8516863

	SAMPLE					OVA SCREENING RESULTS
BORING	DATE	SAMPLE	TOTAL	CARBON	NET	
NO.	COLLECTED	INTERVAL	READING	FILTERED	READING	SOIL BORING DESCRIPTION
		1	< 1		<1	
		2	< 1		<1	
		3	< 1		<1	
		4	< 1		<1	
		5	< 1		<1	
		7	< 1		<1	
		9	< 1		<1	
		11	< 1		<1	
		13	< 1		<1	
		15	< 1		<1	
		17	< 1		<1	
		19	< 1		<1	
AS-1	2/8/2018	21	12		12	
		23	68		68	
		25	1711		1711	
		27	277		277	
		29	46		46	
		31	23		23	
		33	10		10	
		35	16		16	
		37	12		12	
		39	11		11	
		41	16		16	
		43	4		4	
		45	4		4	

NOTES:

2) FT BLS = Feet Below Land Surface 3) ppm = Part Per Million

4) NS = No Sample

5) NR = No Response

TABLE 2A: SOIL ANALYTICAL SUMMARY - VOA, TRPH, Metals

Facility Name: FDEP Facility ID: AA Discount 60/8516863

FDEP Facili	-	nple		OVA	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	MTBE (mg/kg)	TRPHs (mg/kg)	Barium (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)	Mercury (mg/kg)	Arsenic (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)
SCTL for Lea	achability Bas	ed on Ground	water Criteri	а	0.007	0.5	0.6	0.2	0.09	340	120**	5.2	17	3	*	7.5	38	*
	ect Exposure				1.2	7,500	1,500	130	4,400	460	1600	440	410	2.1	2.1	82	210	400
(mg/kg)					1.7	60,000	9200	700	24,000	2700					12	1700	470	1400
Boring No. / Well ID No.	Date Collected	Land/ Mobile Lab	Sample Interval (ft bls)	Net OVA Reading (ppm)		,			_ ,,			1					1	
EB	4/29/1994 4/29/1994	N/A N/A	13 - 15 18		0.8	2.4 0.8	0.20	1.10 0.70	0.80	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
SB-A	4/23/1334	11/2	4		0.00060 U	0.0037	0.0012		0.0014	5 U		110						
3B-A	7/21/1999		4		0.04	0.67	0.22	NS	0.07	5 U	NS	NS	NS	NS	NS	NS	NS	NS
SB-B	7/21/1999		18		0.089	0.63	0.06	NS	0.23	5 U	NS	NS	NS	NS	NS	NS	NS	NS
00-0	7/21/1999		20		0.003	0.02	0.04	NS	0.32	5 U	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	9		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-1	2/7/2008	Land	10		222	222	222	552			180	2.6	0.75 U	0.024	3.1	0.12 U	51	5.7
	9/15/2005	Land	30		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Land	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	9		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-2	2/7/2008	Land	10		NS	NS	NS	NS	NS	NS	160	2.4	0.71 U	0.019	3.1	0.11 U	53	8.0
	9/14/2005	Mobile	18		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	24		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Land	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	2		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-3	9/14/2005	Mobile	9		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/7/2008	Land	10		NS	NS	NS	NS	NS	NS	170	2.3	0.74 U	0.019	1.7	0.12 U	38	3.3
	9/14/2005	Mobile	25		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-4	9/14/2005	Land	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
38-4	9/14/2005	Mobile	9		BDL	BDL	BDL	BDL	BDL									
	9/15/2005	Land	4		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Mobile	4		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-6	9/15/2005	Mobile	9		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	25		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Mobile	25		0.0329	0.0385	0.163	0.838	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	30		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Mobile	30		0.130	0.722	0.204	0.899	0.0254	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	5		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-7	9/15/2005 9/15/2005	Mobile	5 9		BDL NS	BDL NS	BDL NS	BDL NS	BDL NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
30-1	9/15/2005	Land Mobile	9		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Mobile	9 25		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	25 5		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Mobile	5		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	9		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-8	9/15/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	25		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Mobile	25		0.131	BDL	0.0865	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/19/2005	MODIle	20		0.131	BUL	0.0000	BUL	BUL	ы	бИ	БИ	GNI	бИ	бИ	ы	ONI	бИ

TABLE 2A: SOIL ANALYTICAL SUMMARY - VOA, TRPH, Metals

Facility Name: FDEP Facility ID: AA Discount

60/8516863

FDEP Facili	ty iD.	60/8516863			Banzana	Toluona	Ethyl-	Total	МТВЕ	TRPHs	Barium	Colonium	Cilver	Morours	Aroonia	Codmisses	Chromium	Lood
	Sar	nple		OVA	Benzene	Toluene	benzene	Xylenes		-	Barium	Selenium	Silver	Mercury	Arsenic	Cadmium	Chromium	Lead
					(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) *
	-	sed on Ground	dwater Criteri	а	0.007	0.5	0.6	0.2	0.09	340	120**	5.2	17	3	*	7.5	38	
SCTL for Dire	ect Exposure	Residential			1.2	7,500	1,500	130	4,400	460	1600	440	410	2.1	2.1	82	210	400
(mg/kg)					1.7	60,000	9200	700	24,000	2700					12	1700	470	1400
Boring No. /	Date	Land/	Sample	Net OVA														
Well ID No.	Collected	Mobile Lab	Interval (ft bls)	Reading (ppm)														
	9/14/2005	Land	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-9	9/14/2005	Mobile	9		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	25		0.0483	BDL	0.0893	0.154	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Land	5		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	5		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-10	9/14/2005	Land	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	9		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	25		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	5		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Land	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-11 9/10 9/10 9/10	9/16/2005	Mobile	9		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Land	25		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	25		0.0591	BDL	0.106	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Land	30		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	30		0.0851	0.0694	0.122	0.2384	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	32.5		0.00254	BDL	0.0141	0.0488	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	9		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-12	9/16/2005	Mobile	25		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	30		0.00148	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-13	9/16/2005	Mobile	8		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	30		0.00428	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	5		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-14	9/16/2005	Mobile	8		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
-	9/16/2005	Land	30		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	30		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Land	8		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-15	9/16/2005	Mobile	8		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
00 N	9/16/2005	Mobile	25		BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS	NS	NS
SS-North Wall	3/14/2008		6		0.00088 U	0.00062 U	0.00047 U	0.0011 I	0.00047 U	1100 U	NS	NS	NS	NS	NS	NS	NS	NS
SS-South Wall	3/14/2008		6		0.052 U	0.086 U	0.045 U	0.190 U	0.028 U	1000 U	NS	NS	NS	NS	NS	NS	NS	NS
SS-East Wall	3/14/2008		6		0.0011 U	0.0008 U	0.00061 U	0.0011 U	0.00061 U	1200 U	NS	NS	NS	NS	NS	NS	NS	NS
SS-West Wall	3/14/2008		6		0.0011 U	0.00331 I	0.0025 I	0.019	0.0006 U	1200 U	NS	NS	NS	NS	NS	NS	NS	NS
SS-Bottom	3/14/2008		12		0.0015 U	0.015	0.0093	0.110	0.00078 U	26	NS	NS	NS	NS	NS	NS	NS	NS
SS-Bottom	3/14/2008		12		0.0015 U	0.015	0.0093	0.110	0.00078 U	26 I	NS	NS	NS	NS	NS	NS	NS	NS

NOTES: NA = Not Available

NS = Not Sampled

* = Leachability value may be determined using TCLP.

Bold indicates analyte is detected above the SCTL.

TABLE 2B: SOIL ANALYTICAL SUMMARY - Non-Carcinogenic PAHs

Facility Name: FDEP Facility ID:

	Sar	nple		OVA	Naph- thalene (mg/kg)	1-Methyl- naph- thalene (mg/kg)	2-Methyl- naph- thalene (mg/kg)	Acenaph- thene (mg/kg)	Acenaph- thylene (mg/kg)	Anthra-cene (mg/kg)	Benzo (g,h,i) perylene (mg/kg)	Fluoran- thene (mg/kg)	Fluorene (mg/kg)	Phenan- threne (mg/kg)	Pyrene (mg/kg)
SCTL for Lea	achability Bas	sed on Ground	water Criteri	а	1.2	3.1	8.5	2.1	27	2,500	32,000	1,200	160	250	880
	ect Exposure				55	200	210	2.400	1,800	21.000	2,500	3,200	2,600	2,200	2.400
		for Direct Ex	posure Comn	nercial				_,	.,	,	_,	0,200	_,	_,	_,
(mg/kg)					300	1800	2100	20,000	20,000	300,000	52,000	59,000	33,000	36,000	45,000
Boring No. / Well ID No.	Date Collected	Land/ Mobile Lab	Sample Interval (ft bls)	Net OVA Reading (ppm)											
SB-A	7/21/1999		4		0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U
	7/21/1999		16		0.400 U	0.400 U	0.0400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U
SB-B	7/21/1999		18		0.420 U	0.420 U	0.420 U	0.420 U	0.420 U	0.420 U	0.420 U	0.420 U	0.420 U	0.420 U	0.420 U
	7/21/1999		20		0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U
	9/15/2005	Land	9		0.019 U	0.020 U	0.035 U	0.031 U	0.027 U	0.037 U	0.032 U	0.034 I	0.029 U	0.09 I	0.031 I
SB-1	9/14/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	30		0.020 U	0.021 U	0.038 U	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Land	9		0.018 U	0.020 U	0.034 U	0.031 U	0.026 U	0.037 U	0.032 U	0.023 U	0.023 U	0.026 U	0.020 U
SB-2	9/14/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	18		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	24		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Land	9		0.020 U	0.021 U	0.037 U	0.033 U	0.028 U	0.039 U	0.034 U	0.024 U	0.030 U	0.028 U	0.021 U
SB-3	9/14/2005	Mobile	2		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
38-3	9/14/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-4	9/14/2005	Land	9		0.019 U	0.020 U	0.035 U	0.031 U	0.027 U	0.037 U	0.032 U	0.026 I	0.039 U	0.027 U	0.022 I
30-4	9/14/2005	Mobile	9												
	9/15/2005	Land	4		0.016 U	0.017 U	0.030 U	0.027 U	0.023 U	0.032 U	0.028 U	0.020 U	0.025 U	0.023 U	0.017 U
	9/15/2005	Mobile	4		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	9		0.016 U	0.017 U	0.030 U	0.027 U	0.016 U	0.032 U	0.028 U	0.020 U	0.025 U	0.023 U	0.017 U
SB-6	9/15/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
90-06	9/15/2005	Land	25		0.24	0.19	0.43	0.028 U	0.023 U	0.033 U	0.029 U	0.020 U	0.026 U	0.023 U	0.017 U
	9/15/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	30		0.020 U	0.021 U	0.038 U	0.034 U	0.029 U	0.040 U	0.035 U	0.025 U	0.031 U	0.029 U	0.021 U
	9/15/2005	Mobile	30												
	9/15/2005	Land	5		0.020 U	0.021 U	0.037 U	0.033 U	0.028 U	0.039 U	0.034 U	0.025 U	0.031 U	0.028 U	0.021 U
	9/15/2005	Mobile	5		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-7	9/15/2005	Land	9		0.018 U	0.019 U	0.034 U	0.030 U	0.026 U	0.036 U	0.031 U	0.022 U	0.028 U	0.026 U	0.019 U
	9/15/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Mobile	25												

TABLE 2B: SOIL ANALYTICAL SUMMARY - Non-Carcinogenic PAHs

Facility Name: FDEP Facility ID:

	Sam	ple		OVA	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acenaph- thene	Acenaph- thylene	Anthra-cene	Benzo (g,h,i) perylene	Fluoran- thene	Fluorene	Phenan- threne	Pyrene
					(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SCTL for Le	achability Base	ed on Ground	dwater Criteri	а	1.2	3.1	8.5	2.1	27	2,500	32,000	1,200	160	250	880
SCTL for Di	rect Exposure	Residential			55	200	210	2,400	1,800	21,000	2,500	3,200	2,600	2,200	2,400
Soil Cleanu (mg/kg)	p Target Level	for Direct Ex	posure Comn	nercial	300	1800	2100	20,000	20,000	300,000	52,000	59,000	33,000	36,000	45,000
	9/15/2005	Land	5		0.019 U	0.020 U	0.036 U	0.032 U	0.027 U	0.038 U	0.033 U	0.024 U	0.030 U	0.027 U	0.020 U
	9/15/2005	Mobile	5		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-8	9/15/2005	Land	9		0.017 U	0.019 U	0.033 U	0.029 U	0.025 U	0.035 U	0.031 U	0.022 U	0.027 U	0.025 U	0.019 U
5B-8	9/15/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/2005	Land	25		0.021 U	0.022 U	0.040 U	0.036 U	0.030 U	0.042 U	0.037 U	0.028 U	0.033 U	0.030 U	0.022 U
	9/15/2005	Mobile	25												
	9/14/2005	Land	9		0.016 U	0.018 U	0.031 U	0.028 U	0.024 U	0.033 U	0.029 U	0.021 U	0.028 U	0.024 U	0.018 U
SB-9	9/14/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	25												
	9/14/2005	Land	5		0.019 U	0.020 U	0.036 U	0.032 U	0.026 U	0.038 U	0.034 U	0.024 U	0.030 U	0.028 U	0.020 U
	9/14/2005	Mobile	5		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-10	9/14/2005	Land	9		0.018 U	0.019 U	0.034 U	0.030 U	0.026 U	0.036 U	0.031 U	0.022 U	0.026 U	0.026 U	0.019 U
	9/14/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/14/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	5		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Land	9		0.018 U	0.019 U	0.034 U	0.030 U	0.026 U	0.036 U	0.031 U	0.022 U	0.028 U	0.025 U	0.19 U
	9/16/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-11	9/16/2005	Land	25		0.017 U	0.018 U	0.032 U	0.028 U	0.024 U	0.034 U	0.029 U	0.021 U	0.026 U	0.024 U	0.018 U
30-11	9/16/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Land	30		0.023 U	0.025 U	0.044 U	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	30		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	32.5		0.023 U	0.025 U	0.044 U	0.039 U	0.033 U	0.046 U	0.041 U	0.029 U	0.036 U	0.033 U	0.025 U
	9/16/2005	Mobile	5		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-14	9/16/2005	Mobile	8		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
50-14	9/16/2005	Land	30		0.023 U	0.025 U	0.044 U	0.039 U	0.033 U	0.046 U	0.041 U	0.029 U	0.036 U	0.033 U	0.025 U
	9/16/2005	Mobile	30		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

TABLE 2B: SOIL ANALYTICAL SUMMARY - Non-Carcinogenic PAHs

Facility Name:	AA Discount
FDEP Facility ID:	60/8516863

	Sample OVA				Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acenaph- thene	Acenaph- thylene	Anthra-cene	Benzo (g,h,i) perylene	Fluoran- thene	Fluorene	Phenan- threne	Pyrene
					(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SCTL for Lea	achability Based	l on Ground	dwater Criteri	a	1.2	3.1	8.5	2.1	27	2,500	32,000	1,200	160	250	880
SCTL for Dire	ect Exposure Re	esidential			55	200	210	2,400	1,800	21,000	2,500	3,200	2,600	2,200	2,400
Soil Cleanup (mg/kg)	o Target Level fo	or Direct Exp	posure Comn	nercial	300	1800	2100	20,000	20,000	300,000	52,000	59,000	33,000	36,000	45,000
	9/16/2005	Land	8		0.022 U	0.023 U	0.041 U	0.037 U	0.032 U	0.044 U	0.038 U	0.027 U	0.034 U	0.032 U	0.023 U
SB-15	9/16/2005	Mobile	8		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SS-North Wall	3/14/2008		6		0.0095 U	0.016 U	0.0095 U	0.0095 U	0.014 U	0.014 U	0.013 U	0.012 U	0.013 U	0.012 U	0.014 U
SS-South Wall	3/14/2008		6		0.0093 U	0.015 U	0.0093 U	0.0093 U	0.013 U	0.013 U	0.012 U	0.011 U	0.12 U	0.011 U	0.013 U
SS-East Wall	3/14/2008		6		0.011 U	0.018 U	0.011 U	0.011 U	0.015 U	0.015 U	0.014 U	0.013 U	0.014 U	0.013 U	0.015 U
SS-West Wall	3/14/2008		6		0.011 U	0.018 U	0.011 U	0.011 U	0.015 U	0.015 U	0.014 U	0.013 U	0.014 U	0.013 U	0.015 U
SS-Bottom	3/14/2008		12		0.027 U	0.020 U	0.018 U	0.012 U	0.018 U	0.018 U	0.016 U	0.015 U	0.016 U	0.015 U	0.018 U

NOTES: NA = Not Available

NS = Not Sampled

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

Bold indicates analyte is detected above the SCTL.

TABLE 2C: SOIL ANALYTICAL SUMMARY - Carcinogenic PAHs

Facility Name: AA Discount FDEP Facility ID: 60/8516863

	San	nple		OVA	Benzo (a) pyrene	Benzo (a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno (1,2,3- cd) pyrene	Benzo (a) pyrene equivalent
00TL (0		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	achability Bas		iwater Criteria	a	8	0.8	2.4	24	77	0.7	6.6	8
	ect Exposure				0.1	1.3	1.3	13	130	0.1	1.3	0.1
SCIL for Dire	ect Exposure	Commercia	. .		0.7	6.6	6.5	66	640	0.7	6.6	0.7
Boring No. / Well ID No.	Date Collected	Land/ Mobile Lab	Sample Interval (ft bls)	Net OVA Reading (ppm)								
SB-A	7/21/1999		4		0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	
	7/21/1999		16		0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	
SB-B	7/21/1999		18		0.420 U	0.420 U	0.420 U	0.420 U	0.420 U	0.420 U	0.420 U	
	7/21/1999		20		0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	0.400 U	
	9/15/2005	Land	9		0.027 U	0.045 U	0.041 U	0.037 U	0.029 U	0.035 U	0.034 U	
SB-1	9/14/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	
	9/15/2005	Land	30		NS	NS	NS	NS	NS	NS	NS	
	9/14/2005	Land	9		0.026 U	0.045 U	0.040 U	0.037 U	0.029 U	0.034 U	0.033 U	
SB-2	9/14/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	
00-2	9/14/2005	Mobile	18		NS	NS	NS	NS	NS	NS	NS	
	9/14/2005	Mobile	24		NS	NS	NS	NS	NS	NS	NS	
SB-3	9/14/2005	Land	9		0.028 U	0.048 U	0.043 U	0.039 U	0.030 U	0.037 U	0.035 U	
	9/14/2005	Mobile	2		NS	NS	NS	NS	NS	NS	NS	
38-3	9/14/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	
	9/14/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	
SB-4	9/14/2005	Land	9		0.027 U	0.045 U	0.041 U	0.037 U	0.029 U	0.035 U	0.034 U	
30-4	9/14/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	
	9/15/2005	Land	4		0.023 U	0.039 U	0.035 U	0.032 U	0.025 U	0.030 U	0.029 U	
	9/15/2005	Mobile	4		NS	NS	NS	NS	NS	NS	NS	
	9/15/2005	Land	9		0.023 U	0.039 U	0.035 U	0.032 U	0.025 U	0.030 U	0.029 U	
SB-6	9/15/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	
38-0	9/15/2005	Land	25		0.023 U	0.040 U	0.036 U	0.033 U	0.026 U	0.031 U	0.030 U	
	9/15/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	
	9/15/2005	Land	30		0.029 U	0.049 U	0.044 U	0.040 U	0.031 U	0.038 U	0.036 U	
	9/15/2005	Mobile	30		NS	NS	NS	NS	NS	NS	NS	
	9/15/2005	Land	5		0.028 U	0.048 U	0.043 U	0.039 U	0.031 U	0.037 U	0.036 U	
	9/15/2005	Mobile	5		NS	NS	NS	NS	NS	NS	NS	
SB-7	9/15/2005	Land	9		0.026 U	0.044 U	0.039 U	0.036 U	0.028 U	0.034 U	0.032 U	
	9/15/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	
	9/15/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	
	9/15/2005	Land	5		0.027 U	0.046 U	0.042 U	0.038 U	0.030 U	0.036 U	0.035 U	
	9/15/2005	Mobile	5		NS	NS	NS	NS	NS	NS	NS	
SB-8	9/15/2005	Land	9		0.025 U	0.043 U	0.038 U	0.035 U	0.027 U	0.033 U	0.032 U	
58-8	9/15/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	
	9/15/2005	Land	25		0.030 U	0.051 U	0.046 U	0.042 U	0.033 U	0.040 U	0.038 U	
	9/15/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	

TABLE 2C: SOIL ANALYTICAL SUMMARY - Carcinogenic PAHs

Facility Name:AA DiscountFDEP Facility ID:60/8516863

	Sam	iple		OVA	Benzo (a) pyrene	Benzo (a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno (1,2,3- cd) pyrene	Benzo (a) pyrene equivalent
					(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SCTL for Lea	achability Base	ed on Ground	Iwater Criteria	1	8	0.8	2.4	24	77	0.7	6.6	8
	ect Exposure				0.1	1.3	1.3	13	130	0.1	1.3	0.1
SCTL for Dire	ect Exposure	Commercia			0.7	6.6	6.5	66	640	0.7	6.6	0.7
	9/14/2005	Land	9		0.024 U	0.040 U	0.036 U	0.033 U	0.026 U	0.031 U	0.030 U	
SB-9	9/14/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	
	9/14/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	
	9/14/2005	Land	5		0.028 U	0.047 U	0.042 U	0.038 U	0.030 U	0.036 U	0.035 U	
	9/14/2005	Mobile	5		NS	NS	NS	NS	NS	NS	NS	
SB-10	9/14/2005	Land	9		0.026 U	0.044 U	0.039 U	0.036 U	0.028 U	0.034 U	0.032 U	
	9/14/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	
	9/14/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	
	9/16/2005	Mobile	5		NS	NS	NS	NS	NS	NS	NS	
	9/16/2005	Land	9		0.026 U	0.044 U	0.039 U	0.036 U	0.028 U	0.034 U	0.032 U	
	9/16/2005	Mobile	9		NS	NS	NS	NS	NS	NS	NS	
SB-11	9/16/2005	Land	25		0.024 U	0.041 U	0.037 U	0.034 U	0.026 U	0.032 U	0.030 U	
38-11	9/16/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	
	9/16/2005	Land	30		NS	NS	NS	NS	NS	NS	NS	
	9/16/2005	Mobile	30		NS	NS	NS	NS	NS	NS	NS	
	9/16/2005	Mobile	32.5		0.033 U	0.057 U	0.051 U	0.046 U	0.036 U	0.044 U	0.042 U	
	9/16/2005	Mobile	5		NS	NS	NS	NS	NS	NS	NS	
SB-14	9/16/2005	Mobile	8		NS	NS	NS	NS	NS	NS	NS	
38-14	9/16/2005	Land	30		0.033 U	0.057 U	0.051 U	0.046 U	0.036 U	0.044 U	0.042 U	
	9/16/2005	Mobile	30		NS	NS	NS	NS	NS	NS	NS	
	9/16/2005	Land	8		0.032 U	0.053 U	0.048 U	0.044 U	0.034 U	0.041 U	0.040 U	
SB-15	9/16/2005	Mobile	8		NS	NS	NS	NS	NS	NS	NS	
	9/16/2005	Mobile	25		NS	NS	NS	NS	NS	NS	NS	
SS-North Wall	3/14/2008		6		0.0084 U	0.013 U	0.012 U	0.0095 U	0.020 U	0.015 U	0.019 U	
SS-South Wall	3/14/2008		6		0.0082 U	0.012 U	0.011 U	0.0093 U	0.020 U	0.014 U	0.019 U	
SS-East Wall	3/14/2008		6		0.0095 U	0.014 U	0.013 U	0.011 U	0.023 U	0.017 U	0.021 U	
SS-West Wall	3/14/2008		6		0.0095 U	0.015 U	0.013 U	0.011 U	0.023 U	0.017 U	0.021 U	
SS-Bottom	3/14/2008		12		0.018 U	0.016 U	0.015 U	0.012 U	0.026 U	0.019 U	0.024 U	

NOTES: NA = Not Available

NS = Not Sampled

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

Bold indicates analyte is detected above the SCTL.

Facility Name: AA Discount

Address:		Kings H		/						FDEP	Facility	/ ID #:	60/851	6863				
	Center	Hill, Flo	rida															
WELL NO.		MW-5			MW-6			MW-7			MW-8			MW-9			MW-10	
DIAMETER (in)		2			2			2			2			2			2	
WELL DEPTH (ft)		24			24			24			24			24			25	
SCREEN INTERVAL		14-24			14-24			14-24			14-24			14-24			10-25	
TOC ELEVATION (ft)		94.93			95.86			95.55			94.16			93.99			93.7	
_																		
DATE	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF
5/31/1994	76.51	18.42		76.44	19.42		76.51	19.04		76.52	17.64		76.61	17.38			NS	
8/5/1994	79.03	15.90	2.52	78.96	16.90	2.52	78.85	16.70	2.34	79.52	14.64	3.00	80.29	13.7	3.68	79.46	14.24	
9/14/1994	80.99	13.94	1.96	81.26	14.60	2.30	80.92	14.63	2.07	81.46	12.70	1.94	81.61	12.38	1.32	81.52	12.18	2.06
7/28/1999	76.78	18.15	-4.21	76.83	19.03	-4.43	76.74	18.81	-4.18	76.91	17.25	-4.55	76.89	17.1	-4.72	75.92	17.78	-5.60
1/19/2000	77.17	17.76	0.39	77.23	18.63	0.40	77.17	18.38	0.43	77.26	16.90	0.35	77.15	16.84	0.26	77.3	16.4	1.38
7/14/2000	72.86	22.07	-4.31	72.81	23.05	-4.42	72.79	22.76	-4.38	73.16	21.00	-4.10	73.37	20.62	-3.78	73.1	20.6	-4.20
10/11/2001	81.99	12.94	9.13	82.52	13.34	9.71	81.67	13.88	8.88	82.27	11.89	9.11	81.98	12.01	8.61	82.58	11.12	9.48
11/27/2001	79.63	15.30	-2.36		NS			NS		79.66	14.50	-2.61	79.59	14.4	-2.39		NS	
2/13/2003	82.01	12.92	2.38	81.96	13.90		81.84	13.71		82.20	11.96	2.54	82.2	11.79	2.61	82.26	11.44	
8/25/2003	86.21	8.72	4.20	87.09	8.77	5.13	86.33	9.22	4.49	86.09	8.07	3.89	85.87	8.12	3.67	86.04	7.66	3.78
2/20/2004	81.25	13.68	-4.96	81.36	14.50	-5.73	81.24	14.31	-5.09	81.29	12.87	-4.80	81.27	12.72	-4.60	81.34	12.36	-4.70
12/22/2004	81.94	12.99	0.69	82.17	13.69	0.81	81.38	14.17	0.14	81.89	12.27	0.60	81.84	12.15	0.57	81.97	11.73	0.63
9/16/2005	85.53	9.40	3.59		NS		85.55	10.00	4.17	85.61	8.55	3.72	85.29	8.70	3.45	85.95	7.75	3.98
3/6/2006	83.13	11.80	-2.40	84.41	11.45		83.06	12.49	-2.49	83.05	11.11	-2.56	82.94	11.05	-2.35	83.10	10.60	-2.85
2/7/2007	76.42	18.51	-6.71	76.44	19.42	-7.97	76.38	19.17	-6.68	77.49	16.67	-5.56	76.57	17.42	-6.37	76.52	17.18	-6.58
6/9/2010		NS			NS			NS			NS			NS			NS	
10/11/2010		NS			NS			NS			NS			NS			NS	
12/13/2010		NS			NS			NS			NS			NS			NS	
5/11/2011		NS			NS			NS			NS		73.94	20.05			NS	
11/14/2011		NS			NS			NS			NS		72.19	21.80	-1.75		NS	
2/28/2012		NS			NS			NS			NS		70.67	23.32	-1.52		NS	
7/20/2012		NS			NS			NS			NS		73.38	20.61	2.71		NS	
10/24/2012	A	bandone	d	A	bandone	d	A	bandone	d	A	bandone	d	78.00	15.99	4.62	A	bandone	:d
3/14/2013													73.90	20.09	-4.10			
3/26/2013													73.60	20.39	-0.30			
7/9/2013													73.44	20.55	-0.16			
6/23/2017													70.20	23.79				
				-												-		

FDEP Facility ID #: 60/8516863

Facility Name: AA Discount

181 W Kings Highway

Address:

City, State:	Center	Hill, Flo	rida															
WELL NO.		MW-11D			MW-12			MW-13			MW-14			MW-15			MW-16	
DIAMETER (in)		2			2			2			2			2			2	
WELL DEPTH (ft)		42			25			25			25			25			28	
SCREEN INTERVAL (37-42			10-25			10-25			10-25			10-25			13-28	
TOC ELEVATION (ft)		94.69			93.53			95.36			96.57			95.00			98.02	
										-						-		
DATE	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF
5/31/1994		NS			NS													
8/5/1994	78.65	16.04		79.83	13.7		78.96	16.4		79.35	17.22		79.24	15.76		79.52	18.5	
9/14/1994	80.06	14.63	1.41	81.54	11.99	1.71	80.89	14.47	1.93	81.61	14.96	2.26	81.38	13.62	2.14	81.85	16.17	2.33
7/28/1999	77.76	16.93	-2.30	76.9	16.63	-4.64	76.7	18.66	-4.19	76.92	19.65	-4.69	76.98	18.02	-4.40	76.93	21.09	-4.92
1/19/2000	77.11	17.58	-0.65	77.23	16.3	0.33	77.11	18.25	0.41	77.34	19.23	0.42	77.37	17.63	0.39	77.34	20.68	0.41
7/14/2000	74.42	20.27	-2.69	73.17	20.36	-4.06	72.73	22.63	-4.38	72.93	23.64	-4.41	73.3	21.7	-4.07	72.92	25.1	-4.42
10/11/2001	78.26	16.43	3.84	82.18	11.35	9.01	81.62	13.74	8.89	83.26	13.31	10.33	82.77	12.23	9.47	83.57	14.45	10.65
11/27/2001		NS		79.63	13.9	-2.55	79.53	15.83	-2.09				79.87	15.13	-2.90			
2/13/2003	80.29	14.4		82.21	11.32	2.58	81.86	13.5	2.33	82.35	14.22		82.25	12.75	2.38	82.5	15.52	
8/25/2003	81.74	12.95	1.45	85.96	7.57	3.75	86.25	9.11	4.39	87.62	8.95	5.27	86.33	8.67	4.08	88.07	9.95	5.57
2/20/2004	82.35	12.34	0.61	81.28	12.25	-4.68	81.18	14.18	-5.07	81.46	15.11	-6.16	81.36	13.64	-4.97	81.45	16.57	-6.62
12/22/2004	78.44	16.25		81.84	11.69	0.56	81.20	14.16	0.02	83.32	13.25	1.86	82.07	12.93	0.71	82.86	15.16	1.41
9/16/2005		NS		85.43	8.10	3.59		NS			NS		85.90	9.10	3.83		NS	
3/6/2006		NS		82.97	10.56	-2.46	83.00	12.36		83.49	13.08		83.23	11.77	-2.67	83.52	14.5	
2/7/2007	80.21	14.48		76.55	16.98	-6.42	76.34	19.02	-6.66	76.55	20.02	-6.94	76.55	18.45	-6.68			
6/9/2010		NS		77.66	15.87	1.11	77.24	18.12	0.90		NS		77.48	17.52	0.93	77.89	20.13	
10/11/2010		NS		75.27	18.26	-2.39	75.36	20	-1.88		NS		75.20	19.8	-2.28			
12/13/2010		NS		73.28	20.25	-1.99	73.30	22.06	-2.06		NS		73.80	21.2	-1.40			
5/11/2011		NS			NS			NS			NS			NS		74.28	23.74	
11/14/2011		NS			NS			NS			NS			NS		72.52	25.50	-1.76
2/28/2012		NS			NS			NS			NS			NS		69.06	28.96	-3.46
7/20/2012		NS		72.84	20.69		72.16	23.20	-1.14		NS			NS		72.87	25.15	3.81
10/24/2012	A	Abandone	d		NS			NS		A	bandone	d		NS		78.13	19.89	5.26
3/14/2013				72.28	21.25	-0.56	71.91	23.45	-0.25									
3/26/2013				73.64	19.89	1.36	73.60	21.76	1.69				73.54	21.46		74.08	23.94	
7/9/2013																73.02	25.00	-1.06
1/8/2014													72.42	22.58	-1.12			
8/20/2014																		
2/14/2018				69.50	24.03													

Facility Name: AA Discount

Address:	181 W	Kings H	Highway	,						FDEP	Facility	' ID #:	60/851	6863				
City, State:	Center	Hill, Flo	rida															
WELL NO.		MW-17			MW-18			MW-19			CW-1			CW-2			CW-3	
DIAMETER (in)		2			2			2			2			2			2	
WELL DEPTH (ft)		25			25			25			8.2			7.2			7.4	
SCREEN INTERVAL		10-25			10-25			10-25			1.1-8.2			1.5-7.2			1.1-7.4	
TOC ELEVATION (ft)		93.93			97.03			95.62										
										-			_			-		
DATE	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF
5/31/1994											DRY			Dry			Dry	
8/5/1994	78.39	15.54		81.58	15.45						DRY			Dry			Dry	
9/14/1994	82.17	11.76	3.78	76.9	20.13	-4.68					DRY			Dry			Dry	
7/28/1999	77.59	16.34	-4.58	77.31	19.72	0.41	76.92	18.7			DRY			Dry			Dry	
1/19/2000	77.81	16.12	0.22	72.9	24.13	-4.41	77.37	18.25	0.45	A	bandone	d		Dry			Dry	
7/14/2000	73.87	20.06	-3.94	72.9	24.13	0.00	73.16	22.46	-4.21					Dry		A	bandone	ed
10/11/2001	81.62	12.31	7.75	82.98	14.05	10.08	82.86	12.76	9.70					Dry				
11/27/2001	80.18	13.75	-1.44											Dry				
2/13/2003	82.88	11.05	2.70	81.33	15.7		82.22	13.4						Dry				
8/25/2003	86.55	7.38	3.67	87.6	9.43	6.27	86.5	9.12	4.28					Dry				
2/20/2004	81.93	12.00	-4.62	81.42	15.61	-6.18	81.36	14.26	-5.14					NS				
12/22/2004	81.80	12.13	-0.13	83.34	13.69	1.92	81.79	13.83	0.43									
9/16/2005	85.83	8.10	4.03															
3/6/2006	83.63	10.3	-2.20	83.43	13.6		83.22	12.4										
6/9/2010	78.27	15.66	-5.36		NS			NS										
10/11/2010	76.04	17.89	-2.23		NS			NS										
12/13/2010	73.95	19.98	-2.09		NS			NS										
5/11/2011	74.62	19.31	0.67		NS			NS										
11/14/2011	52.83	21.1	-21.79		NS			NS										
2/28/2012	51.43	22.5	-1.40		NS			NS										
7/20/2012	73.68	20.25	22.25		NS			NS										
10/24/2012	58.19	15.74	-15.49	A	Abandone	d	A	Abandone	ed									
3/26/2013	74.50	19.43	16.31															
7/9/2013	73.95	19.98	-0.55															
1/8/2014	NS	NS	NS															
8/20/2014	NS	NS	NS															

Facility Name:	AA Disc	count																
Address:	181 W	Kings H	Highway	/						FDEP	Facility	/ ID #:	60/851	6863				
City, State:	Center										-							
WELL NO.		CW-4			MW-5R			MW-6R			MW-8R			MW-5I			MW-8I	
DIAMETER (in)		2			2			2			2			1			2	
WELL DEPTH (ft)		7.9			24			24			24			25			30	
SCREEN INTERVAL (1.2-7.9			14-24			14-24			14-24			25-40			20-30	
TOC ELEVATION (ft)					95.44			96.16			94.81			95.39			94.78	
																		ð
DATE	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF
5/31/1994		Dry																
8/5/1994		Dry																
9/14/1994		Dry																
7/28/1999		Dry																
1/19/2000		Dry																
7/14/2000		Dry																
10/11/2001		Dry																
11/27/2001		Dry		72.14	23.30	-1.88	72.26	23.90	-1.73	72.51	22.30	-1.75						
2/13/2003		Dry		72.43	23.01	0.29	72.01	24.15	-0.25	71.26	23.55	-1.25						
8/25/2003		Dry																
2/20/2004		NS																
6/9/2010				77.37	18.07		75.47	20.69		77.62	17.19							
10/11/2010				75.47	19.97	-1.90	75.57	20.59	0.10	75.60	19.21	-2.02						
12/13/2010				72.80	22.64	-2.67	73.44	22.72	-2.13	73.63	21.18	-1.97						
5/11/2011				74.02	21.42	1.22	73.99	22.17	0.55	74.26	20.55	0.63						
7/20/2012		NS		72.45	22.99	0.02		Dry		72.08	22.73	0.82	71.79	23.60		72.19	22.59	
10/24/2012				77.64	17.80	5.19	77.68	18.48		77.89	16.92	5.81	77.15	18.24	5.36	78.14	16.64	5.95
3/14/2013							72.06	24.10	-5.62									
3/26/2013				74.08	21.36		73.68	22.48	1.62	73.90	20.91		73.37	22.02		74.08	20.70	
7/9/2013				72.94	22.50	-1.14	72.81	23.35	-0.87	73.20	21.61	-0.70	72.41	22.98	-0.96	73.32	21.46	-0.76
1/8/2014				72.63	22.81	-0.31				72.81	22.00	-0.39	72.18	23.21	-0.23	72.91	21.87	-0.41
8/20/2014				74.82	20.62	2.19				75.14	19.67	2.33	74.23	21.16	2.05	75.32	19.46	2.41
12/8/2015					Dry						Dry		67.71	27.68	-6.52	69.65	25.13	-5.67
6/7/2016					-					70.59	24.22		67.81	27.58	0.10	69.29	25.49	-0.36
12/13/2016													67.71	27.68	-0.10	68.98	25.80	-0.31
6/23/2017					dry						dry		64.90	30.49	-2.81	66.74	28.04	-2.24
2/14/2018				71.29	24.15					70.82	23.99					69.95	24.83	3.21

Facility Name: AA Discount

Address: 181 W Kings Highway FDEP Facility ID #: 60/8516863

Center Hill, Florida City, State:

2 40 25 - 40 94.93 DTW 21.45 22.40	DIFF -0.95	ELEV 75.36	2 55 50-55 95.59 DTW 20.23	DIFF	ELEV	2 40 25-40 96.44 DTW 23.90	DIFF	ELEV	2 40 25-40 94.19 DTW	DIFF	ELEV	2 35 20-35 DTW	DIFF	ELEV	2 35 25-35 DTW	DIFF
25 - 40 94.93 DTW 21.45 22.40		75.36	50-55 95.59 DTW	DIFF		25-40 96.44 DTW	DIFF		25-40 94.19 DTW	DIFF	ELEV	20-35	DIFF	ELEV	25-35	DIFF
94.93 DTW 21.45 22.40		75.36	95.59 DTW	DIFF		96.44 DTW	DIFF		94.19 DTW	DIFF	ELEV		DIFF	ELEV		DIFF
DTW 21.45 22.40		75.36	DTW	DIFF		DTW	DIFF		DTW	DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF
21.45 22.40		75.36		DIFF			DIFF			DIFF	ELEV	DTW	DIFF	ELEV	DTW	DIFF
21.45 22.40		75.36														
	-0.95		20.23		72.54	23.90										-
						20.00		72.89	21.30							
		72.34	23.25	-3.02	72.30	24.14	-0.24	72.58	21.61	-0.31						
20.56																
26.96	-6.40	NS	NS	NS	67.98	28.46		NS	NS	NS						
26.89	0.07		NS		68.03	28.41	0.05		NS							
27.40	-0.51				66.63	29.81	-1.40									
39.75	-12.35	65.16	30.43		65.13	31.31	-1.50	65.40	28.79							
												24.42			24.59	
	26.89 27.40	26.89 0.07 27.40 -0.51	26.89 0.07 27.40 -0.51	26.89 0.07 NS 27.40 -0.51	26.89 0.07 NS 27.40 -0.51	26.89 0.07 NS 68.03 27.40 -0.51 66.63	26.89 0.07 NS 68.03 28.41 27.40 -0.51 66.63 29.81	26.89 0.07 NS 68.03 28.41 0.05 27.40 -0.51 66.63 29.81 -1.40	26.89 0.07 NS 68.03 28.41 0.05 27.40 -0.51 66.63 29.81 -1.40	26.89 0.07 NS 68.03 28.41 0.05 NS 27.40 -0.51 66.63 29.81 -1.40 -1.40	26.89 0.07 NS 68.03 28.41 0.05 NS 27.40 -0.51 66.63 29.81 -1.40	26.89 0.07 NS 68.03 28.41 0.05 NS 27.40 -0.51 66.63 29.81 -1.40	26.89 0.07 NS 68.03 28.41 0.05 NS 27.40 -0.51 66.63 29.81 -1.40 39.75 -12.35 65.16 30.43 65.13 31.31 -1.50 65.40 28.79	26.89 0.07 NS 68.03 28.41 0.05 NS 27.40 -0.51 66.63 29.81 -1.40 39.75 -12.35 65.16 30.43 65.13 31.31 -1.50 65.40 28.79	26.89 0.07 NS 68.03 28.41 0.05 NS 27.40 -0.51 66.63 29.81 -1.40	26.89 0.07 NS 68.03 28.41 0.05 NS 0.07 0.07 NS 0.07 0.05 NS 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.05 NS 0.05 0.05 NS 0.05

Notes:

Measurement Units in Feet

FP indicates free product

TOC indicates Top of Casing

Blank cell indicates no data found

Elev indicates elevation

DTW indicates depth to water

NS indicates well not sampled

NA indicates FP not observed in well

Facility Name: AA Discount

Sam	ple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDB	1,2-Di- chloroethane	Total Arsenic	Total Cadmium	Total Chromium	Total Lead	TRPHs
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GCT	۲Ls	1**	40**	30**	20**	20	0.02**	3**	10**	5**	100**	15**	5,000
NAC)Cs	100	400	300	200	200	2	300	100	50	1,000	150	50,000
Location	Date												
	5/31/1994	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
CW-1	8/5/1994	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
CW-1	9/14/1994	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
	Abandoned												NA
	5/31/1994	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
CW-2	8/5/1994	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
011-2	9/14/2003	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
	Abandoned												NA
	5/31/1994	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
CW-3	8/5/1994	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
011-3	9/14/2003	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
	Abandoned												NA
	5/31/1994	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
CW-4	8/5/1994	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
CW-4	9/14/1994	DRY	DRY	DRY	DRY	DRY	NS	NS	NS	NS	NS	NS	NA
	Abandoned												NA
MW-5/5R	5/31/1994	5900	20000	2600	14000	1600	0.01 U	10 U	NS	NS	NS	5 U	
MW-25 *	5/31/1994	6100	20000	2800	15000	1500	0.01 U	10 U	NS	NS	NS	5 U	NA
	8/5/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NA
	10/13/1994	3920	14900	1750	9390	1410	NS	NS	NS	NS	NS	NS	NA
MW-55 *	10/13/1994	3380	13000	1450	7960	1360	NS	NS	NS	NS	NS	NS	NA
	7/28/1999	2100	580	760	1000	520	0.010 U	50 U	NS	NS	NS	140	4200
	1/19/2000	2400	74	720	509	820	NA	NA	NA	NA	NA	NA	NA
	1/19/2000	2100	38	650	392	730	NA	NA	NA	NA	NA	NA	NA
	7/14/2000	1900	890	1400	1870	580	NA	NA	NA	NA	NA	NA	NA
	7/14/2000	1900	800	1300	1860	600	NA	NA	NA	NA	NA	NA	NA
	10/11/2001	3200	7400	1800	7400	920	NA	NA	NA	NA	NA	NA	NA
	11/27/2001	2800	6400	1600	7000	780	NA	NA	NA	NA	NA	NA	NA
	2/13/2003	2200	4200	870	3700	520	NA	NA	NA	NA	NA	NA	NA
	8/25/2003	956	164	164	2026	299	NA	NA	NA	NA	NA	NA	NA
	2/20/2004	990	550	410	1200	350	NA	NA	NA	NA	NA	NA	NA
	12/22/2004	750	140	300	900	160	NA	NA	NA	NA	NA	NA	NA
	9/16/2005	310	27V	44	280	60	NA	NA	NA	NA	NA	NA	NA
	2/7/2007	540	1100	300 V	1230	130	NA	NA	NA	NA	NA	NA	NA
MW-5R	6/9/2010	350	190	120	220	75	NA	NA	NA	NA	NA	NA	NA
	10/11/2010	340	170	180	210	70	NA	NA	NA	NA	NA	NA	NA
	12/13/2010	100	1.4	40	4.6	53	NA	NA	NA	NA	NA	NA	NA
	5/14/2011	659	513	510	839	125	NA	NA	NA	NA	NA	NA	3300
	11/14/2011	162	2.3	67.8	6.3	53.9	NA	NA	NA	NA	NA	3.7 U	1600 V
	7/20/2012	145	3.4	47.4	10	52.3	NA	NA	NA	NA	NA	NA	NA
	10/24/2012	59.4	0.21 I	0.22 U	4.7	16.7	NA	NA	NA	NA	NA	NA	NA
	3/26/2013	31.5	0.14 I	0.22 U	0.5 U	13.2	NS	NS	NS	NS	NS	NS	NS
	7/9/2013	7	0.14 U	0.22 U	0.5 U	5.8	NS	NS	NS	NS	NS	NS	NS
	1/8/2014	11.3	0.14 U	0.22 U	0.5 U	6.6	NS	NS	NS	NS	NS	NS	NS
	8/20/2014	0.17 U	0.14 U	0.22 U	0.5 U	1.8	NS	NS	NS	NS	NS	NS	NS
	12/8/2015							DRY					
	6/23/2017							DRY					

Facility Name: AA Discount

Sam	ple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	EDB	1,2-Di- chloroethane	Total Arsenic	Total Cadmium	Total Chromium	Total Lead	TRPHs
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GC1	-	1**	40**	30**	20**	20	0.02**	3**	10**	5**	100**	15**	5,000
NAD	-	100	400	300	200	200	2	300	100	50	1,000	150	50,000
Location	Date												
	7/20/2012	20.6	1.7	9.7	5.8	64.6	NA	NA	NA	NA	NA	NA	810
	10/24/2012	200	8.3	170	29.6	73.8	NA	NA	NA	NA	NA	NA	NA
	7/9/2013	533	193	530	572	112	NS	NS	NS	NS	NS	NS	NS
	1/8/2014	146	0.5 I	113	2.8	71.9	NS	NS	NS	NS	NS	NS	NS
MW-5I	8/20/2014	26.8	0.65 I	9.8	0.66 I	64	NS	NS	NS	NS	NS	NS	NS
14144-51	12/8/2015	9.37	0.400U	0.400U	0.800U	70.6	NS	NS	NS	NS	NS	NS	NS
	6/7/2016	0.67 I	0.45 U	0.26 U	1.3 U	53	NS	NS	NS	NS	NS	NS	NS
	12/13/2016	0.680 i	0.400 U	0.750 i	0.800 U	41.1	NS	NS	NS	NS	NS	NS	NS
	6/23/2017	0.400 U	0.400 U	0.400 U	0.800 U	32.6	NS	NS	NS	NS	NS	NS	NS
	5/31/1994	1.2	BDL	BDL	BDL	BDL	0.01 U	1 U	NS	NS	NS	9	NA
	8/5/1994	63.4	BDL	BDL	2.9	BDL	NS	NS	NS	NS	NS	NS	NA
	10/13/1994	98.7	BDL	BDL	2.4	BDL	NS	NS	NS	NS	NS	NS	NA
	7/28/1999	<0.5	<0.5	<0.5	BDL	<0.5	NA	NA	NA	NA	NA	NA	NA
	2/13/2003	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	NA	NA	NA
	2/7/2007	3.9	6.8	1.2 V	3.7	0.20 U	NA	NA	NA	NA	NA	NA	NA
	6/9/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.20 U	NA	NA	NA	NA	NA	NA	NA
MW-6/6R	10/11/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.20 U	NA	NA	NA	NA	NA	NA	NA
	12/13/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.20 U	NA	NA	NA	NA	NA	NA	NA
	5/11/2011	0.17 U	0.14 U	0.22 U	0.28 U	0.5 U	NA	NA	NA	NA	NA	NA	260 U
	11/14/2011	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	620 V
	10/24/2012	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA
	3/26/2013	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
	7/9/2013	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
	5/31/1994	3.1	1	2.8	3.6	BDL	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	32.9	10.1	6.6	15.7	25.1	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	<.5	<.5	<.5	BDL	<.5	NA	NA	NA	NA	NA	NA	NS
	2/13/2003	51	8.4	21	16	42	NA	NA	NA	NA	NA	NA	NS
MW-7	8/25/2003	<1.0	<1.0	<1.0	<1.0	6	NA	NA	NA	NA	NA	NA	NS
IVI V V - 7	2/20/2004	<1.0	<1.0	<1.0	<1.0	2.6	NA	NA	NA	NA	NA	NA	NS
	12/22/2004	13	4.5	18	50	<1	NA	NA	NA	NA	NA	NA	NS
	9/16/2005	2.9	2.5V	1.1	6.2	<0.46U	NA	NA	NA	NA	NA	NA	NS
	2/7/2007	1.5	3.3	0.77 IV	2.25 I	.40 I	NA	NA	NA	NA	NA	NA	NS

Facility Name: AA Discount

Sam	ple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDB	1,2-Di- chloroethane	Total Arsenic	Total Cadmium	Total Chromium	Total Lead	TRPHs
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GC	ΓLs	1**	40**	30**	20**	20	0.02**	3**	10**	5**	100**	15**	5,000
NAD	DCs	100	400	300	200	200	2	300	100	50	1,000	150	50,000
Location	Date												
	5/31/1994	4100	19440	2740	11640	500	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	3000	16700	2070	11200	601	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	170	8.9	19	34.6	150	NA	NA	NA	NA	NA	NA	NS
	1/19/2000	86	8.7	12	20	88	NA	NA	NA	NA	NA	NA	NS
	7/14/2000	280	30	55	101	180	NA	NA	NA	NA	NA	NA	NS
	10/11/2001	510	1100	630	2310	180	NA	NA	NA	NA	NA	NA	NS
	11/27/2001	250	14	53	430	130	NA	NA	NA	NA	NA	NA	NS
	2/13/2003	210	530	250	960	71	NA	NA	NA	NA	NA	NA	NS
	8/25/2003	281	731	149	672	59.4	NA	NA	NA	NA	NA	NA	NS
	2/20/2004	640	1300	670	2500	190	NA	NA	NA	NA	NA	NA	NS
	12/22/2004	360	840	340	1260	35	NA	NA	NA	NA	NA	NA	NS
	9/16/2005	24	62V	20	88	2.6	NA	NA	NA	NA	NA	NA	NS
	2/7/2007	5.5	2.1	0.66 IV	1.97 I	1.5	NA	NA	NA	NA	NA	NA	NS
MW-8/8R	3/13/2008	820	550	680	2000	92	NA	NA	NA	NA	NA	NA	NS
	6/9/2010	53	3.9	46	55	3.9	NA	NA	NA	NA	NA	NA	NS
	10/11/2010	79	1.4	58	42	12.0	NA	NA	NA	NA	NA	NA	NS
	12/13/2010	49	0.45 l	15	3.4	10	NA	NA	NA	NA	NA	NA	NS
	5/11/2011	30.9	2.6	40	21.6	5.0	NA	NA	NA	NA	NA	NA	850
	11/14/2011	133	3.6	192	110	20.4	NA	NA	NA	NA	NA	NA	1700 V
	7/20/2012	240	57.4	327	425	141	NA	NA	NA	NA	NA	NA	NA
	10/24/2012	69.9	0.66 I	15.7	7.4	6.7	NA	NA	NA	NA	NA	NA	NA
	3/26/2013	60.7	0.48 I	76.6	20.4	0.5 U	NS	NS	NS	NS	NS	NS	NS
	7/9/2013	21.7	0.51 l	37.6	9.4	0.5 U	NS	NS	NS	NS	NS	NS	NS
	1/8/2014	34.6	0.65 I	32.3	9.2	0.5 U	NS	NS	NS	NS	NS	NS	NS
	8/20/2014	23.7	47.6	36.8	61	2.4	NS	NS	NS	NS	NS	NS	NS
	12/8/2015							DRY					
	6/23/2017							DRY					
	7/20/2012	4.8	1.4	3.8	6.7	2.9	NA	NA	NA	NA	NA	NA	890
	10/24/2012	4.4	0.15 I	0.22 U	0.5 U	2.7	NA	NA	NA	NA	NA	NA	NA
	7/9/2013	59.4	0.19 I	9.4	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
	1/8/2014	68.3	0.14 U	15	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
MW-81	8/20/2014	31	0.28 I	12.9	0.5 U	1.2	NS	NS	NS	NS	NS	NS	NS
	12/8/2015	125	1.07	123	14.6	5.05	NS	NS	NS	NS	NS	NS	NS
	6/7/2016	110	2.2 U	160	21	5.2	NS	NS	NS	NS	NS	NS	NS
	12/13/2016	94.7	0.510 i	141	32.5	6.22	NS	NS	NS	NS	NS	NS	NS
	6/23/2017	5.05	0.400 U	0.830 I	0.800 U	3.86	NS	NS	NS	NS	NS	NS	NS

Facility Name: AA Discount

Sam	ple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	EDB	1,2-Di- chloroethane	Total Arsenic	Total Cadmium	Total Chromium	Total Lead	TRPHs
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GCT	Ls	1**	40**	30**	20**	20	0.02**	3**	10**	5**	100**	15**	5,000
NAD	Cs	100	400	300	200	200	2	300	100	50	1,000	150	50,000
Location	Date												
	5/31/1994	BDL	BDL	BDL	BDL	BDL	0.01 U	1 U	NS	NS	NS	10	NS
	10/13/1994	BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	<0.5	<0.5	<0.5	BDL	<0.5	NA	NA	NA	NA	NA	NA	NS
	10/11/2001	<1.0	<1.0	<1.0	BDL	<1.0	NA	NA	NA	NA	NA	NA	NS
	11/27/2001	<1.0	<1.0	<1.0	BDL	<1.0	NA	NA	NA	NA	NA	NA	NS
	9/16/2005	0.371	.70IV	.401	1.711	<0.46U	NA	NA	NA	NA	NA	NA	NS
MW-9	2/7/2007	0.88 U	1.4	0.48 IV	1.42 I	0.46 I	NA	NA	NA	NA	NA	NA	NS
10100-5	5/11/2011	6.8	2.0	17.6	6.1	0.50 U	NA	NA	NA	NA	NA	NA	NS
	11/14/2011	0.17 U	0.14 U	0.22 U	0.5 U	0.50 U	NA	NA	NA	NA	NA	NA	NS
	7/20/2012	0.17 U	0.14 U	0.22 U	0.5 U	0.50 U	NA	NA	NA	NA	NA	NA	NS
	10/24/2012	0.17 U	0.14 U	0.22 U	0.5 U	0.50 U	NA	NA	NA	NA	NA	NA	NS
	3/26/2013	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
	7/9/2013	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
	7/6/1994	BDL	1	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	5	BDL	BDL	1.7	40.5	NS	NS	NS	NS	NS	NS	NS
	10/24/1994	4.2	BDL	BDL	3.9	29.7	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	<.5	<.5	<.5	BDL	<.5	NA	NA	NA	NA	NA	NA	NS
	2/13/2003	9.2	35	11	45	<1.0	NA	NA	NA	NA	NA	NA	NS
MW-10	8/25/2003	3.3	1.2	2.4	19.8	BDL	NA	NA	NA	NA	NA	NA	NS
	2/20/2004	1.2	1.6	1.4	4.6	<1.0	NA	NA	NA	NA	NA	NA	NS
	12/22/2004	3.8	17	13	43	<1	NA	NA	NA	NA	NA	NA	NS
	9/16/2005	<0.32U	1.1V	0.611	3.21	<0.46U	NA	NA	NA	NA	NA	NA	NS
	2/7/2007	0.88 U	0.71 I	0.43 U	1.27 U	0.20 U	NA	NA	NA	NA	NA	NA	NS
MW-11D	7/6/1994	BDL	BDL	BDL	BDL	BDL	0.01 U	1 U	NS	NS	NS	12	NS
MW-41 *	7/6/1994	1 U	1 U	1 U	1 U	1 U	0.01 U	1 U	NS	NS	NS	5 U	NS
	10/13/1994	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	0.88 U	5.9	0.94 IV	4.6	19	NA	NA	NA	NA	NA	NA	NS
	3/13/2008	0.88 U	0.44 U	0.43 U	1.3 U	17	NA	NA	NA	NA	NA	NA	NS
	7/6/1994	40.6	98	52.4	359	1.2	0.01 U	1 U	NS	NS	NS	5 U	NS
	10/13/1994	66	185	89	645	21	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	330	<10	140	BDL	120	NA	NA	NA	NA	NA	NA	NS
	1/19/2000	120	<0.5	21	1.12	59	NA	NA	NA	NA	NA	NA	NS
	7/14/2000	78	1	2.2	BDL	50	NA	NA	NA	NA	NA	NA	NS
	10/11/2001	220	360	120	790	61	NA	NA	NA	NA	NA	NA	NS
	11/27/2001	150	1.4	64	23	37	NA	NA	NA	NA	NA	NA	NS
1041 10	2/13/2003	160	89	42	130	28	NA	NA	NA	NA	NA	NA	NS
MW-12	8/25/2003	320	145	234	277	52.3	NA	NA	NA	NA	NA	NA	NS
	2/20/2004	170	8.5	130	34	51	NA	NA	NA	NA	NA	NA	NS
	12/22/2004	290	93	420	280	22	NA	NA	NA	NA	NA	NA	NS
	9/16/2005	33	19V	43	51	2.7	NA	NA	NA	NA	NA	NA	NS
	2/7/2007	14	1.7	0.45 IV	4.5	21	NA	NA	NA	NA	NA	NA	NS
	6/9/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.20 U	NA	NA	NA	NA	NA	NA	NS
	10/11/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.23 1	NA	NA	NA	NA	NA	NA	NS
	12/13/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.86	NA	NA	NA	NA	NA	NA	NS

Facility Name: AA Discount

Sam	ple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	EDB	1,2-Di- chloroethane	Total Arsenic	Total Cadmium	Total Chromium	Total Lead	TRPHs
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GCT	「Ls	1**	40**	30**	20**	20	0.02**	3**	10**	5**	100**	15**	5,000
NAD)Cs	100	400	300	200	200	2	300	100	50	1,000	150	50,000
Location	Date												
	7/6/1994	BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	1.5	1.1	BDL	1	17.7	NS	NS	NS	NS	NS	NS	NS
	10/24/1994	BDL	BDL	BDL	BDL	8.1	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	<0.5	<0.5	<0.5	BDL	<0.5	NA	NA	NA	NA	NA	NA	NS
	1/19/2000	6.8	<0.5	<0.5	BDL	7.3	NA	NA	NA	NA	NA	NA	NS
	7/14/2000	<1.0	<1.0	<1.0	BDL	3.7	NA	NA	NA	NA	NA	NA	NS
MW-13	10/11/2001	<1.0	<1.0	<1.0	BDL	<1.0	NA	NA	NA	NA	NA	NA	NS
	11/27/2001	<1.0	<1.0	<1.0	BDL	<1.0	NA	NA	NA	NA	NA	NA	NS
	2/7/2007	0.88 U	0.44 U	0.43 U	1.27	0.27 l	NA	NA	NA	NA	NA	NA	NS
	6/9/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.20 U	NA	NA	NA	NA	NA	NA	NS
	10/11/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.28 I	NA	NA	NA	NA	NA	NA	NS
	12/13/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.61 I	NA	NA	NA	NA	NA	NA	NS
	7/6/1994	192	BDL	BDL	3.7	4.6	0.01 U	1 U	NS	NS	NS	8	NS
	10/13/1994	67.2	BDL	BDL	1.6	4.4	NS	NS	NS	NS	NS	NS	NS
MW-14	7/14/2000	<0.5	<0.5	<0.5	BDL	<0.5	NA	NA	NA	NA	NA	NA	NS
	10/11/2001	NS	NS	NS	NS	NS	NA	NA	NA	NA	NA	NA	NS
	2/7/2007	0.88 U	0.44 U	0.43 U	1.27 U	0.20 U	NA	NA	NA	NA	NA	NA	NS
	7/6/1994	BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	31.2	BDL	BDL	1.1	BDL	NS	NS	NS	NS	NS	NS	NS
	10/24/1994 7/14/1999	10.8	BDL	BDL <0.5	11.9 BDL	4.6 39	NS	NS NA	NS NA	NS NA	NS NA	NS NA	NS NS
	11/27/2001	25	<0.5		BDL		NA	NA	NA				NS
	2/13/2003	<1.0 4.5	<1.0 20	<1.0 7.4	32	<1.0 1.1	NA NA	NA	NA	NA NA	NA NA	NA NA	NS NS
	8/25/2003	4.5	3.5	1.5	5.2	2.4	NA	NA	NA	NA	NA	NA	NS
	2/20/2004	2.7	2.0	1.3	22	1.4	NA	NA	NA	NA	NA	NA	NS
MW-15	12/22/2004	<1	<1	<1	<1	1.4	NA	NA	NA	NA	NA	NA	NS
	9/16/2005	2.9	7.8V	1.6	8.8	0.811	NA	NA	NA	NA	NA	NA	NS
	2/7/2007	2.5	0.62 1	0.43 U	1.27 U	12	NA	NA	NA	NA	NA	NA	NS
	6/9/2010	0.88 U	0.44 U	0.43 U	1.27 U	0.20 U	NA	NA	NA	NA	NA	NA	NS
	10/11/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.20 U	NA	NA	NA	NA	NA	NA	NS
	12/13/2010	0.96 I	0.44 U	0.43 U	1.3 U	1.3	NA	NA	NA	NA	NA	NA	NS
	1/8/2014	0.17 U	0.14 U	0.22 U	0.5 U	1.1	NS	NS	NS	NS	NS	NS	NS
	-		-					-			-		
	8/5/1994	2.9	5	BDL	BDL	BDL	0.01 U	1 U	NS	NS	NS	5 U	NS
	10/13/1994	BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS
	7/14/2000	<0.5	<0.5	<0.5	BDL	<0.5	NA	NA	NA	NA	NA	NA	NS
	6/9/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.20 U	NA	NA	NA	NA	NA	NA	NS
	5/11/2011	2.3	0.63 I	8.3	3.8	0.50 U	NA	NA	NA	NA	NA	NA	NS
MW-16	11/14/2011	0.17 U	0.16 I	0.22 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NS
	7/20/2012	0.28 I	0.14 U	0.22 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NS
	10/24/2012	0.17 U	0.14 U	0.22 U	0.5 U	0.50 U	NA	NA	NA	NA	NA	NA	NS
	3/26/2013	0.19 I	0.4 I	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
	7/9/2013	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
			-										

Facility Name: AA Discount

Sam	ple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	EDB	1,2-Di- chloroethane	Total Arsenic	Total Cadmium	Total Chromium	Total Lead	TRPHs
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GCT	-	1**	40**	30**	20**	20	0.02**	3**	10**	5**	100**	15**	5,000
NAD	-	100	400	300	200	200	2	300	100	50	1,000	150	50,000
Location	Date												
	8/5/1994	1.6	4.6	BDL	3.4	BDL	0.01 U	1 U	NS	NS	NS	5 U	NS
	10/13/1994	BDL	BDL	BDL	3.9	BDL	NS	NS	NS	NS	NS	NS	NS
	7/14/2000	10	<0.5	<0.5	BDL	6	NA	NA	NA	NA	NA	NA	NS
	10/11/2001	<1.0	<1.0	<1.0	BDL	<1.0	NA	NA	NA	NA	NA	NA	NS
	11/27/2001	2	<1.0	<1.0	BDL	<1.0	NA	NA	NA	NA	NA	NA	NS
	2/18/2003	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	NA	NA	NS
	9/16/2005	3.0	1.5V	2.6	4.6	<0.46U	NA	NA	NA	NA	NA	NA	NS
NNN 47	6/9/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.37 1	NA	NA	NA	NA	NA	NA	NS
MW-17	10/11/2010	0.88 U	0.44 U	0.43 U	1.3 U	0.56 I	NA	NA	NA	NA	NA	NA	NS
	12/13/2010	2.0	0.44 U	0.43 U	1.3 U	2.1	NA	NA	NA	NA	NA	NA	NS
	5/14/2011	0.17 U	0.14 U	0.22 U 0.22 U	0.28 U	0.5 U 1.2	NA NA	NA	NA NA	NA NA	NA NA	NA	NS
	11/14/2011	0.24	0.14 U		0.57							NA	NS
	7/20/2012	0.17 U 0.56	0.14 U 0.14 U	0.22 U 0.22 U	0.5 U 0.5 U	0.5 U 0.91 I	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NS NS
	3/26/2012	0.56	0.14 U 0.14 U	0.22 U	0.5 U	1.5	NA	NA	NA	NA	NA	NA	NS
	7/9/2013	0.20 T	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
	119/2013	0.17 0	0.14 0	0.22 0	0.5 0	0.5 0	NO	ING	NO NO	113	ING	NO	ING
	9/14/1994	BDL	BDL	BDL	BDL	BDL	0.095	1 U	NS	NS	NS	5 U	NS
	10/5/1994	NS	NS	NS	NS	NS	0.000 0.01 U	NS	NS	NS	NS	NS	NS
MW-18	10/13/1994	BDL	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS
	7/14/2000	< 0.5	< 0.5	< 0.5	BDL	< 0.5	NA	NA	NA	NA	NA	NA	NS
	11/9/1994	1.3	BDL	BDL	BDL	BDL	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	8.4	<0.5	<0.5	BDL	27	NA	NA	NA	NA	NA	NA	NS
	1/19/2000	2.2	<0.5	<0.50	BDL	16	NA	NA	NA	NA	NA	NA	NS
MW-19	7/14/2000	1.3	<1.0	<1.0	BDL	12	NA	NA	NA	NA	NA	NA	NS
	10/11/2001	6.6	22	6.8	27.6	1.6	NA	NA	NA	NA	NA	NA	NS
	2/18/2003	<1.0	<1.0	<1.0	<1.0	0.9	NA	NA	NA	NA	NA	NA	NS
	3/26/2013	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
	7/9/2013	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
	12/8/2015	0.400U	0.400U	0.400U	0.800U	0.400U	NS	NS	NS	NS	NS	NS	NS
MW-201	6/7/2016	0.34 U	0.45 U	0.26 U	1.3 U	0.41 U	NS	NS	NS	NS	NS	NS	NS
	12/13/2016	0.400 U	0.400 U	0.400 U	0.800 U	0.400 U	NS	NS	NS	NS	NS	NS	NS
	6/23/2017	0.400 U	0.400 U	0.400 U	0.800 U	0.400 U	NS	NS	NS	NS	NS	NS	NS
	7/9/2013	0.17 U	0.32 I	0.22 U	0.69 l	0.5 U	NS	NS	NS	NS	NS	NS	NS
MW-21D	1/8/2014	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS

Facility Name: AA Discount

FDEP Facility ID #: 60/8516863

Sam	ple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	EDB	1,2-Di- chloroethane	Total Arsenic	Total Cadmium	Total Chromium	Total Lead	TRPHs
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GC	ΓLs	1**	40**	30**	20**	20	0.02**	3**	10**	5**	100**	15**	5,000
NAD	DCs	100	400	300	200	200	2	300	100	50	1,000	150	50,000
Location	Date												
	7/9/2013	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
	1/8/2014	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
	12/8/2015	0.400U	0.400U	0.400U	0.800U	0.400U	NS	NS	NS	NS	NS	NS	NS
MW-22I	6/7/2016	0.34 U	0.45 U	0.26 U	1.3 U	0.41 U	NS	NS	NS	NS	NS	NS	NS
	12/13/2016	0.400 U	0.400 U	0.400 U	0.800 U	0.400 U	NS	NS	NS	NS	NS	NS	NS
	6/23/2017	0.400 U	0.400 U	0.400 U	0.800 U	0.400 U	NS	NS	NS	NS	NS	NS	NS
	7/9/2013	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS
MW-23I	1/8/2014	0.17 U	0.14 U	0.22 U	0.5 U	0.5 U	NS	NS	NS	NS	NS	NS	NS

Notes:

NA = Not Available

NS = Not Sampled

GCTLs = Groundwater Cleanup Target Levels as specified in Table I of Chapter 62-777, F.A.C.

** = As Provided in Chapter 62-550, F.A.C.

If an analyte is not detected, report the method detection limit [i.e., 0.01 U or ND (0.01); BDL or < 0.01 are not acceptable].

Freshwater Surface Water [FSW], Marine Surface Water [MSW] and Groudnwater of Low Yield/Poor Quality (LY/PQ) CTLs should be added to the base of the table as applicable

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U = The compound was analyzed for but not detected.

V = Indicates that the analyte was detected in both the sample and the associated method blank.

* MW-25 was the duplicate sample collected from MW-5 (5/31/1994)

* MW-55 was the duplicate sample collected from MW-5 (10/13/1994)

* MW-41 was the duplicate sample collected from MW-11D (7/6/1994)

Facility Name: AA Discount

Sample		Naph- thalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Acenaph- thene	Acen- aphthylene	Anthracene	Benzo(g,h,i) perylene	Fluoranthene	Fluorene	Phenan- threne	Pyrene
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GCT		14	28	28	20	210	2,100	210	280	280	210	210
NAD	-	140	280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100
Location	Date											
	5/31/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CW-1	8/5/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/14/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	abandonded	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/31/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CW-2	8/5/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/14/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	abandonded	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/31/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CW-3	8/5/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/14/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	abandonded	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/31/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CW-4	8/5/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
••••	9/14/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	abandonded	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/31/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/31/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/5/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	200	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	160	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	180	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/14/2000	220	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/14/2000	210	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/11/2001	260	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/27/2001	320	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/13/2003	100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/25/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/20/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-5/5R	12/22/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	130	32	58	NA	NA	NA	NA	NA	NA	NA	NA
	6/9/2010	21	4.4	3.5	0.38 U	0.63 U	0.65 U	0.59 U	0.57 U	0.58 U	0.55 U	0.63 U
	10/11/2010	32	7.4	12	0.38 U	0.63 U	0.65 U	0.59 U	0.57 U	0.58 U	0.55 U	0.63 U
	12/13/2010	23	5.3	9.3	0.38 U	0.63 U	0.65 U	0.59 U	0.57 U	0.58 U	0.55 U	0.63 U
	5/11/2011	31.2	3.5	4.5	0.033	0.021	0.021	0.021	0.021	0.051	0.021	0.021
	11/14/2011	27.7 JM3	3.6	6.4	0.046 I	0.02 U	0.02 U	0.02 U	0.02 U	0.023 I	0.02 U	0.02 U
	7/20/2012	6.9	0.84 J3	2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	10/24/2012	4.4	0.56	0.29	0.02 U	0.02 U	0.02 U	0.02 J3U	0.02 U	0.02 U	0.02 U	0.02 U
	3/26/2013	3.1	0.51	0.74	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U
	7/9/2013	0.43	0.054	0.053	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	1/8/2014	0.32	0.067	0.072	0.022 U	0.022 U	0.022 U	0.022 U	0.022 U	0.022 U	0.022 U	0.022 U
	8/20/2014	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	12/8/2015						DRY					
	6/23/2017						DRY					
												1

Facility Name: AA Discount

Sample		Naph- thalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Acenaph- thene	Acen- aphthylene	Anthracene	Benzo(g,h,i) perylene	Fluoranthene	Fluorene	Phenan- threne	Pyrene
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GCTI		14	28	28	20	210	2,100	210	280	280	210	210
NAD		140	280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100
Location	Date		1			i .	i .	i .	r.	ir		
	7/20/2012	3.8	0.49 J3	0.37	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	10/24/2012	50.5	16.3 22.1	23.8 22.6	0.057	0.02 U	0.02 U	0.02 J3U	0.02 U	0.059	0.02 U	0.02 U
	7/9/2013 1/8/2014	126 78.9	15.2	22.6	0.13	0.02 U 0.022 I	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.074	0.028 I 0.061	0.02 U 0.02 U
	8/20/2014	35.6	9.8	25.9	0.065	0.022 T	0.02 U	0.02 U	0.02 U	0.062	0.058 J3R	0.02 U
MW-51	12/8/2015	4.63	0.989	0.499	0.023U	0.02 U	0.02 U	0.02 U 0.014U	0.02 U	0.0431 0.023U	0.023U	0.02 U
	6/7/2016	0.26	0.057	0.055 U	0.036 U	0.041 U	0.037 U	0.05 U	0.039 U	0.033 U	0.039 U	0.038 U
	12/13/2016	0.433	0.0860 i	0.122	0.0230 U	0.0230 U	0.0230 U	0.0140 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U
	6/23/2017	0.168 I	0.100 U	0.100 U	0.0500 U	0.0500 U	0.0500 U	0.0310 I	0.0500 U	0.0500 U	0.0500 U	0.0500 U
	5/31/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/5/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/13/2003	<1.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-6/6R	2/7/2007	0.751	0.75 U	0.45 U	NA	NA	NA	NA	NA	NA	NA	NA
	6/9/2010	0.43 U	0.75 U	0.45 U	0.38 U	0.63 U	0.65 U	0.59 U	0.57 U	0.58 U	0.55 U	0.63 U
	10/11/2010	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS	NS	NS
	5/11/2011 11/14/2011	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS
	10/24/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/24/2012	11/5	104	1973	in a	194	11/3	104	114	11/3		n/a
	5/31/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/13/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/13/2003	4.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-7	8/25/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/20/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/22/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	0.44 I	0.75 U	0.45 U	NA	NA	NA	NA	NA	NA	NA	NA
	5/31/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	7/14/2000	37	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/11/2001	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11/27/2001	61	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2/13/2003	23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	8/25/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/20/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/22/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	3.4	0.75 U	0.71 I	NA	NA	NA	NA	NA	NA	NA	NA
MW-8/8R	3/13/2008	190	31	67	NA	NA	NA	NA	NA	NA	NA	NA
	6/9/2010 10/11/2010	13	3.8 7.5	5.4 15	0.38 U 0.38 U	0.63 U 0.63 U	0.65 U 0.65 U	0.59 U 0.59 U	0.57 U 0.57 U	0.58 U 0.58 U	0.55 U 0.55 U	0.63 U 0.63 U
	10/11/2010	25 12	7.5 4.1	15 6.8	0.38 U 0.38 U	0.63 U 0.63 U	0.65 U 0.65 U	0.59 U 0.59 U	0.57 U 0.57 U	0.58 U	0.55 U 0.55 U	0.63 U 0.63 U
	5/11/2011	13.4	3.1	5.5	0.38 0	0.03 0	0.05 0	0.021	0.021	0.056	0.55 0	0.03 0
	11/14/2011	66.5 J3M	20.8	42.7	0.067	0.044 I	0.02 U	0.02 U	0.02 U	0.079	0.088 V	0.02 U
	7/20/2012	123	29.4 J3	79.5	0.067	0.031 I	0.02 U	0.02 U	0.02 U	0.076	0.09	0.02 U
	10/24/2012	40.2	12.6	21.9	0.02 U	0.02 U	0.02 U	0.02 J3U	0.02 U	0.033 I	0.023 1	0.02 U
	3/26/2013	31.1	10.3	17.1	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.04 I	0.03 I	0.021 U
	7/9/2013	0.077	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	1/8/2014	26.1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/2014	4.5	1.6	0.54	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 J3RU	0.02 U
	12/8/2015						DRY					
	6/23/2017		1			1	DRY	1	1	1		

Facility Name: AA Discount

Sample		Naph- thalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Acenaph- thene	Acen- aphthylene	Anthracene	Benzo(g,h,i) perylene	Fluoranthene	Fluorene	Phenan- threne	Pyrene
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GCT		14	28	28	20	210	2,100	210	280	280	210	210
NAD		140	280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100
Location	Date					1	1	1		1		
	7/20/2012	0.03 I	0.02 J3U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	10/24/2012	2.2	0.05 1	0.049 I	0.02 U	0.02 U	0.02 U	0.02 J3U	0.02 U	0.033 I	0.023 1	0.02 U
	7/9/2013	27.9	8	4.1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.053	0.02 U	0.02 U
	1/8/2014	37.3	11.5	20.2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.06	0.052	0.02 U
MW-8I	8/20/2014	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 J3RU	0.02 U
	12/8/2015 6/7/2016	63.9 65	19.7 17	30.6 31	0.034i 0.035 U	0.023U 0.04 U	0.023U 0.036 U	0.014U 0.048 U	0.023U 0.037 U	0.095 0.032 U	0.081 0.063 I	0.023U 0.036 U
	12/13/2016	73.9	23.8	40	0.035 0 0.0440 i	0.0230 U	0.038 U	0.048 U 0.0140 U	0.0230 U	0.032 0	0.058	0.036 U
	6/23/2017	0.0470 U	0.0470 U	0.0470 U	0.0230 U	0.0230 U	0.0230 U	0.0140 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U
	0/20/2011	0.01100	0.01100	0.01100	0.0200 0	0.0200 0	0.0200 0	0.01100	0.0200 0	0.0200 0	0.0200 0	0.0200 0
	5/31/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/11/2001	<2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11/27/2001	<2.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-9	9/16/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	0.43 U	0.75 U	0.45 U	NA	NA	NA	NA	NA	NA	NA	NA
	7/20/2012	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/24/2012 3/26/2013	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	7/9/2013	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/9/2013	N3	NO	NS	N3	NO.	NO.	N3	NO NO	NO NO	NS NS	БИ
	7/6/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/24/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/13/2003	0.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-10	8/25/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/20/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/22/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	0.43 U	0.75 U	0.45 U	NA	NA	NA	NA	NA	NA	NA	NA
	7/6/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	0.451	0.75 U	0.45 U	NA	NA	NA	NA	NA	NA	NA	NA
MW-11D	3/13/2008	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
							_					
	7/6/1994 10/13/1994	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	<2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	7/14/2000	7.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/11/2001	67	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11/27/2001	71	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2/13/2003	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-12	8/25/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/20/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/22/2004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	6.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	6/9/2010	0.43 U	0.75 U	0.45 U	0.38 U	0.63 U	0.65 U	0.59 U	0.57 U	0.58 U	0.55 U	0.63 U
	10/11/2010	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/6/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/24/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	<2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	7/14/2000	<2.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-13	10/11/2001	<2.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11/27/2001	<2.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2/7/2007	0.43 U	0.75 U	0.45 U	NA	NA	NA	NA	NA	NA	NA	NA
	6/9/2010	0.43 U	0.75 U	0.45 U	0.38 U	0.63 U	0.65 U	0.59 U	0.57 U	0.58 U	0.55 U	0.63 U
	10/11/2010 12/13/2010	0.43 U 0.43 U	0.75 U 0.75 U	0.45 U 0.45 U	0.38 U 0.38 U	0.63 U 0.63 U	0.65 U 0.65 U	0.59 U 0.59 U	0.57 U 0.57 U	0.58 U 0.58 U	0.55 U 0.55 U	0.63 U 0.63 U

Facility Name: AA Discount

h- 1-Methyl- ne naphthalene	2-Methyl- naphthalene	Acenaph- thene	Acen- aphthylene	Anthracene	Benzo(g,h,i) perylene	Fluoranthene	Fluorene	Phenan- threne	Pyrene
L) (µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
28	28	20	210	2,100	210	280	280	210	210
280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
U 0.75 U	0.45 U	NA	NA	NA	NA	NA	NA	NA	NA
s NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4 NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2 NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
U 0.75 U	0.45 U	NA	NA	NA	NA	NA	NA	NA	NA
U 0.75 U	0.45 U	0.38 U	0.63 U	0.65 U	0.59 U	0.57 U	0.58 U	0.55 U	0.63 U
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
U 0.75 U	0.45 U	0.38 U	0.63 U	0.65 U	0.59 U	0.57 U	0.58 U	0.55 U	0.63 U
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2 NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
0 NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
U NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
U 0.75 U	0.45 U	0.38 U	0.63 U	0.65 U	0.59 U	0.57 U	0.58 U	0.55 U	0.63 U
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
S NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		NS	-	NS	NS	-	-	NS	NS
5		NS NS	NS NS NS	NS NS NS NS	NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS

Facility Name: AA Discount

FDEP Facility ID #: 60/8516863

Sample		Naph- thalene	1-Methyl- naphthalene	2-Methyl- naphthalene	Acenaph- thene	Acen- aphthylene	Anthracene	Benzo(g,h,i) perylene	Fluoranthene	Fluorene	Phenan- threne	Pyrene
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GCT	Ls	14	28	28	20	210	2,100	210	280	280	210	210
NAD	Cs	140	280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100
Location	Date											
	11/9/1994	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	<2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-19	7/14/2000	<2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/11/2001	<2.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2/18/2003	<4.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	3/26/2013	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U
	7/9/2013	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	12/8/2015	0.077i	0.047U	0.054i	0.023U	0.023U	0.023U	0.026i	0.023U	0.023U	0.023U	0.023U
MW-201	6/7/2016	0.049 U	0.051 U	0.054 U	0.035 U	0.04 U	0.036 U	0.048 U	0.038 U	0.032 U	0.038 U	0.036 U
	12/13/2016	0.0470 U	0.0470 U	0.0470 U	0.0230 U	0.0230 U	0.0230 U	0.0140 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U
	6/23/2017	0.0470 U	0.0470 U	0.0470 U	0.0230 U	0.0230 U	0.0230 U	0.0170 I	0.0230 U	0.0230 U	0.0230 U	0.0230 U
	7/9/2013	0.16	0.034 I	0.077	0.074	0.053	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
MW-21D	1/8/2014	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/9/2013	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/8/2014	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/8/2015	0.047U	0.047U	0.047U	0.023U	0.023U	0.023U	0.015i	0.023U	0.023U	0.023U	0.023U
MW-22I	6/7/2016	0.049 U	0.051 U	0.054 U	0.035 U	0.04 U	0.036 U	0.049 U	0.038 U	0.032 U	0.038 U	0.037 U
	12/13/2016	0.125	0.0470 U	0.0500 i	0.0230 U	0.0230 U	0.0230 U	0.0140 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U
	6/23/2017	0.0470 U	0.0470 U	0.0470 U	0.0230 U	0.0230 U	0.0230 U	0.0270 1	0.0230 U	0.0230 U	0.0230 U	0.0230 U
	7/9/2013	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-23I	1/8/2014	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Notos												

Notes:

NA = Not Available

NS = Not Sampled

GCTLs = Groundwater Cleanup Target Levels as specified in Table I of Chapter 62-777, F.A.C.

** = As Provided in Chapter 62-550, F.A.C.

If an analyte is not detected, report the method detection limit [i.e., 0.01 U or ND (0.01); BDL or < 0.01 are not acceptable].

Freshwater Surface Water [FSW], Marine Surface Water [MSW] and Groudnwater of Low Yield/Poor Quality (LY/PQ) CTLs should be added to the base of the table as applicable

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U = The compound was analyzed for but not detected.

V = Indicates that the analyte was detected in both the sample and the associated method blank.

TABLE 4C: GROUNDWATER ANALYTICAL SUMMARY - PAHs (Carcinogens)

		Bonza (a)	Bonne (a)	Bon/h)	Bon-s/k)		Dibor=(- b)	Indone/4.0.0
Sar	nple	Benzo (a) pyrene	Benzo (a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3-c pyrene
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GC	TLs	0.2**	0.05ª	0.05ª	0.5	4.8	0.005ª	0.05 ^a
	DCs	20	5	5	50	480	0.5	5
Location	Date		-	-				-
	5/31/1994	NA	NA	NA	NA	NA	NA	NA
	8/5/1994	NA	NA	NA	NA	NA	NA	NA
CW-1	9/14/1994	NA	NA	NA	NA	NA	NA	NA
	abandonded	NA	NA	NA	NA	NA	NA	NA
	5/31/1994	NA	NA	NA	NA	NA	NA	NA
	8/5/1994	NA	NA	NA	NA	NA	NA	NA
CW-2	9/14/2003	NA	NA	NA	NA	NA	NA	NA
	abandonded	NA	NA	NA	NA	NA	NA	NA
	5/31/1994	NA	NA	NA	NA	NA	NA	NA
	8/5/1994	NA	NA	NA	NA	NA	NA	NA
CW-3	9/14/2003	NA	NA	NA	NA	NA	NA	NA
	abandonded	NA	NA	NA	NA	NA	NA	NA
	5/31/1994	NA	NA	NA	NA	NA	NA	NA
	8/5/1994	NA	NA	NA	NA	NA	NA	NA
CW-4	9/14/1994	NA	NA	NA	NA	NA	NA	NA
	abandonded	NA	NA	NA	NA	NA	NA	NA
	5/31/1994	NS	NS	NS	NS	NS	NS	NS
-	5/31/1994	NS	NS	NS	NS	NS	NS	NS
	8/5/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	NS	NS	NS	NS	NS	NS	NS
	7/14/2000	NS	NS	NS	NS	NS	NS	NS
	7/14/2000	NS	NS	NS	NS	NS	NS	NS
	10/11/2001	NS	NS	NS	NS	NS	NS	NS
	11/27/2001	NS	NS	NS	NS	NS	NS	NS
	2/13/2003	NS	NS	NS	NS	NS	NS	NS
	8/25/2003	NS	NS	NS	NS	NS	NS	NS
	2/20/2004	NS	NS	NS	NS	NS	NS	NS
MW-5/5R	12/22/2004	NS	NS	NS	NS	NS	NS	NS
WIW-5/SR	9/16/2005	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	NA	NA	NA	NA	NA	NA	NA
	6/9/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
	10/11/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
	12/13/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
	5/11/2011	0.021	0.021	0.021	0.021	0.021	0.021	0.021
	11/14/2011	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	7/20/2012	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	10/24/2012	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	3/26/2013	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U
	7/9/2013	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	1/8/2014	0.022 U	0.022 U	0.022 U	0.022 U	0.022 U	0.022 U	0.022 U
	8/20/2014	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	12/8/2015				DRY			
	6/23/2017				DRY			

TABLE 4C: GROUNDWATER ANALYTICAL SUMMARY - PAHs (Carcinogens)

my Name.	AA Discount			_		EP Facility ID #:		
Sar	mple	Benzo (a) pyrene	Benzo (a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3-co pyrene
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GC	TLs	0.2**	0.05 ^a	0.05ª	0.5	4.8	0.005 ^a	0.05 ^a
	DCs	20	5	5	50	480	0.5	5
Location	Date							
	7/20/2012	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	10/24/2012	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	7/9/2013	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	1/8/2014	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
MW-5I	8/20/2014	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
14144-51	12/8/2015	0.014U	0.023U	0.014U	0.014U	0.023U	0.0048U	0.014U
	6/7/2016	0.039 U	0.034 U	0.042 U	0.051 U	0.035 U	0.038 U	0.033 U
	12/13/2016	0.0140 U	0.0230 U	0.0150 i	0.0140 U	0.0230 U	0.00480 U	0.0140 U
	6/23/2017	0.0300 U	0.0500 U	0.0350 I	0.0300 U	0.0500 U	0.0100 U	0.0300 U
	5/31/1994	NS	NS	NS	NS	NS	NS	NS
	8/5/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS
	2/13/2003	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	NA	NA	NA	NA	NA	NA	NA
MW-6/6R	6/9/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
	10/11/2010	NS	NS	NS	NS	NS	NS	NS
	5/11/2011	NS	NS	NS	NS	NS	NS	NS
	11/14/2011	NS	NS	NS	NS	NS	NS	NS
	10/24/2012	NA	NA	NA	NA	NA	NA	NA
	5/31/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/2003	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS
	2/13/2003	NS	NS	NS	NS	NS	NS	NS
	8/25/2003	NS	NS	NS	NS	NS	NS	NS
MW-7	2/20/2004	NS	NS	NS	NS	NS	NS	NS
	12/22/2004	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	NA	NA	NA	NA	NA	NA	NA
	5/31/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	NA	NA	NA	NA	NA	NA	NA
	7/14/2000	NA	NA	NA	NA	NA	NA	NA
	10/11/2001	NA	NA	NA	NA	NA	NA	NA
	11/27/2001	NA	NA	NA	NA	NA	NA	NA
	2/13/2003	NA	NA	NA	NA	NA	NA	NA
	8/25/2003	NS	NS	NS	NS	NS	NS	NS
	2/20/2004	NS	NS	NS	NS	NS	NS	NS
	12/22/2004	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	NS	NS	NS	NS	NS	NS	NS
MW-8/8R	2/7/2007	NA	NA	NA	NA	NA	NA	NA
WW-0/0K	3/13/2008	NA	NA 0.082 U	NA	NA	NA	NA	NA
	6/9/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
	10/11/2010 12/13/2010	0.065 U 0.065 U	0.083 U 0.083 U	0.083 U 0.083 U	0.082 U 0.082 U	0.48 U 0.48 U	0.090 U 0.090 U	0.10 U 0.10 U
	5/11/2011	0.065 0	0.083 0	0.083 0	0.082 0	0.021	0.090 0	0.10 0
	11/14/2011	0.02 U	0.02 T	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	7/20/2012	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	10/24/2012	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
		0.021 U	0.021 U	0.02 U	0.021 U	0.021 U	0.02 U	0.02 U
	3/26/2013							
	3/26/2013 7/9/2013	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
				0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U
	7/9/2013	0.02 U	0.02 U					

TABLE 4C: GROUNDWATER ANALYTICAL SUMMARY - PAHs (Carcinogens)

nty Hume.	AA Discount					EP Facility ID #:		1
Sa	mple	Benzo (a) pyrene	Benzo (a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3-c pyrene
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GC	CTLs	0.2**	0.05 ^a	0.05 ^a	0.5	4.8	0.005ª	0.05 ^a
NA	DCs	20	5	5	50	480	0.5	5
ocation	Date							
	7/20/2012	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	10/24/2012	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	7/9/2013	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	1/8/2014	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
MW-8I	8/20/2014	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	12/8/2015	0.014U	0.023U	0.014U	0.014U	0.023U	0.0048U	0.014U
	6/7/2016	0.037 U	0.033 U	0.041 U	0.049 U	0.033 U	0.036 U	0.032 U
	12/13/2016	0.0140 U	0.0230 U	0.0140 U	0.0140 U	0.0230 U	0.00480 U	0.0140 U
	6/23/2017	0.0140 U	0.0230 U	0.0140 U	0.0140 U	0.0230 U	0.00480 U	0.0140 U
	5/31/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS
	10/11/2001	NA	NA	NA	NA	NA	NA	NA
MW-9	11/27/2001	NA	NA	NA	NA	NA	NA	NA
	9/16/2005	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	NA	NA	NA	NA	NA	NA	NA
-	7/20/2012	NS	NS	NS	NS	NS	NS	NS
	10/24/2012	NS	NS	NS	NS	NS	NS	NS
	7/6/1994	NS	NS	NS	NS	NS	NS	NS
-	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	10/24/1994	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS
	2/13/2003	NA	NA	NA	NA	NA	NA	NA
MW-10	8/25/2003	NS	NS	NS	NS	NS	NS	NS
	2/20/2004	NS	NS	NS	NS	NS	NS	NS
	12/22/2004	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	NA	NA	NA	NA	NA	NA	NA
	7/6/1994	NS	NS	NS	NS	NS	NS	NS
MW-11D	2/7/2007	NA	NA	NA	NA	NA	NA	NA
	3/13/2008	NS	NS	NS	NS	NS	NS	NS
	7/6/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	NA	NA	NA	NA	NA	NA	NA
	7/14/2000	NA	NA	NA	NA	NA	NA	NA
	10/11/2001	NA	NA	NA NA	NA NA	NA	NA	NA NA
	11/27/2001 2/13/2003	NA NA	NA NA	NA	NA NA	NA NA	NA	NA
MW-12	8/25/2003	NS	NA	NA	NA	NS	NA	NA
	2/20/2003	NS	NS	NS	NS	NS	NS	NS
	12/22/2004	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	NA	NA	NA	NA	NA	NA	NA
	6/9/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
	10/11/2010	NS	NS	NS	NS	NS	NS	NS

TABLE 4C: GROUNDWATER ANALYTICAL SUMMARY - PAHs (Carcinogens)

Sar	mple	Benzo (a) pyrene	Benzo (a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3-c pyrene
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GC	TLs	0.2**	0.05 ^a	0.05 ^a	0.5	4.8	0.005 ^a	0.05 ^a
NA	DCs	20	5	5	50	480	0.5	5
Location	Date							
	7/6/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	10/24/1994	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	NA	NA	NA	NA	NA	NA	NA
	7/14/2000	NA	NA	NA	NA	NA	NA	NA
MW-13	10/11/2001	NA	NA	NA	NA	NA	NA	NA
	11/27/2001	NA	NA	NA	NA	NA	NA	NA
	2/7/2007	NA	NA	NA	NA	NA	NA	NA
	6/9/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
	10/11/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
	12/13/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
	7/6/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS
MW-14	7/14/2000	NS	NS	NS	NS	NS	NS	NS
10100-14	10/11/2001	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	NA	NA	NA	NA	NA	NA	NA
	7/6/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	10/24/1994	NS	NS	NS	NS	NS	NS	NS
	7/14/1999	NS	NS	NS	NS	NS	NS	NS
	11/27/2001	NA	NA	NA	NA	NA	NA	NA
	2/13/2003	NA	NA	NA	NA	NA	NA	NA
MW-15	8/25/2003	NS	NS	NS	NS	NS	NS	NS
	2/20/2004	NS	NS	NS	NS	NS	NS	NS
	12/22/2004	NS	NS	NS	NS	NS	NS	NS
	9/16/2005	NS	NS	NS	NS	NS	NS	NS
	2/7/2007	NA	NA	NA	NA	NA	NA	NA
	6/9/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
	10/11/2010	NS	NS	NS	NS	NS	NS	NS
	8/5/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	7/14/2000	NS	NS	NS	NS	NS	NS	NS
MW-16	6/9/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
-	7/20/2012	NS	NS	NS	NS	NS	NS	NS
	10/24/2012	NS	NS	NS	NS	NS	NS	NS
	8/5/1994	NS	NS	NS	NS	NS	NS	NS
	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	7/14/2000	NS	NS	NS	NS	NS	NS	NS
	10/11/2001	NA	NA	NA	NA	NA	NA	NA
	11/27/2001	NA	NA	NA	NA	NA	NA	NA
MW-17	2/18/2003	NA	NA	NA	NA	NA	NA	NA
	9/16/2005	NA	NA	NA	NA	NA	NA	NA
	6/9/2010	0.065 U	0.083 U	0.083 U	0.082 U	0.48 U	0.090 U	0.10 U
	10/11/2010	NS	NS	NS	NS	NS	NS	NS
	7/20/2012	NS	NS	NS	NS	NS	NS	NS
	10/24/2012	NS	NS	NS	NS	NS	NS	NS

TABLE 4C: GROUNDWATER ANALYTICAL SUMMARY - PAHs (Carcinogens)

cility Name:	AA Discount				FD	EP Facility ID #:	60/8516863	
Sa	mple	Benzo (a) pyrene	Benzo (a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3-cd pyrene
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GC	TLs	0.2**	0.05 ^a	0.05 ^a	0.5	4.8	0.005 ^a	0.05 ^a
NA	DCs	20	5	5	50	480	0.5	5
Location	Date							
	9/14/1994	NS	NS	NS	NS	NS	NS	NS
	10/5/1994	NS	NS	NS	NS	NS	NS	NS
MW-18	10/13/1994	NS	NS	NS	NS	NS	NS	NS
	7/14/2000	NS	NS	NS	NS	NS	NS	NS
	11/9/1994	NS	NS	NS	NS	NS	NS	NS
	7/28/1999	NS	NS	NS	NS	NS	NS	NS
	1/19/2000	NA	NA	NA	NA	NA	NA	NA
MW-19	7/14/2000	NA	NA	NA	NA	NA	NA	NA
	10/11/2001	NA	NA	NA	NA	NA	NA	NA
	2/18/2003	NA	NA	NA	NA	NA	NA	NA
	3/26/2013	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U
	7/9/2013	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
	12/8/2015	0.018 I	0.023U	0.036 I	0.0151	0.024 I	0.0048U	0.030 I
MW-201	6/7/2016	0.038 U	0.033 U	0.041 U	0.049 U	0.034 U	0.037 U	0.032 U
	12/13/2016	0.0140 U	0.0230 U	0.0140 U	0.0140 U	0.0230 U	0.00480 U	0.0140 U
	6/23/2017	0.0140 U	0.0230 U	0.0170 I	0.0140 U	0.0230 U	0.00490 I	0.0140 U
	7/9/2013	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
MW-21D	1/8/2014	NS	NS	NS	NS	NS	NS	NS
	7/9/2013	NS	NS	NS	NS	NS	NS	NS
	1/8/2014	NS	NS	NS	NS	NS	NS	NS
	12/8/2015	0.014U	0.023U	0.014U	0.014U	0.023U	0.061	0.015 I
MW-22I	6/7/2016	0.038 U	0.033 U	0.041 U	0.049 U	0.034 U	0.037 U	0.032 U
	12/13/2016	0.0140 U	0.0230 U	0.0140 U	0.0140 U	0.0230 U	0.00480 U	0.0140 U
	6/23/2017	0.0150 I	0.0230 U	0.0330 I	0.0140 U	0.0230 U	0.00630 1	0.0250
								5.02001
	7/9/2013	NS	NS	NS	NS	NS	NS	NS
MW-23I	1/8/2014	NS	NS	NS	NS	NS	NS	NS

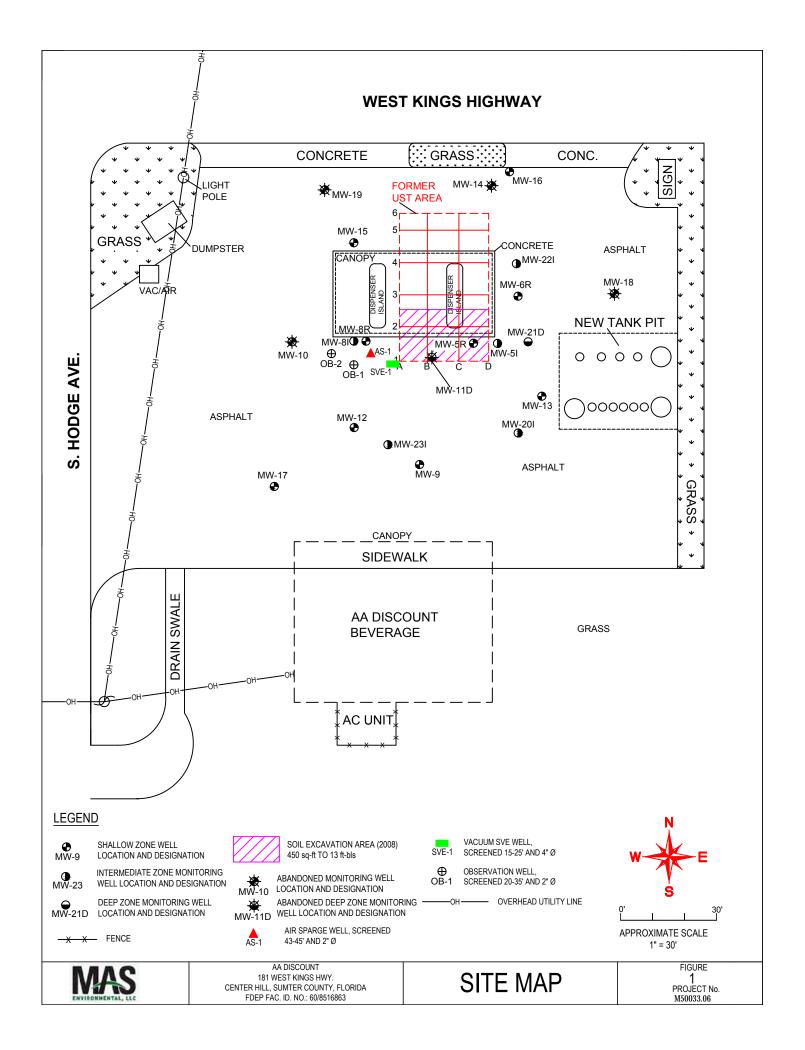
Notes:

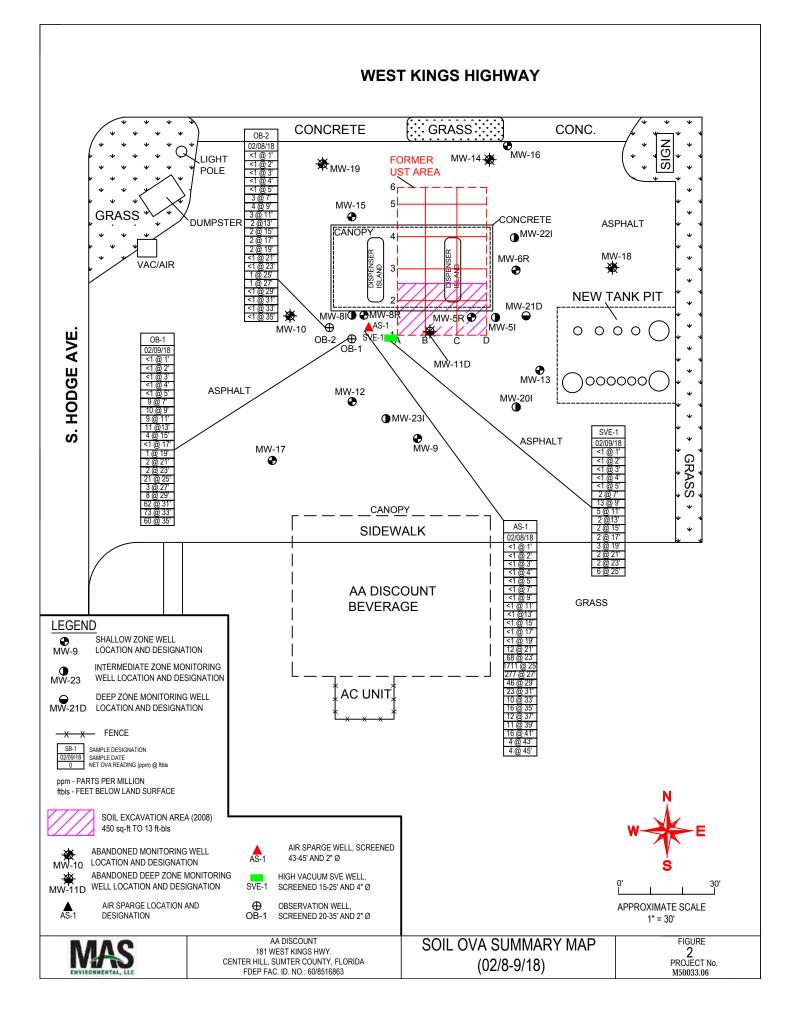
NA = Not Available

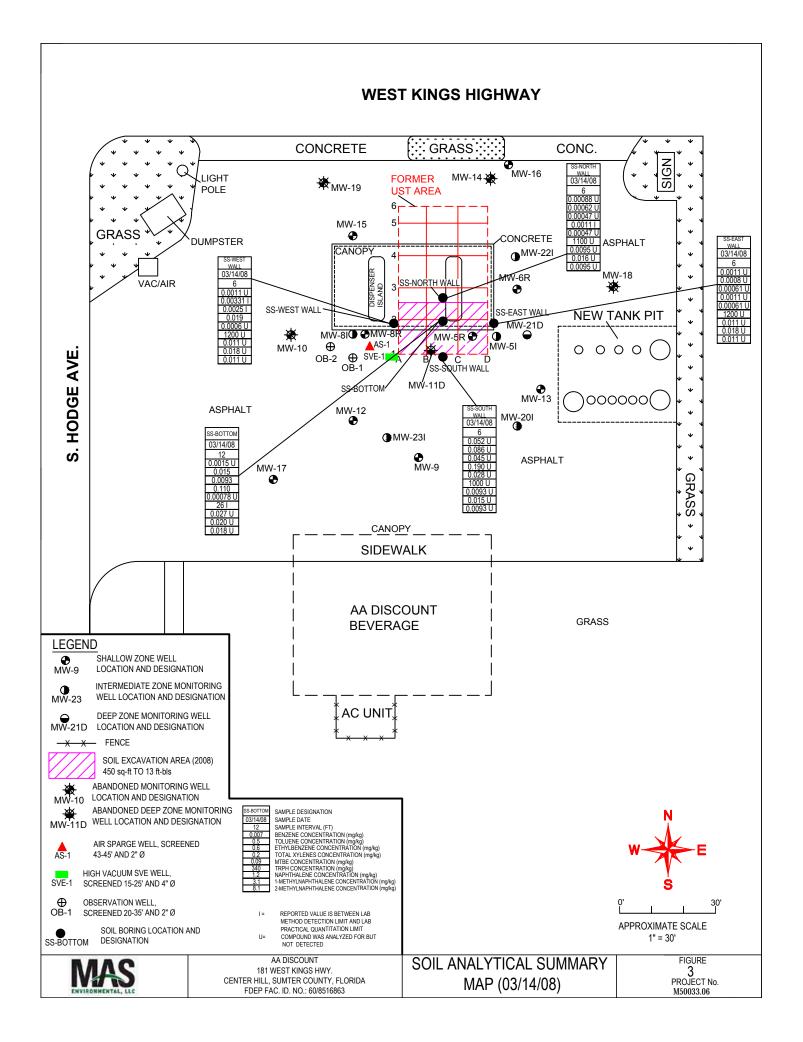
NS = Not Sampled

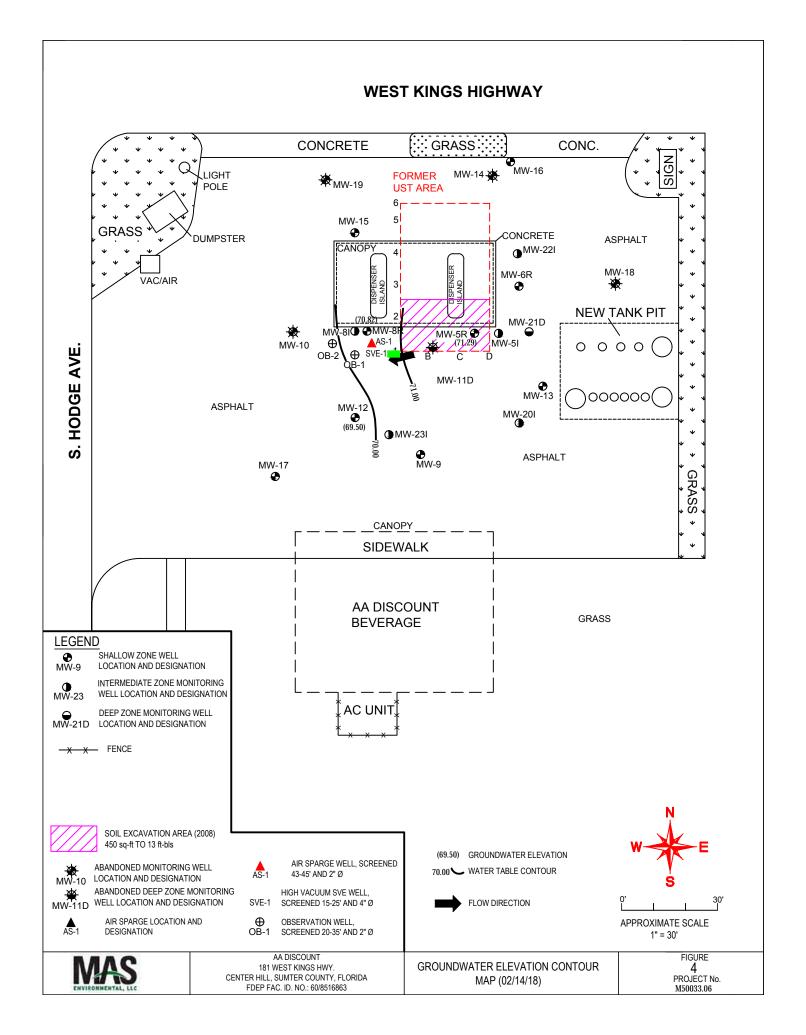
GCTLs = Groundwater Cleanup Target Levels as specified in Table I of Chapter 62-777, F.A.C.

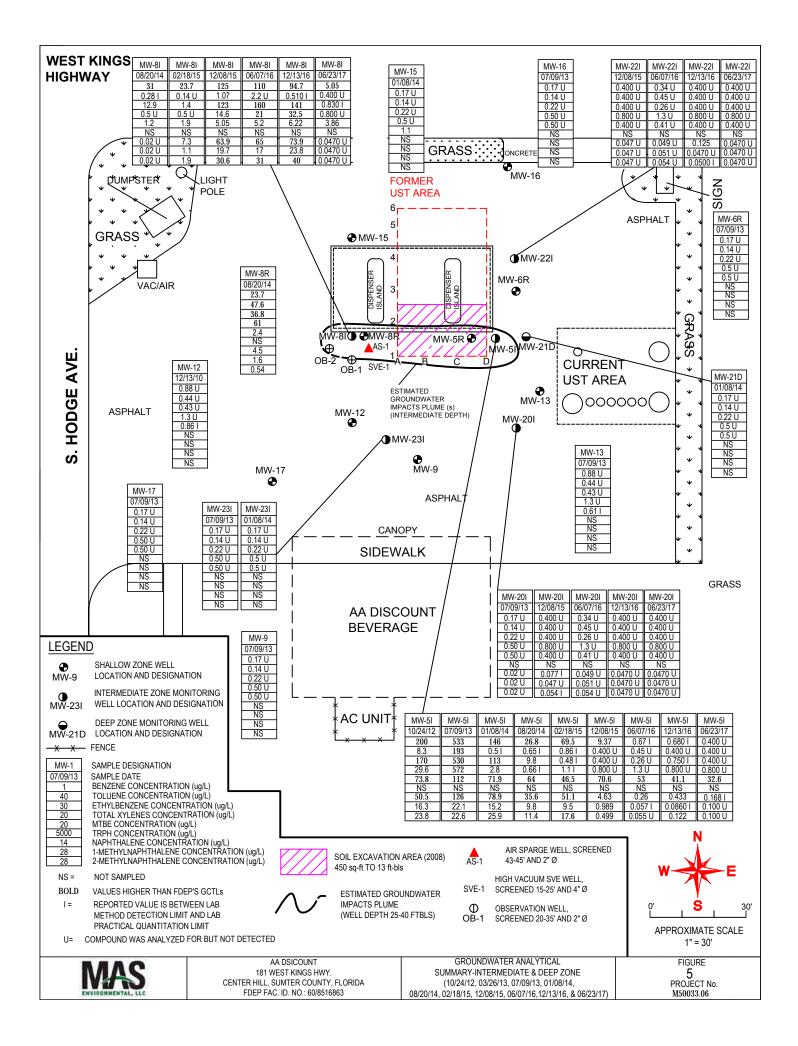
** = As Provided in Chapter 62-550, F.A.C.

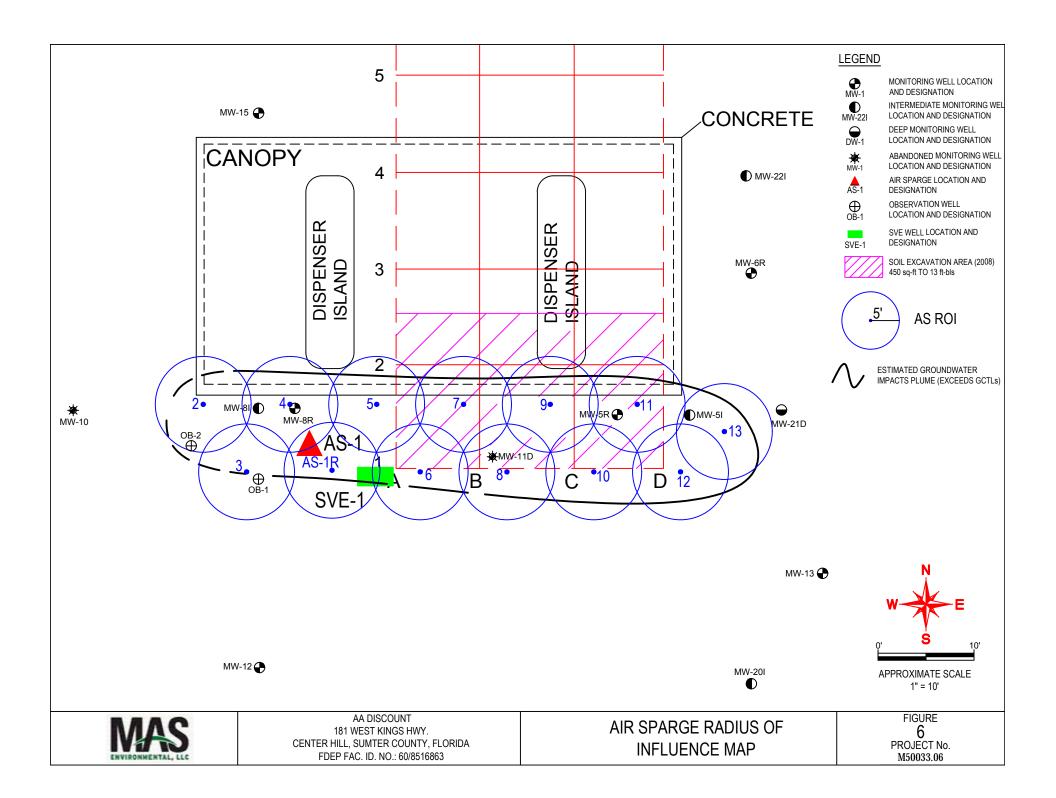

If an analyte is not detected, report the method detection limit [i.e., 0.01 U or ND (0.01); BDL or < 0.01 are not acceptable].

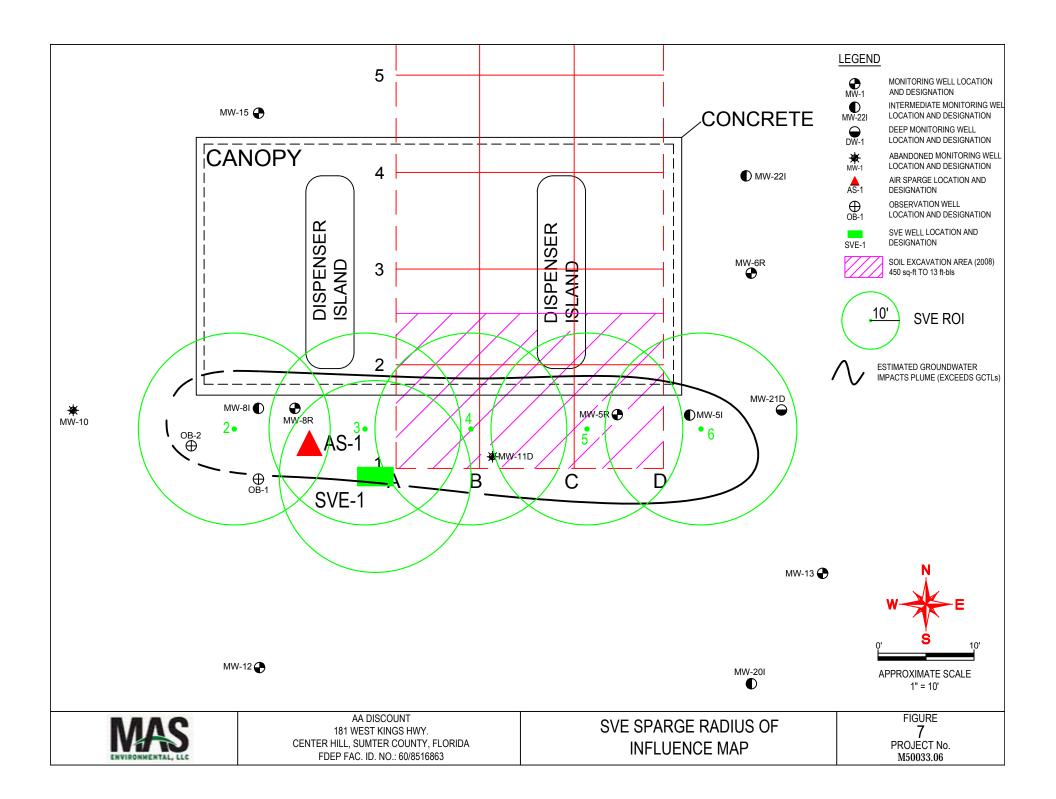

Freshwater Surface Water [FSW], Marine Surface Water [MSW] and Groudnwater of Low Yield/Poor Quality (LY/PQ) CTLs should be added to the base of the table as applicable

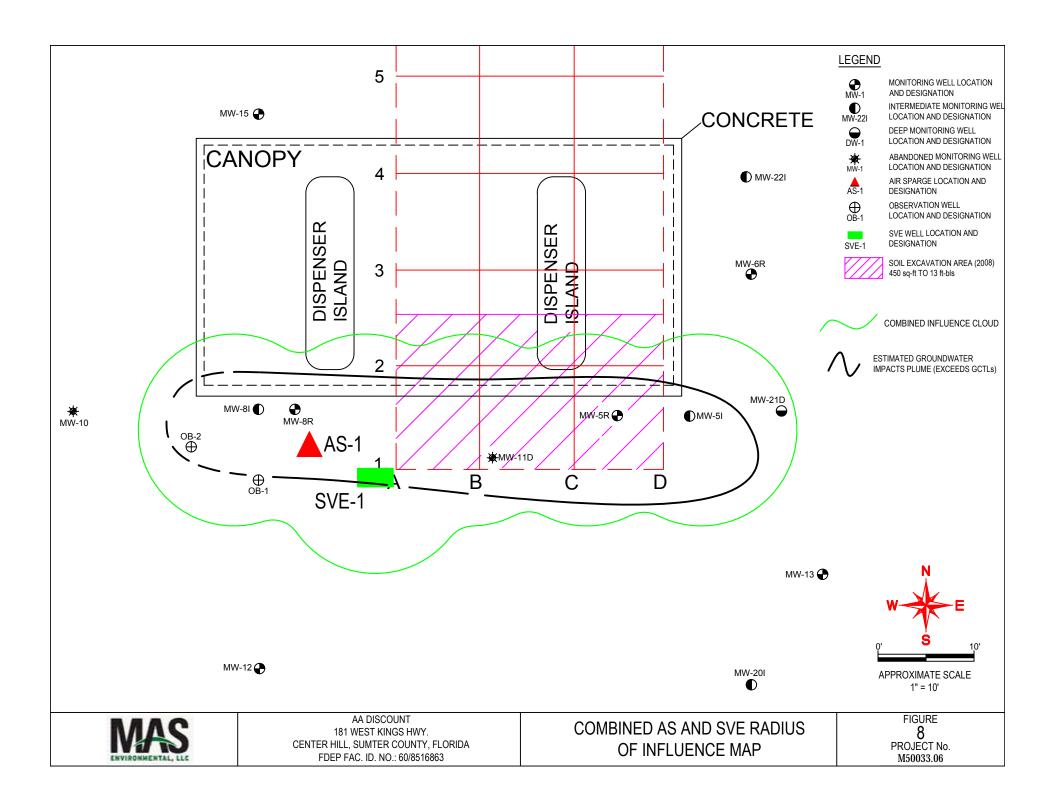

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

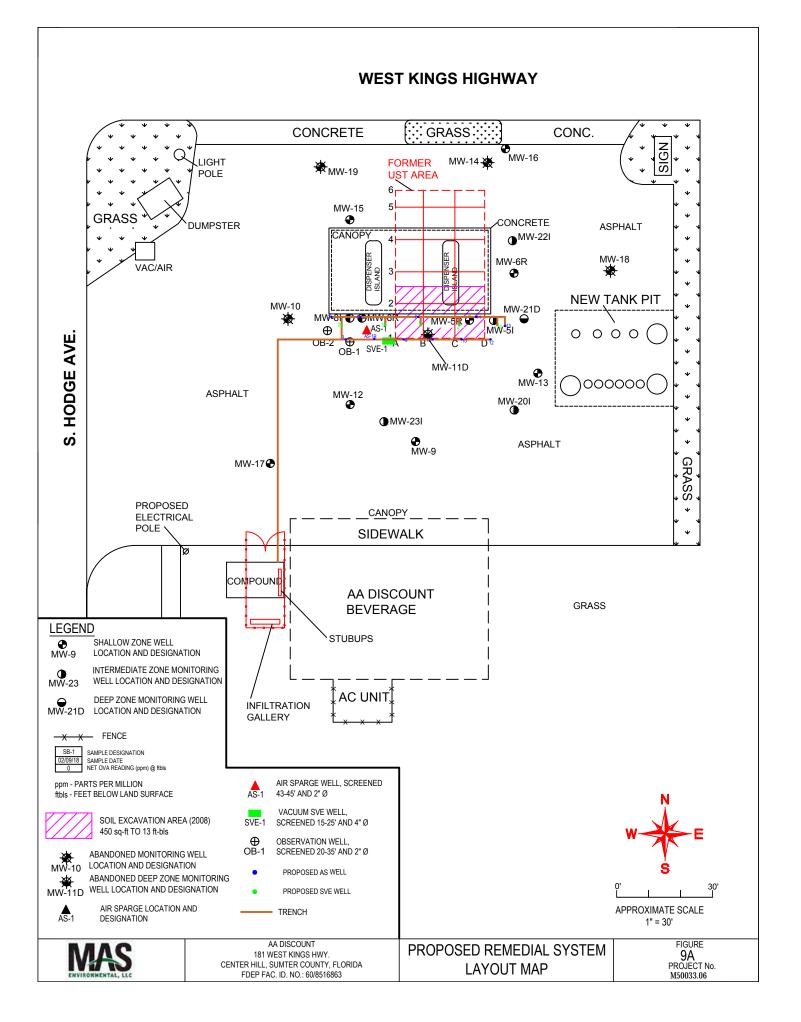

U = The compound was analyzed for but not detected.

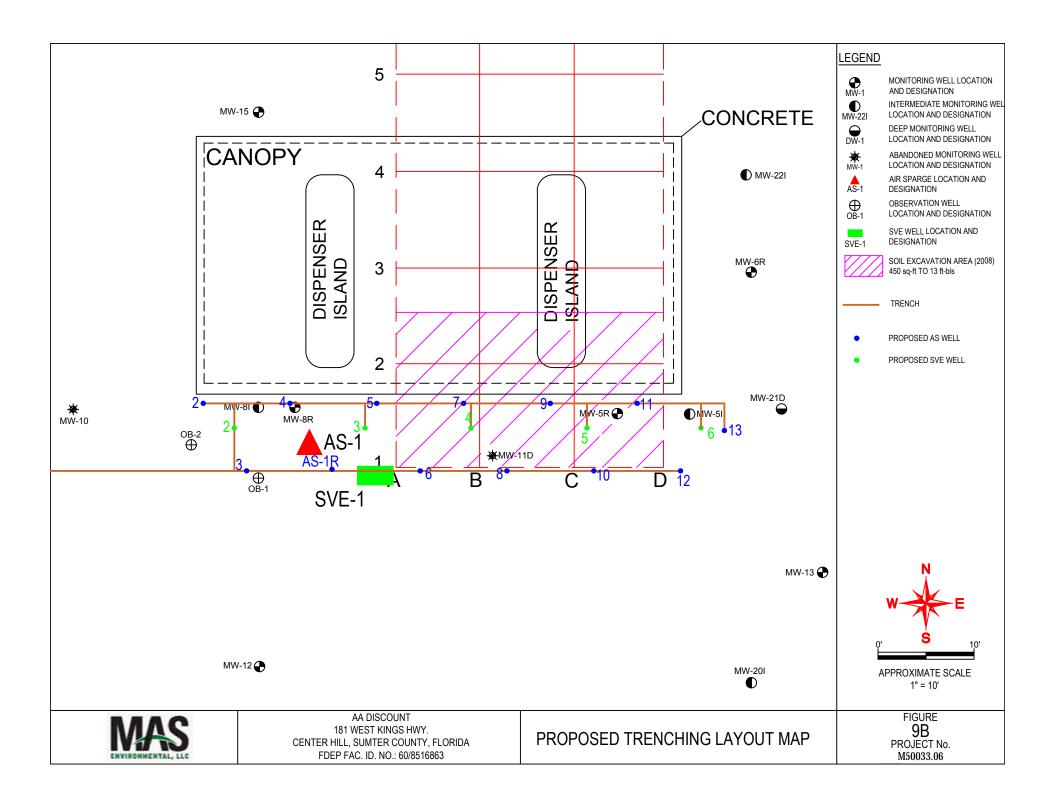

V = Indicates that the analyte was detected in both the sample and the associated method blank.

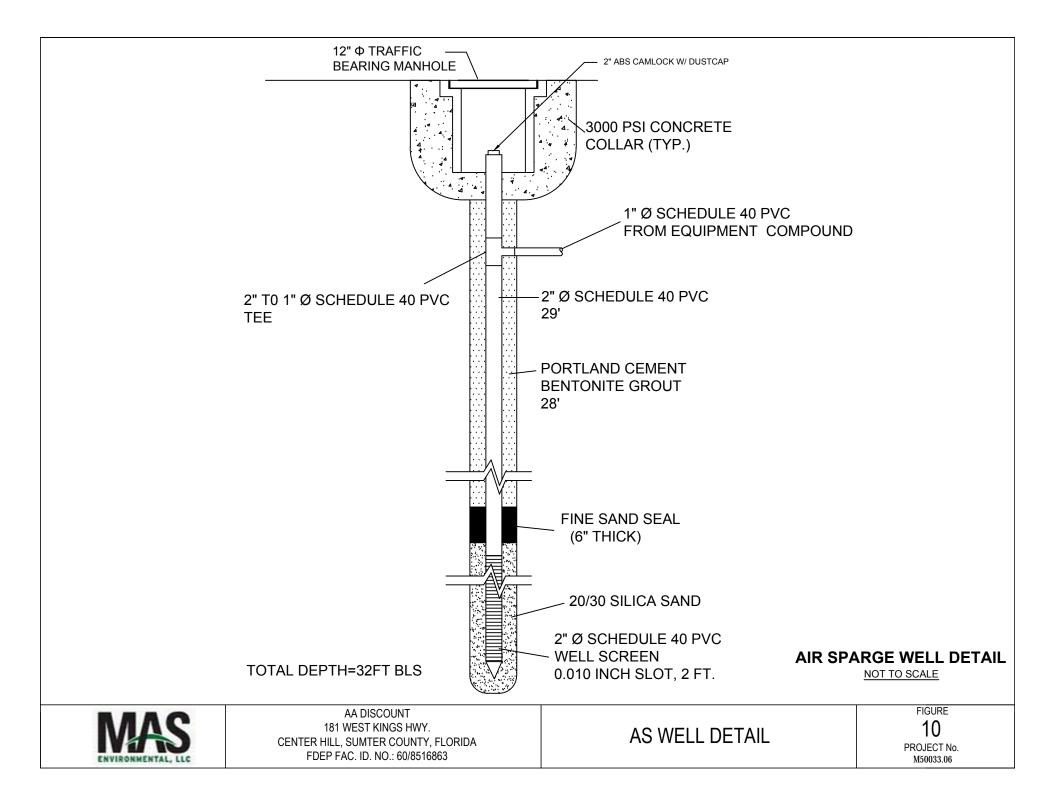


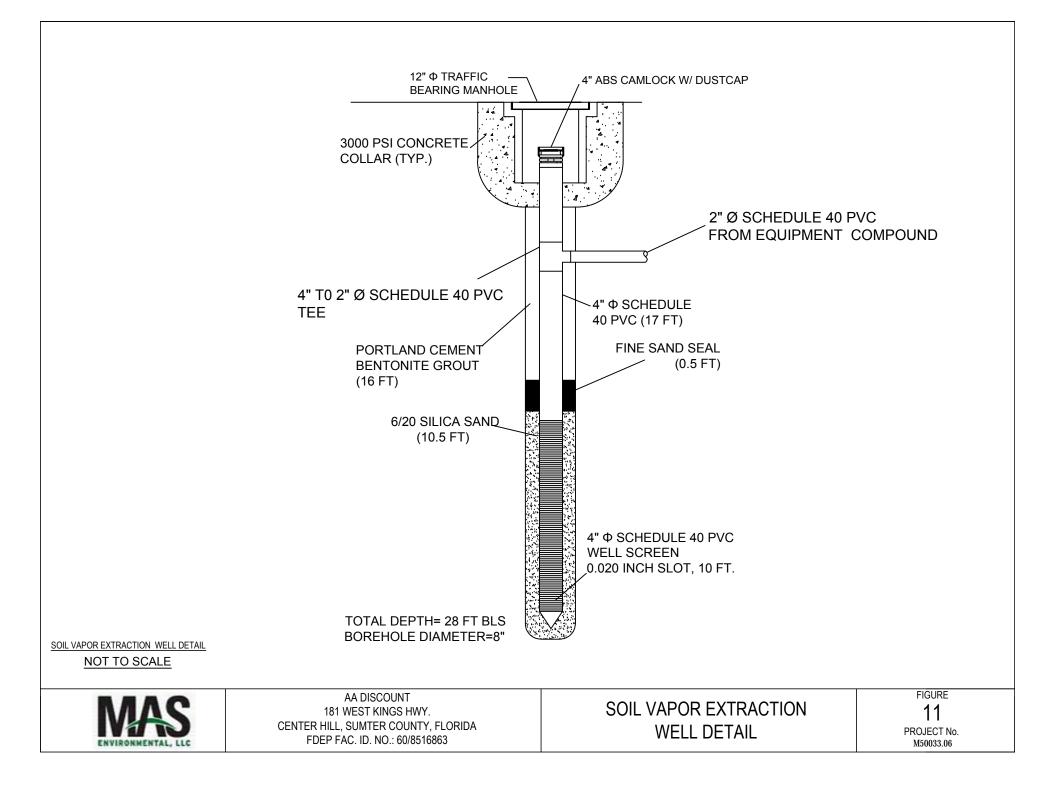


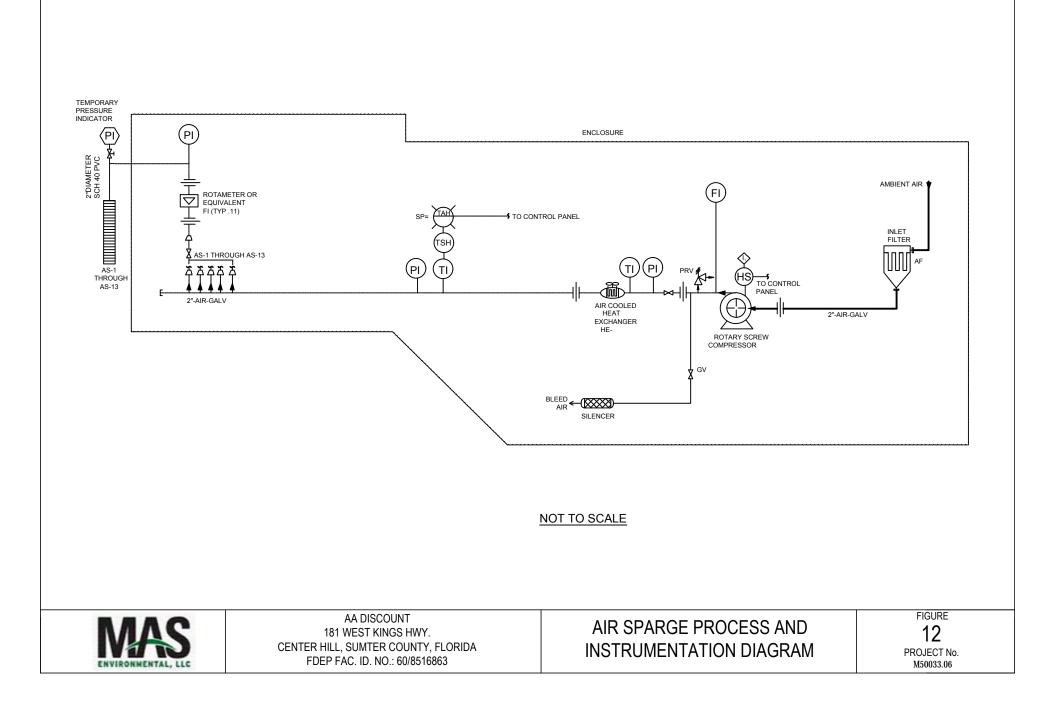


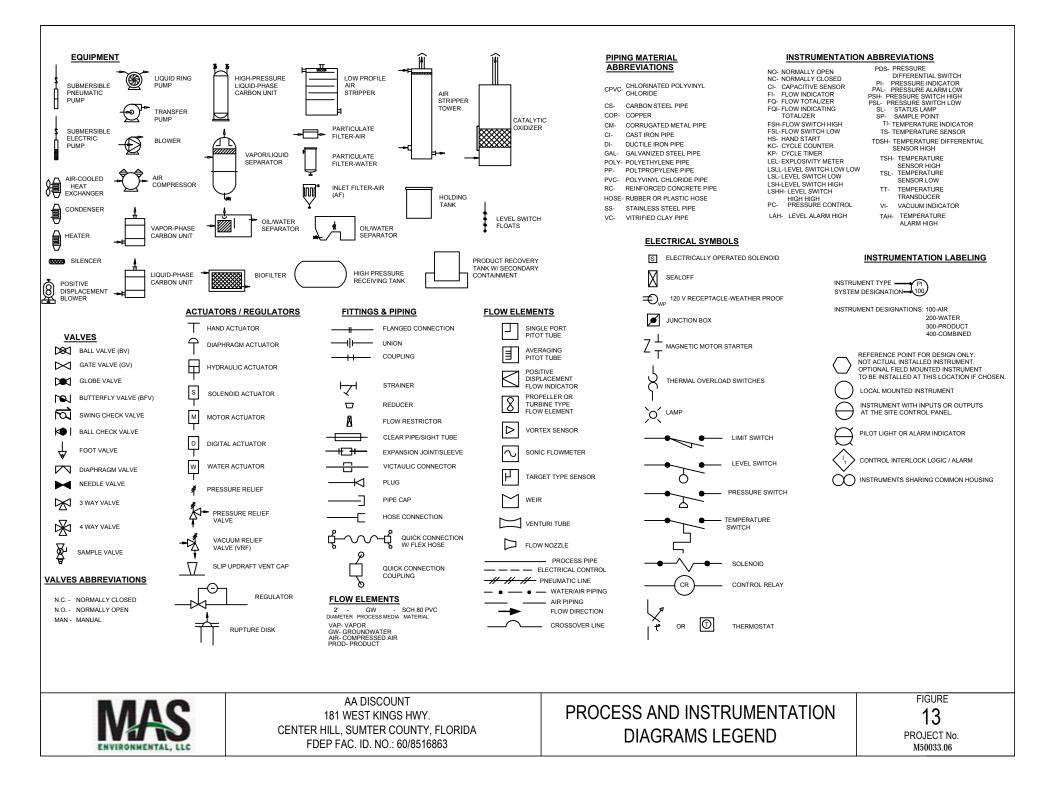


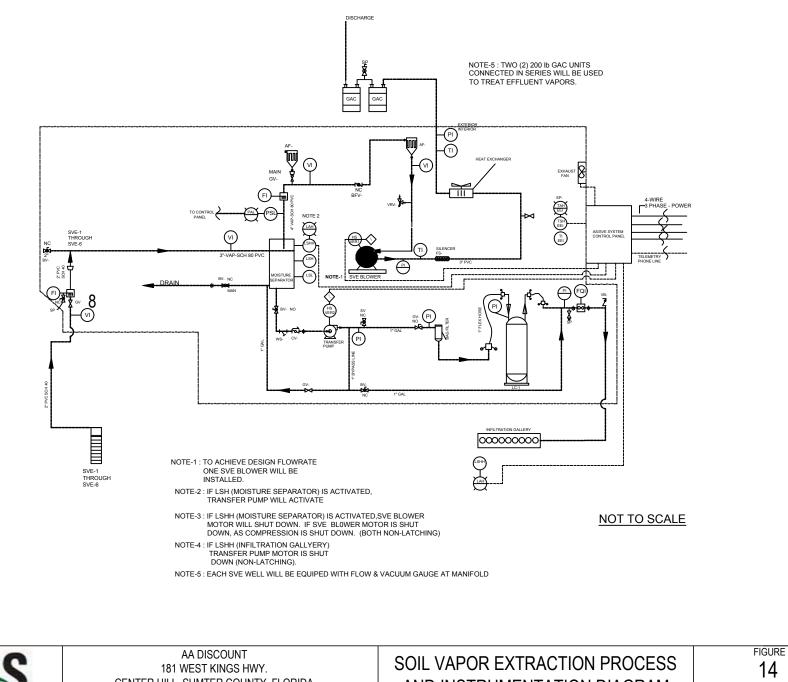


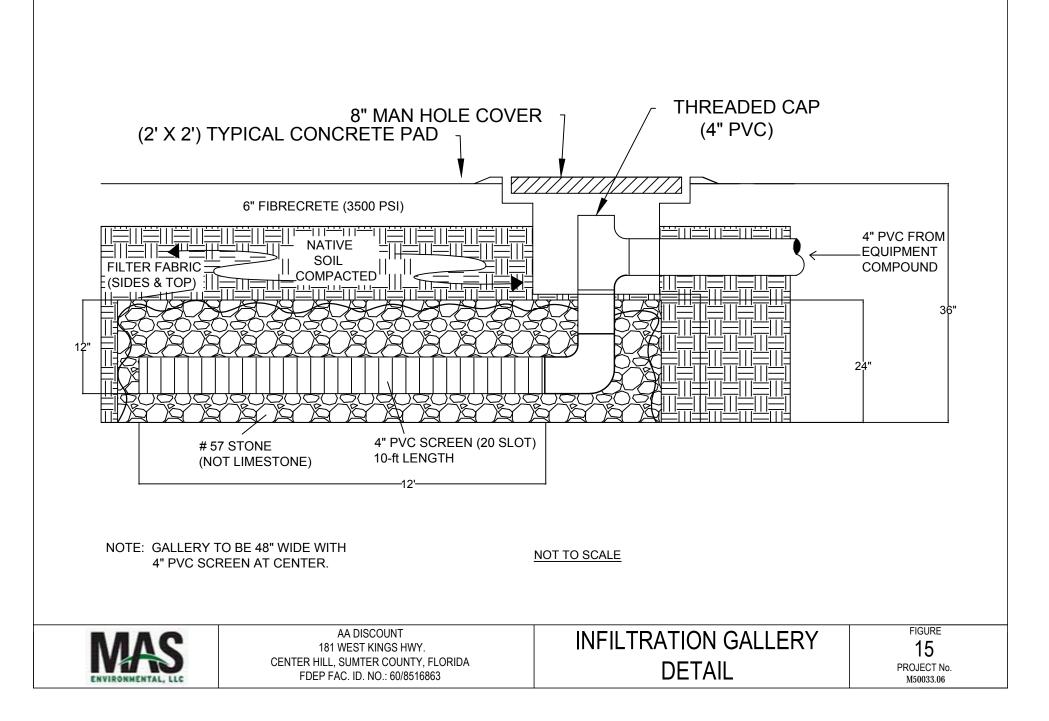


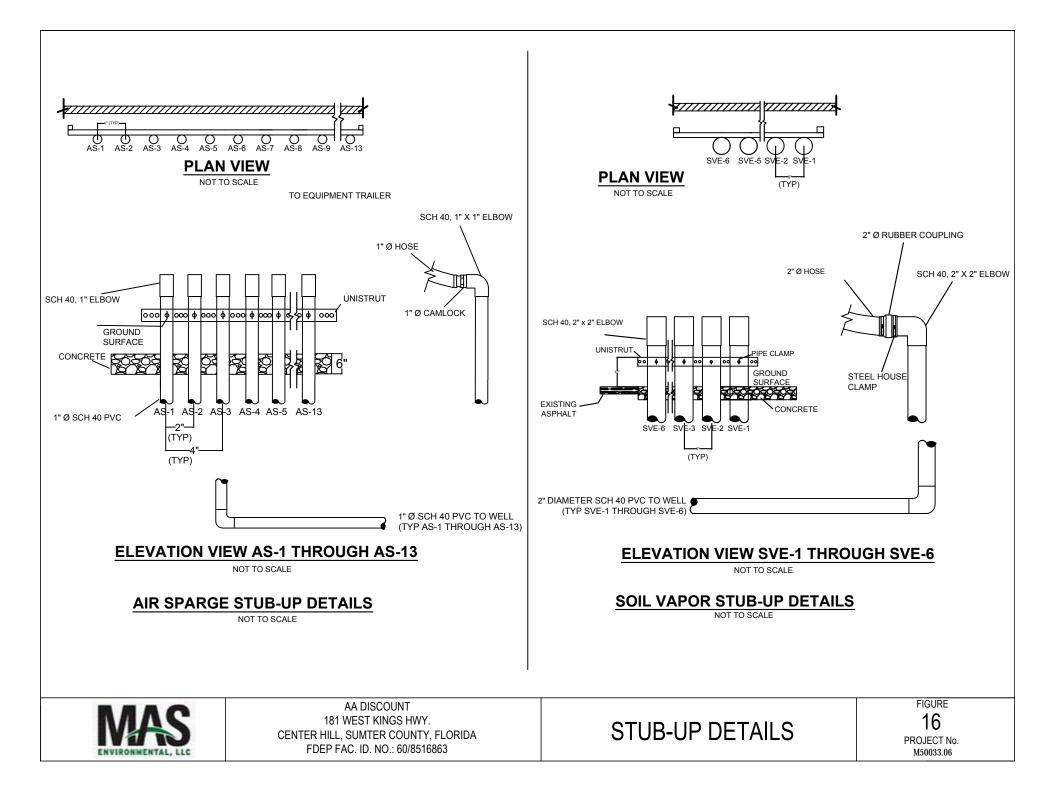


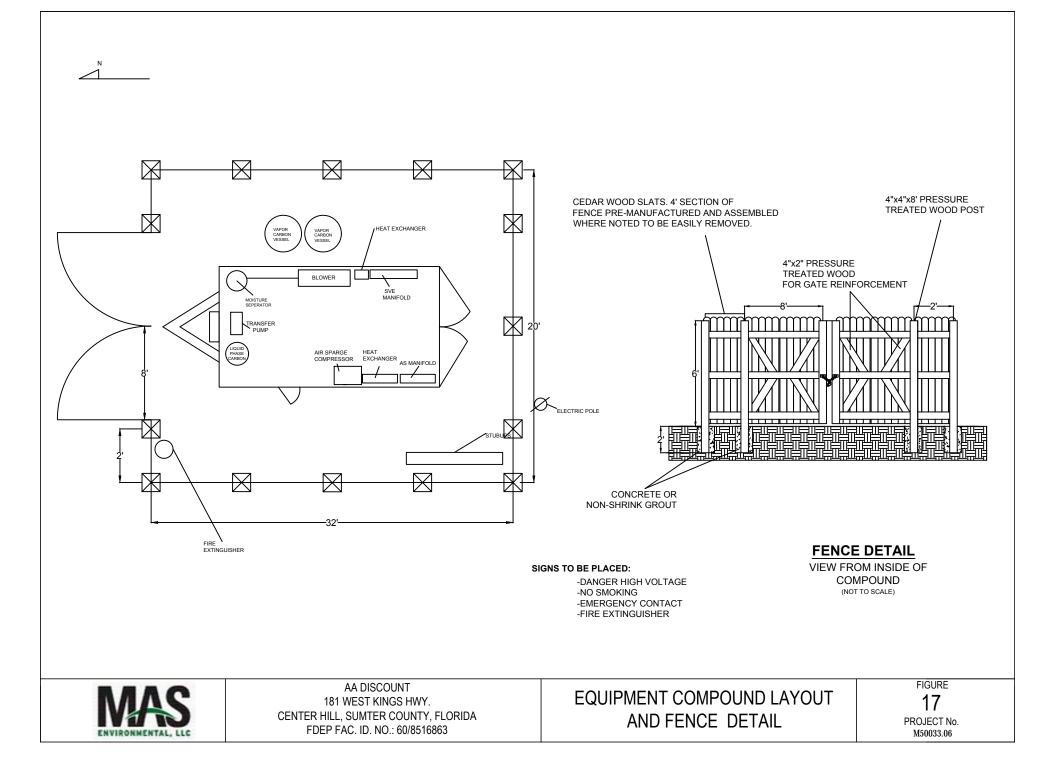


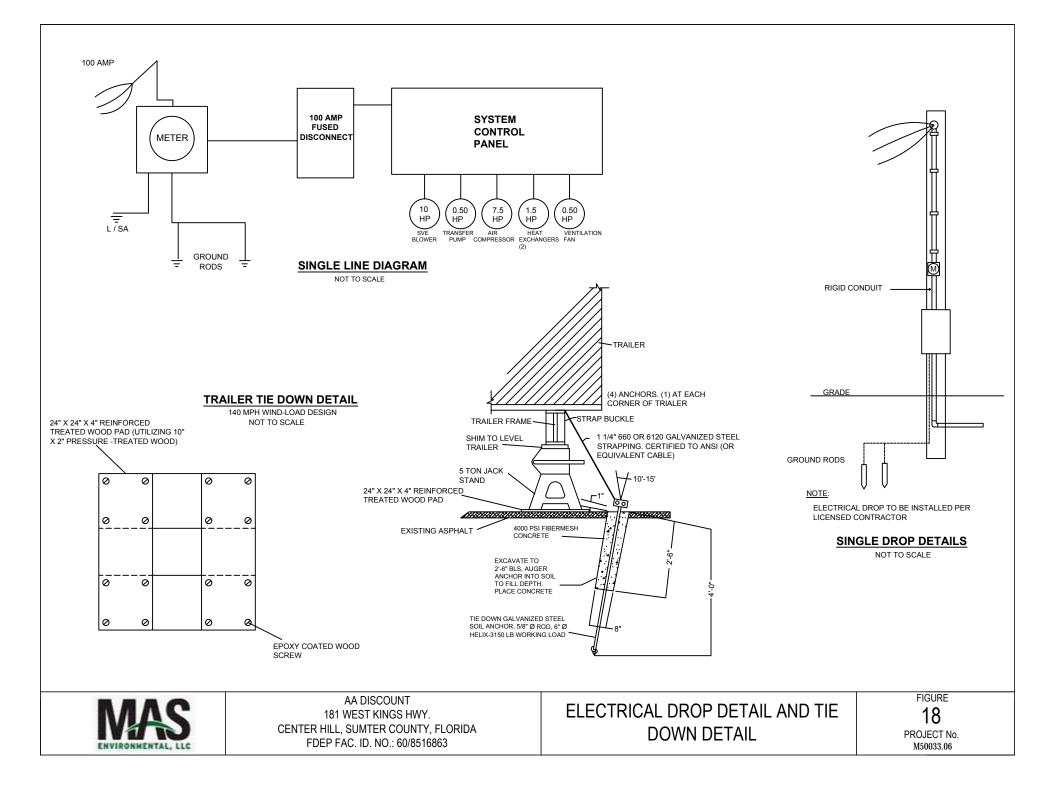







CENTER HILL, SUMTER COUNTY, FLORIDA FDEP FAC. ID. NO.: 60/8516863


ENVIRONMENTAL, LLC


AND INSTRUMENTATION DIAGRAM

14 PROJECT No. M50033.06

Comment:

Potable Well Survey Florida Department of Health Bureau of Environmental Health

Facility ID	8516863	County:
Request:		SUMTER
Name:	ISLAND FOOD STO	DRE 314
Address:	314 KINGS HWY	
	CENTER HILL, FL	33514

 GPS Date / Method:
 8/16/2001
 DGPS

 Decimal Degrees:
 28.649809
 -82.00058

 Deg Min Sec:
 28
 38
 59.3124
 82
 0
 2.0880

Large (>150,000 gpd) Public Supply Wells within 1/2 mile: 2 Small potable wells within 1/4 mile: 0

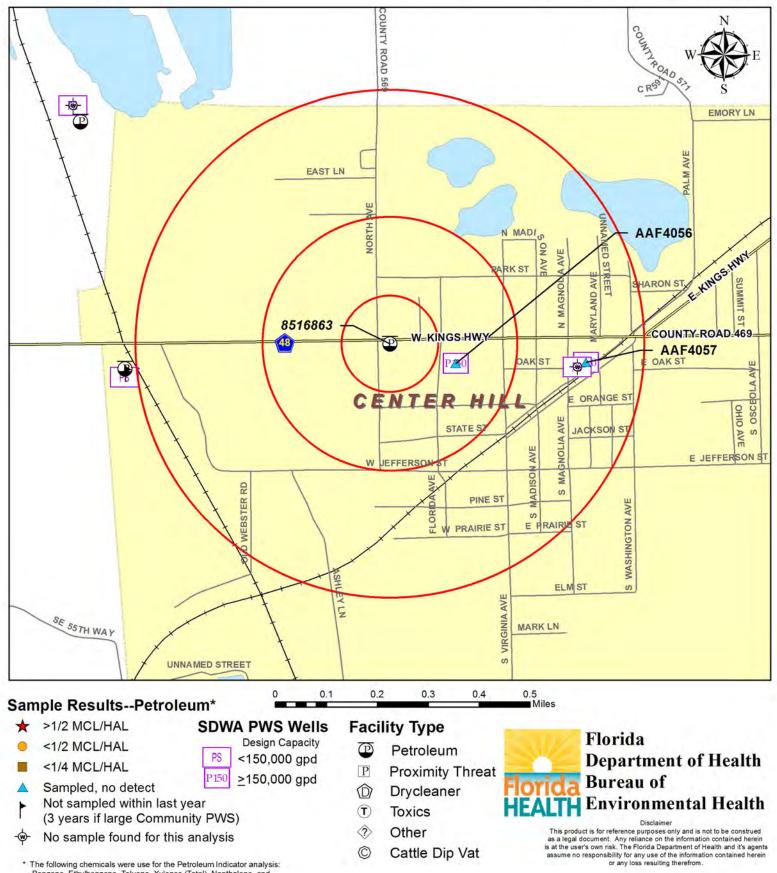
FAVA*:

-AVA". (Surficial: MV

(MV: More Vulnerable; V: Vulnerable; LV: Less Vulnerable) V Intermediate: No Data Floridan: MV RMM

* Florida Aquifer Vulnerability Assessment (FAVA) data obtained from the Florida Department of Environmental Protection. The Florida Department of Health does not guarantee this data to be free from errors or inaccuracies and disclaims any responsibility or liability for interpretations or decisions based thereon.

DEP PWS Wells


Sent to CHD: 5/19/2015

Received: 7/20/2015

Well Address			Location / GPS Method	Distance from Facility	
AAF4056 Well Type: COMMUNITY Status: ACTIVE Permit Number: 6600316 Design Capacity: 1000000	CENTER HILL 2 94 VIRGINIA AVE CENTER HILL, FL 33514		28.64922 -81.998449 DGPS	217.85 m Large PWS W	714.72 ft /ell
BROMOFORM (TH CHLOROFORM (T	15 9:45: OMETHANE (THM) IM)	4.8 1.1 3.3 4.3	ug/L ug/L ug/L ug/L		
AAF4057 CENTER HILL 1 Well Type: COMMUNITY 94 VIRGINIA AVE Status: ACTIVE CENTER HILL, FL 33514 Permit Number: 6600316 Design Capacity: 1000000 Latest Sample ID (VOC): TLH-2015-07-16-44-02 Sample Date: 7/15/2015 10:0 All Results were Below Detection for this Analysis			28.649186 -81.994231 DGPS	622.98 m Large PWS W	2043.86 ft /ell

8516863 ISLAND FOOD STORE 314 314 KINGS HWY CENTER HILL, FL 33514

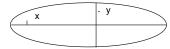
Latitude/Longitude: 28.649809 -82.00058 DDMMSS: 28 38 59.3124 82 0 2.088 Number of large public wells (>150,000 gpd) within the 1/2 mile: 2 Number of small public and private wells within the 1/4 mile: 0

The following chemicals were use for the Petroleum Indicator analysis: Benzene, Ethylbenzene, Toluene, Xylenes (Total), Napthalene, and Methyl-Tert-Butyl-Ether (MTBE)

08/25/2015 WaszinkLM SUMTER

Hydrocarbon Mass Estimate - Dissolved Phase

Well	Sample			Ethyl-	Total	Total		Naph-	1-Methyl-	2-Methyl-	
ID	Date	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	thalene	naphthalene	naphthalene	TRPH
MW-5R	7/20/2016	0.17	0.14	0.22	0.5	1	1.8	0.02	0.02	0.02	
MW-5I	7/20/2016	0.4	0.4	0.4	0.8	2	32.6	0.168	0.1	0.1	
MW-8R	8/20/2017	23.7	47.6	36.8	61	169.1	2.4	4.5	1.6	0.54	
MW-8I	7/20/2016	5.05	0.4	0.83	0.8	7.08	3.86	0.047	0.047	0.047	
	Average	7	12	10	16	45	10	1	0	0	#DIV/0!


All concentrations in ug/l.

Note: One half of the detection limit was used for those analytical results that were below detection limits.

Areal extent of impacted groundwater estimated from RAP figures

** Based on an average thickness of the contaminated water (Depth to Water, ft bls to depth of elevated OVA readings at SB-1) [(19-29) ft bls]

Mass of Individual Contaminants

		.	Ethyl-	Total	Total	MTDE	Naph-	1-Methyl-	2-Methyl-	TRPH
	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	thalene	naphthalene	naphthalene	
X*, ft	60	60	60	60	60	60	60	60	60	60
Y*, ft	15	15	15	15	15	15	15	15	15	15
Zmax**, ft	10	10	10	10	10	10	10	10	10	10
porosity	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
VGW***, gal	13200	13200	13200	13200	13200	13200	13200	13200	13200	13200
VGW, L	50028	50028	50028	50028	50028	50028	50028	50028	50028	50028
Avg Conc, ug/l	7.3	12.1	9.6	15.8	44.8	10.2	1.2	0.4	0.2	0
Total Mass, g	0.37	0.61	0.48	0.79	2.24	0.51	0.06	0.02	0.01	0
Total Mass, lb	0.0008	0.0013	0.0011	0.0017	0.0049	0.0011	0.0001	0.0000	0.0000	0.00

0.01

*Based on estimated areal extent of dissolved hydrocarbons		
**Zmax = estimated vertical extent of dissolved hydrocarbons based on depth to water	Total Disolved Mass =	0.01 lbs
***VGW=volume of groundwater		
	Total Mass =	1 lbs

Note: MAS typically assumes that the petroleum mass adhered to soils in the source area can be estimated by the concentration of petroleum disolved in the groundwater in static conditions. The mass of petroleum compounds disolved in the groundwater are estimated as 1% of the mass of petroleum compounds adhered to the soil.

AIR COMPRESSOR DESIGN CALCULATIONS

DESIGN CRITERIA / ASSUMPTIONS:

- 1. The design flowrate of 2 scfm for the sparge wells.
- 2. A maximum of 13 air sparge points will be operational. A flow of 26 cfm will be chosen for the total flow as all wells will be operational at one time. AS-13 represents the furthest distance from the compound and represents the worst case scenario for pressure loss due to friction.
- 3. The injection point is located 32 feet bls with a 2-ft screened interval to allow for the dispersion of the injected air into the saturated zone. Thus, the injection location (to the bottom of the sparge well) would be approximately 10 ft below the static water level. The design accounts for a depth to water of 20 ft bls.
- 4. The minimum pressure of 0.43 psi/ft represents the pressure required to overcome hydrostatic pressure.
- The maximum pressure is limited to 0.73 psi/ft in order to prevent fracturing and the injection of uncaptured sparge air resulting from excessive pressures within the soil formation.
- 6. For design purposes a well depth of 32 feet with 2 feet of screen was assumed at the sparge points. Thus, the sparge system is designed to overcome the friction lossess of 32 feet of vertical well riser and the horizontal run from the well to the manifold.
- The maximum friction loss (inches H2O/ft tubing) is determined using a nomagraph provided by AMETEK Rotron, Saugerties, NY, assuming 2" diameter tubing and a maximum flow of 2 scfm per well.
- 8. Utilizes the distance to AS-13, the well furthest from the compound for a worst case scenario.
- 9. Based on information supplied by Gast Manufacturing Corp.
- The frictional loss through the rotameter was empirically determined by MAS. All data is for the Dwyer rotameter model RMC-121.
- 11. Based on informaton supplied by American Industrial Heat Transfer Inc.
- 12. The total system flowrate is based on operating a maximum of 10 air sparge points simultaneously at a maximum flowrate per sparge point of 2 cfm.
- This is the pressure which the air compressor should not be operated above to prevent fracturing of the aquifer.

DESIGN CALCULATIONS:

System Flow Rate¹: 2 scfm per well

Pressure Requirements At Injection Points:	Pilot Test	
Sparge Point ²	AS-13	AS-1
Depth of Point ³ (ft)	32	45
Screen Length (ft)	2	2
Depth to Water ³ (ft)	20	24
Max. Hydrostatic Pressure to Overcome (ft H_2O)	10	19
Breakthrough during pilot test (psi)	N/A	27
Minimum Design Pressure ⁴ (psi)		
(Hydrostatic Pressure (ft H ₂ O) x 0.43 psi/ft)	4.3	8.17
Maximum Design Pressure ⁵ (psi)		
(Hydrostatic Pressure (ft H ₂ O) x 0.73 psi/ft)	21.9	31.39
Backpressure due to lithology (from Pilot Test)		18.83

Friction Losses Due to the Well:

Length of Riser ⁶ (ft)	30
Diameter of Sparge well (in)	2
2-inch Friction Loss ⁷ (inches H2O/ft tubing)	0.014
Total Friction Loss Due to Well (psi)	0.42

Friction Losses In Individual Sparge Lines:

Length of Sparge Line ⁸ (ft)	140
Diameter of Sparge Line (in)	1
Number of 45 Degree Elbows	0
Equivalent Length of 45° Pipe (Elbows) ⁹ (ft)	1.5
Number of 90 Degree Elbows	3
Equivalent Length of 90° Pipe (Elbows) ⁹ (ft)	3
Number of Tees	0
Equivalent Length of Pipe (Tees) ⁹ (ft)	10.5
Total length of Pipe (ft)	149
1-inch Friction Loss ⁷ (inches H ₂ O/ft tubing)	0.014
Total Friction Loss Due to Pipe (psi)	2.09

Friction Losses Due To Manifold:

Number of 90 Degree Elbows	3
Equivalent Length of 90° Pipe (Elbows) ⁹ (ft)	3
Total Length of Pipe (Pipe + Elbows) (ft)	9
Friction Loss ⁷ (inches H ₂ O/ft tubing)	0.014
Total Friction Loss Through Piping (psi)	0.13
Friction Loss Through Rotameter ¹⁰ (psi)	1.1
Friction Loss Through Heat Exchanger ¹¹ (psi)	1
Total Friction Loss Due to Manifold (psi)	2.23

Required Compressor Performance:

Total System Flowrate ¹² (scfm)	26
Minimum System Pressure (psi)	23.56
Maximum System Pressure ¹³ (psi)	26.63
Compressor capability pressure	31.42

SVE BLOWER DESIGN CALCULATIONS

DESIGN CRITERIA / ASSUMPTIONS:

- 1. The design flowrate per linear feet of vapor extraction well will be around 2 scfm , based on the extraction flow rate per length of exposed screent.
- 2. The design vacuum of 75 inches of water is expected to be applied based on pilot test activities.
- 3. The maximum friction loss (inches H2O/ft piping) is determined using a nomagraph provided by Rotron, assuming 2" diameter piping and a flow of 20 scfm.
- 4. Based on information supplied by Rotron.
- 5. Based on information supplied by Rotron. Assume manifold is constructed of 3" diameter tees, valves and 90 degree elbows. For individual SVE points.
- 6. Based on information supplied by Rotron and MAS experience.
- 7. This performance requirement does not account for pressure losses due to the equipment and appurtenances on the outlet side of the blower (in addition to a 15 foot high discharge stack).
- 8. The total system flowrate is based on operating SVE-1 through SVE-6 (10' length each) wells at one time.
- 9. Based on information supplied by Carbonair. Carbon on discharge side of the blower (based on sizing)***
- 10. Based on MAS's experience, the pressure losses associated with the blower discharge be added to the vacuum losses to determine the correct required performance of the blower. However, these losses are negligible.

DESIGN CALCULATIONS:

System Flow Rate¹: 120scfm

Friction Losses in Individual SVE Lines:

SVE well	SVE-6
Design Vacuum ² (inches of water column)	75
Max. # of SVE wells in operation	6
Length of 2-inch SVE Line ² (ft)	140
Friction Loss ³ (inches H ₂ O/ft piping)	0.014
Number of Tees	0
Equivalent Length of Pipe (Tees) ⁴ (ft)	NA
Number of 90 Degree Elbows	5
Equivalent Length of Pipe (Elbows) ⁴ (ft)	25
Total Friction Loss Due To Pipe (inches H ₂ O)	2.31

Friction Losses Due to Manifold (3" diameter):

Number of 90 Degree Elbows	3
Equivalent Length of Pipe (Elbows) ⁵ (ft)	7
Number of Tees (per leg)	1
Equivalent Length of Pipe (Tees) ⁵ (ft)	6.5
Number of Valves (per leg)	1
Equivalent Length of Pipe (Valves) ⁵ (ft)	0.90
Total Length of Pipe ⁵ (Pipe + Elbows) (ft)	14.4
Friction Loss ⁵ (inches H ₂ O/ft piping)	0.082
Total Friction Loss Through Manifold (inches H ₂ O)	1.18

Other Friction Losses (Total Flow):

Friction Loss from Air Filter ⁶ (in H_2O)	4
Friction loss from Moisture Separator ⁶ (in H ₂ O)	4
Vacuum loss across VGAC9 (inches H2O)***	10
Total Other Friction Loss (inches H ₂ O)	18

Required Blower Vacuum Performance⁷:

Total System Flowrate ⁸ (scfm)	120
Required System Vacuum (inches H ₂ O)	96

Required Blower Performance:

Total System Flowrate ⁸ (scfm)	60
Design System Vacuum (inches H ₂ O)	96.5
Design System Vacuum (inches Hg)	7.10
Blower maximum Vacuum (demand) inches H2O	128.6

Blower maximum Vacuum (demand), inches H2O

128.6

hf = Kv*v^2/2g hf = head loss, ft **K = Constant for Valve** V = velocity at ft/s 9=9.81 m/s2 = 32.174 ft/s2

Manifold:

Calculation for 3-inch diamater, Standard Tee		
32.174	g, ft/s2	
3	diameter of pipe, inches	
0.36	к	
100	V, cfm	
1.666666667	V, cubic feet per second	
2880	V, cubic inches per second	
7.065	Area of pipe, sq in	
0.0490625	Area of pipe, sq ft	
407.6433121	inches per second	
33.97027601	feet per second	
6.456030875	hf	

Ball Valves:

Calculation for 3-inch diamater, Standard Tee

32.174	g, ft/s2
3	diameter of pipe, inches
0.05	к
100	V, cfm
1.666666667	V, cubic feet per second
2880	V, cubic inches per second
7.065	Area of pipe, sq in
0.0490625	Area of pipe, sq ft
407.6433121	inches per second
33.97027601	feet per second
0.896670955	hf

Calculation for 4-inch diamater, Standard Tee		
32.174	g, ft/s2	
4	diameter of pipe, inches	
0.34	к	
50	V, cfm	
0.833333333	V, cubic feet per second	
1440	V, cubic inches per second	
12.56	Area of pipe, sq in	
0.087222222	Area of pipe, sq ft	
114.6496815	inches per second	
9.554140127	feet per second	
0.4823109	hf	
L	1	

Calculation for 4-inch diamater, Standard Tee		
32.174	g, ft/s2	
4	diameter of pipe, inches	
0.05	к	
350	V, cfm	
5.833333333	V, cubic feet per second	
10080	V, cubic inches per second	
12.56	Area of pipe, sq in	
0.087222222	Area of pipe, sq ft	
802.5477707	inches per second	
66.87898089	feet per second	
3.475475605	hf	

VAPOR-PHASE CARBON USAGE CALCULATION SHEET

1.) Carbon Treatment System Information

Estimated BTEX adsorption capacity (by weight)	25 %
Estimated C4-C10 hydrocarbon adsorption capacity (by weight)	25 %
Estimated carbon removal efficiency for BTEX/C4-C10 chs	99 %
Process vapor flow rate [*]	120 cfm
Discharge duration	24 hours/day
Amount of vapor-phase carbon (primary)**	200 pounds

* Vapor flow rate based on all vapor extraction wells operating.

** Carbon in Series. Measurement of Breakthrough on First Carbon Drum only (Primary).

2.) Process Vapor Stream Analytical Data

constituent	GAC Influent conentration (ppmv)	GAC Influent concentration ** (μg/L)
Benzene	-	3.6
Toluene	-	2.4
Ethylbenzene	-	3.6
Xylenes	-	10
BTEX	-	19.6
C4-C10 HCs	-	1.8

 $(\mu g/L) = (mg/m^3)$

Based on Pilot Test emissions data, concentrations of TPH of 1.8 mg/m3 and design cfm of 120, a total concentration of effluent is estimated as follows:

0.019592 lbs/day (based on TPH)

3.) Pre-Treatment System Loadings

Vapor volume removed/treated per day	172,800 ft ³ /day
Pre-treatment BTEX loading	0.211 lbs/day
Pre-treatment C4-C10 CH loading	0.019 lbs/day

4.) Effluent Concentrations and Loading

Effluent BTEX concentration	0.196 μg/L
Effluent C4-C10 HC concentration	0.018 μg/L
Effluent BTEX loading	0.002 lbs/day
Effluent C4-C10 HC loading	0.000 lbs/day

5.) Carbon Usage and Removal Efficiency

Carbon used by BTEX	0.844 lbs/day
Carbon used by C4-C10 HCs	0.078 lbs/day
Total carbon usage rate	0.92 lbs/day
Time until breakthrough of carbon unit(s)	216.9 days

NOTES:

NOTES:		1					
lb/day loading =	conc. (µg/L)	1 mg	1 lb	1,000 L	0.0283 m ³	flowrate (ft ³ /day)	
		1,000 µg	454,000 mg	m ³	ft ³		
lb carbon used = lb HCs removed/(%adsorption)							
μg/L =	ppmv	molecular	weight		C4-C10 HC m	nol wt = 90	
		24.05 L/	'mol				

Cleanup Time Input Sheet

- **10** k = number of injection points
- 10 Roi = radius of influence of each injection point (ft)
- H = depth of screen below water table (ft)
- 100 f = percent of groundwater plume being influence by system
- 100 d = percent of day (24 hrs) that the sparging system will be operated.
- 4 Q = total injected air flow rate per well

CONCENTRATIONS (ppb)

- 7 Benzene
- 12 Toluene
- 10 Ethylbenzene
- 16 Total Xylenes
- 45 MTBE
- 1 Naphthalene
- 0 1-Methylnaphthalene
- 0 2-Methylnaphthalene
- 0 TRPH

CLEANUP TIME ESTIMATE - BENZENE

Reduction is based on the First Order Decay equation defined by the following:

Reference: Air Sparging Model of Predicting Groundwater Cleanup Rate, Sellers & Schreiber

C_o = initial average Benzene concentration

$$C_t = C_o e^{-Bt}$$

 C_t = cleanup standard for Benzene

- B = decay coefficient calculated using site specific parameters
- t = time to reach cleanup standard

where: $B = fd(D/L)(S/V)(H/v)(Q/V_s)$

- *f* = fraction of the groundwater plume being influenced
- *d* = fraction of a 24 hour day that the sparging system is operated
- **D** = contaminant diffusion coefficient in water $(1 \times 10^{-5} \text{ cm}^2/\text{sec} \text{ estimated for non-polar VOCs})$
- L = diffusive distance around bubble (literature range of 0.5 2 mm), assumed equal to bubble radius, r
- S/V = average effective surface to volume ratio of a bubble, estimated using bubble readius (S/V = 3/r)
- *H* = depth of screen below groundwater table
- Q = total injected air flow rate into groundwater
- V_{s} = volume of water in the contaminant plume in contact with sparging bubbles

and:
$$V_s = k \pi R_{oi}^2 H n$$

- k = number of injection points
- R_{oi} = radius of influence of each injection point
- H = depth of screen below groundwater table
- n = subsurface porosity

Calculations			
$V_s = k \pi R_{oi}^2 H n$	k =	10	site specific
	R ₀₁ =	3.0 m	assumed 10 feet bls.
	H =	7.0 m	site specific (23 feet).
	n =	0.3	literature for sand
	V _{s =}	614 m ³	calculated
$B = fd(D/L)(S/V)(H/v)(Q/V_s)$			
	<i>f</i> =	1.0	site specific
	d =	1.0	site specific
	D =	1.00E-05	literature
	L =	1.50 mm	literature
	S/V =	2.00	calculated from L
	H =	7.0 m	site specific
	v =	0.25 m/sec	literature
	Q =	0.0189 m ³ /sec	site specific (4.0 cfm/well).
	$V_s =$	613.82398 m ³	calculated above
	B =	1.149E-06 sec ⁻¹	calculated
$t = -(1/B)\ln(C_t/C_o)$			
	=	7 ppb	Highest recent benzene concentration
	=	1 ppb	Cleanup standard for benzene
	=	19.6 days	Predicted Time to Cleanup
	=	0.05 Years	
	=	0.2 Years	With 3x Safety Factor

CLEANUP TIME ESTIMATE - ETHYLBENZENE

Reduction is based on the First Order Decay equation defined by the following:

Reference: Air Sparging Model of Predicting Groundwater Cleanup Rate, Sellers & Schreiber

C_o = initial average Ethylbenzene concentration

$$C_t = C_o e^{-Bt}$$

 $\mathsf{C}_t~$ = cleanup standard for Ethylbenzene

- B = decay coefficient calculated using site specific parameters
- t = time to reach cleanup standard

where: $B = fd(D/L)(S/V)(H/v)(Q/V_s)$

- *f* = fraction of the groundwater plume being influenced
- *d* = fraction of a 24 hour day that the sparging system is operated
- **D** = contaminant diffusion coefficient in water $(1 \times 10^{-5} \text{ cm}^2/\text{sec} \text{ estimated for non-polar VOCs})$
- L = diffusive distance around bubble (literature range of 0.5 2 mm), assumed equal to bubble radius, r
- S/V = average effective surface to volume ratio of a bubble, estimated using bubble readius (S/V = 3/r)
- *H* = depth of screen below groundwater table
- Q = total injected air flow rate into groundwater
- V_{s} = volume of water in the contaminant plume in contact with sparging bubbles

and: $V_s = k\pi R_{oi}^2 H n$

k = number of injection points

 $R_{\sigma \bar{\iota}}$ = radius of influence of each injection point

- H = depth of screen below groundwater table
- n = subsurface porosity

Calculations			
$V_s = k \pi R_{oi}^2 H n$	k =	10	site specific
	$R_{oi} =$	3.0 m	assumed (10 ft)
	H =	7.0 m	site specific (14 ft)
	n =	0.3	literature for sand
	V _{a =}	614 m ³	calculated
$B = fd(D/L)(S/V)(H/v)(Q/V_s)$			
	<i>f</i> =	1.0	site specific
	<i>d</i> =	1.0	site specific
	D =	1.00E-05	literature
	L =	1.50 mm	literature
	S/V =	2.00	calculated from L
	<i>н</i> =	7.0 m	site specific
	v =	0.25 m/sec	literature
	Q =	0.0189 m ³ /sec	(8.0 cfm/well)
	$V_s =$	613.82398 m ³	calculated above
	B =	1.149E-06 sec ⁻¹	calculated
$t = -(1/B)\ln(C_t/C_o)$			
	=	10 ppb	Highest recent benzene concentration
	=	30 ppb	Cleanup standard for Ethylbenzene
	=	-11.1 days	Predicted Time to Cleanup
	=	-0.03 Years	
	=	-0.1 Years	With 3x Safety Factor

CLEANUP TIME ESTIMATE - TOTAL XYLENE

Reduction is based on the First Order Decay equation defined by the following:

Reference: Air Sparging Model of Predicting Groundwater Cleanup Rate, Sellers & Schreiber

 C_o = initial average Xylene concentration

$$C_t = C_o e^{-Bt}$$

 C_t = cleanup standard for Xylene

- B = decay coefficient calculated using site specific parameters
- t = time to reach cleanup standard

where: $B = fd(D/L)(S/V)(H/v)(Q/V_s)$

- *f* = fraction of the groundwater plume being influenced
- *d* = fraction of a 24 hour day that the sparging system is operated
- **D** = contaminant diffusion coefficient in water $(1 \times 10^{-5} \text{ cm}^2/\text{sec} \text{ estimated for non-polar VOCs})$
- L = diffusive distance around bubble (literature range of 0.5 2 mm), assumed equal to bubble radius, r
- S/V = average effective surface to volume ratio of a bubble, estimated using bubble readius (S/V = 3/r)
- *H* = depth of screen below groundwater table
- Q = total injected air flow rate into groundwater
- V_{s} = volume of water in the contaminant plume in contact with sparging bubbles

and:
$$V_s = k \pi R_{oi}^2 H n$$

- k = number of injection points
- R_{oi} = radius of influence of each injection point
- H = depth of screen below groundwater table
- n = subsurface porosity

Calculations			
$V_s = k \pi R_{oi}^2 H n$	k =	10	site specific
	$R_{oi} =$	3.0 m	assumed 10 feet bls.
	H =	7.0 m	site specific (23 feet).
	<i>n</i> =	0.3	literature for sand
	V _{z =}	614 m ³	calculated
$B = fd(D/L)(S/V)(H/v)(Q/V_s)$			
	<i>f</i> =	1.0	site specific
	d =	1.0	site specific
	D =	1.00E-05	literature
	L =	1.50 mm	literature
	S/V =	2.00	calculated from L
	H =	7.0 m	site specific
	v =	0.25 m/sec	literature
	Q =	0.0189 m ³ /sec	site specific (4.0 cfm/well).
	V _s =	613.82398 m ³	calculated above
	B =	1.149E-06 sec ⁻¹	calculated
$t = -(1/B)\ln(C_t/C_o)$			
	C _o =	16 ppb	Highest recent benzene concentration
	C _t =	20 ppb	Cleanup standard for Xylene
	t =	-2.2 days	Predicted Time to Cleanup
	t =	-0.01 Years	
	t =	0.0 Years	With 3x Safety Factor

CLEANUP TIME ESTIMATE - Naphthalene

Reduction is based on the First Order Decay equation defined by the following:

Reference: Air Sparging Model of Predicting Groundwater Cleanup Rate, Sellers & Schreiber

C_o = initial average Naphthalene concentration

$$C_t = C_o e^{-Bt}$$

B = decay coefficient calculated using site specific parameters

t = time to reach cleanup standard

 C_t = cleanup standard for Naphthalene

where: $B = fd(D/L)(S/V)(H/v)(Q/V_s)$

- *f* = fraction of the groundwater plume being influenced
- *d* = fraction of a 24 hour day that the sparging system is operated
- **D** = contaminant diffusion coefficient in water $(1 \times 10^{-5} \text{ cm}^2/\text{sec} \text{ estimated for non-polar VOCs})$
- L = diffusive distance around bubble (literature range of 0.5 2 mm), assumed equal to bubble radius, r
- S/V = average effective surface to volume ratio of a bubble, estimated using bubble readius (S/V = 3/r)
- *H* = depth of screen below groundwater table
- Q = total injected air flow rate into groundwater
- V_{s} = volume of water in the contaminant plume in contact with sparging bubbles

and: $V_s = k\pi R_{oi}^2 H n$

k = number of injection points

 R_{oi} = radius of influence of each injection point

- H = depth of screen below groundwater table
- n = subsurface porosity

Calculations				
$V_s = k \pi R_{oi}^2 H n$	\boldsymbol{k}	=	10	site specific
	R	<i>i</i> =	3.0 m	assumed (10 ft)
	H	=	7.0 m	site specific (14 ft)
	n	=	0.3	literature for sand
	V_s	=	614 m ³	calculated
$B = fd(D/L)(S/V)(H/v)(Q/V_s)$				
	f	=	1.0	site specific
	d	=	1.0	site specific
	D	=	1.00E-05	literature
	L	=	1.50 mm	literature
	S/	7=	2.00	calculated from L
	H	=	7.0 m	site specific
	v	=	0.25 m/sec	literature
	Q	=	0.0189 m ³ /sec	(8.0 cfm/well)
	\tilde{V}_s	=	613.82398 m ³	calculated above
	В	=	1.149E-06 sec ⁻¹	calculated
$t = -(1/B)\ln(C_t/C_o)$				
		=	1 ppb	Highest recent benzene concentration
		=	20 ppb	Cleanup standard for Naphthalene
		=	-30.2 days	Predicted Time to Cleanup
		=	-0.08 Years	
		=	-0.2 Years	With 3x Safety Factor

Throughout our catalog, you will find terminology used for air moving selection and product sizing. Below are a few of the key terms:

Flow

- Volume Rate/Time
- Charts are in SCFM, m3/min, or L/S
- SCFM = Standard Cubic Feet Per Minute (American) where temperature = 68°F, air density = 0.075 lb/cubic foot, and altitude = 0 feet above sea level
- M³/min = Cubic Meters Per Minute (Metric)
- L/sec = Liters Per Second (Metric)
- 1 m³/min = 35.3 SCFM
- 1 L/sec = 2.119 SCFM
- See Standard Engineering Conversions for other flows on pg. I-2

Pressure

- Force/Area
- Rotron charts are in IWG, PSIG, MM of Water, IHG, or mbar
- IWG = Inches of Water Gauge (American)
- PSIG = Pounds Per Square Inch Gauge (American)
- MM of Water = Millimeter of Water Gauge (Metric)
- IHG = Inches of Mercury Gauge (American)
- mbar = Millibar Gauge (Metric)
- PSIA = Pounds Per Square Inch Absolute (American)
- 27.7 IWG = 1 PSIG
- 703.58 MM of Water = 1 PSIG
- 2.036 IHG = 1 PSIG
- 0.069 Bars = 69 mbar = 1 PSIG
- Standard Atmosphere = 0 PSIG = 14.7 PSIA
- See Basic Fan Laws Chart for correcting pressure due to speed or density changes on pgs. I-5 and I-6

Density

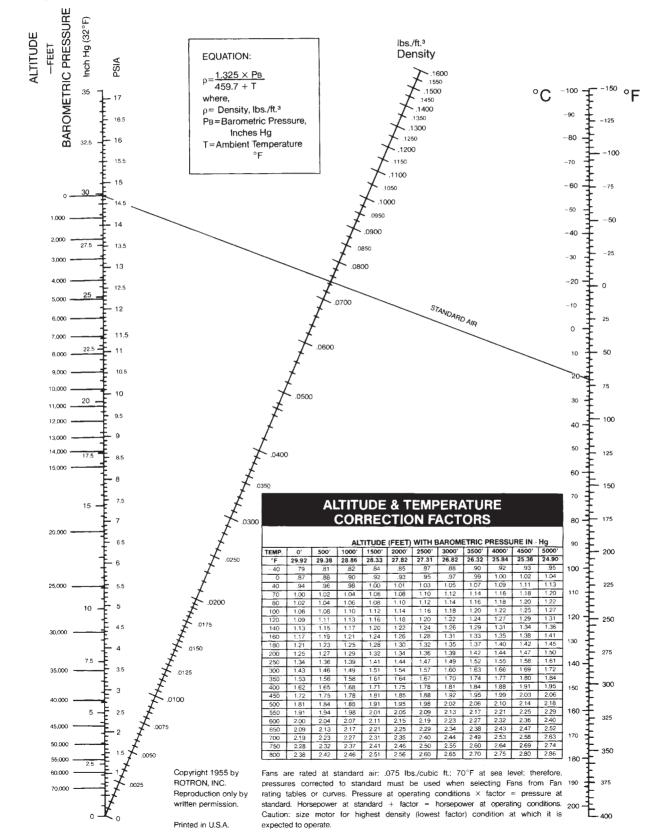
- Weight/Volume
- Standard Air = 0.075 lb/cubic foot
- See Density Chart for other gases on pg. I-4
- See Density Correction Chart due to altitude and temperature changes on pg. I-3

Specific Gravity

- Density Ratio Relative to Air
- Standard Air SG = 1.0
- Methane SG = 0.55
- See Specific Gravity Chart for other gases on pg. I-4

Velocity

- Distance/Time or Flow/Area
- FPM = Feet Per Minute (American)
- MPH = Miles Per Hour (American)
- M/min = Meters Per Minute (Metric)
- Km/h = Kilometers Per Hour (Metric)
- 88 FPM = 1 MPH
- 26.82 M/min = 1 MPH
- 1.609 Km/h = 1 MPH
- See Standard Engineering Conversion Chart for other velocities on pg. I-2
- See Orifice Flow Calculation Chart for air flow equations on pg. I-7


Pressure Drop/Back Pressure/Impedance

- Friction causes air to slow down and lost energy is measured in pressure drop terms
- Typical pressure drop areas include piping, elbows, accessories and system
- Each fixed system has a fixed system impedance caused by a single or multiple pressure drop points
- Changing the system impedance will cause blowers work point to change
- Changing the blower with fixed system impedance will change the working back pressure
- See Friction Loss Per Foot of Tubing and Fitting Charts on pg. I-8

Standard Engineering Conversions

MULTIPLY	вү	TO OBTAIN	MULTIPLY	BY	TO OBTAIN
Atmospheres	76.0	Cms. of Mercury	KGS./Cubic Meter	0.06243	Pounds/Cubic Foot
Atmospheres	29.92	Inches of Mercury	Kilometers	3281	Feet
Atmospheres	33.90	Feet of Water	Kilowatts	56.92	British Thermal Units/Min.
Atmospheres	10,333	Kgs./Sq. Inch	Kilowatts	737.6	Foot-Pounds/Sec.
Atmospheres	1.013 x 10⁵	Pascals	Kilowatts	1.341	Horsepower
Atmospheres	14.70	Pounds/Sq. Inch	Kilowatts	14.34	KgCalories/Min.
Atmospheres	760	Torrs	Kilowatt-Hours	3415	British Thermal Units
Bars	0.9869	Atmospheres	Liters	10 ³	Cubic Centimeters
Bars	1. x 10 ⁶	Dynes/Sq. Cm.	Liters	61.02	Cubic Inches
Bars	1.020 x 10⁴	Kgs./Square Meter	Liters	10 ⁻³	Cubic Meters
Bars	14.50	Pounds/Sq. Inch	Log₁₀N	2.303	Log _e N or Ln N
British Thermal Units	0.2520	Kilogram-Calories	Log N or Ln N	0.4343	Log ₁₀ N
British Thermal Units	777.5	Foot-Pounds	Meters	100	Centimeters
British Thermal Units	3.927 x 10 ⁻⁴	Horsepower-Hours	Meters	3.2808	Feet
British Thermal Units	1054	Joules Kilonaan Matana	Meters	39.37	Inches
British Thermal Units British Thermal Units	107.5 2.928 x 10 ^{.₄}	Kilogram-Meters Kilowatt-Hours	Meters	10 ⁻³	Kilometers
			Meters/Minute	1.667	Centimeters/Sec.
Centimeters of Mercury	0.01316	Atmospheres	Meters/Minute	3.281	Feet/Minute
Centimeters of Mercury	0.4461	Feet of Water	Meters/Minute	0.06	Kilometers/Hour
Centimeters of Mercury	136.0	Kgs./Square Meter	Meters/Minute	0.03728	Miles/Hour
Centimeters of Mercury	0.1934	Pounds/Sq. Inch	Miles	5280	Feet
Centimeters/Second	1.969	Feet/Minute	Miles	1.6093	Kilometers
Centimeters/Second	0.6 3.531 x 10⁵	Meters/Minute Cubic Feet	Miles Miles/Hour	1760 44.70	Yards Centimeters/Sec.
Cubic Centimeters Cubic Centimeters		Cubic Feet Cubic Inches	Miles/Hour Miles/Hour		Feet/Minute
Cubic Centimeters	6.102 x 10 ⁻² 10 ⁻⁶	Cubic Inches Cubic Meters	Miles/Hour Miles/Hour	88 1,467	Feet/Minute Feet/Second
Cubic Centimeters	10 ⁻³	Liters	Miles/Hour	1,467	Kilometers/Hour
Cubic Centimeters	2.832 x 10⁴	Cubic Cms.	Miles/Hour	26.82	Meters/Minute
Cubic Feet	1728	Cubic Inches	Mms. of Mercury	0.0394	Inches of Mercury
Cubic Feet	0.02832	Cubic Meters	Mms. of Mercury	1.3595-3	Kgs./Square Cm.
Cubic Feet	0.03704	Cubic Yards	Mms. of Mercury	0.01934	Pounds/Square Inch
Cibic Feet	7.481	Gallons	Pints (Liq.)	28.87	Cubic Inches
Cubic Feet	28.32	Liters	Pints (U.S. liquid)	473.179	Cubic Centimeters
Cu. Ft. of Water (60°F)	62.37	Pounds	Pints (U.S. liquid)	16	Ounces (U.S. fluid)
Cubic Feet/Minute	472.0	Cubic Cms./Sec.	Pounds	444,823	Dynes
Cubic Feet/Minute	0.4720	Liters/Second	Pounds	453.6	Grams
Cubic Feet/Minute	62.4	Lbs. of Water/Min.	Pounds	16	Ounces
Cubic Inches	16.39	Cubic Centimeters	Pounds of Carbon to CO ²	14,544	British Thermal Units (mean)
Cubic Inches	5.787 x 10 ⁻⁴	Cubic Feet	Pounds of Water	27.68	Cubic Inches
Cubic Inches	1.639 x 10 ⁻⁵	Cubic Meters	Pounds of Water	0.1198	Gallons
Cubic Inches	2.143 x 10 ⁻⁵	Cubic Yards	Pounds of Water		
Cubic Meters	10 ⁶	Cubic Centimeters	Evaporated at 212°F	970.3	British Thermal Units
Cubic Meters Cubic Meters	35.31 61,023	Cubic Feet Cubic Inches	Pounds/Cubic Foot	16.02	Kgs./Cubic Meter
Cubic Meters	1.308	Cubic Yards	Pounds/Square Foot	4,882	Kgs./Square Meter
Cubic Yards	7.646 x 10⁵	Cubic Centimeters	Pounds/Square Inch	0.06804	Atmospheres
Cubic Yards	27	Cubic Feet	Pounds/Square Inch Pounds/Square Inch	27.7	Inches of Water
Cubic Yards	46,656	Cubic Inches	Pounds/Square Inch Pounds/Square Inch	2.036 703.1	Inches of Mercury
Cubic Yards	0.7646	Cubic Meters	Pounds/Square Inch	6.895 x 10 ³	Kgs./Square Meter Pascals
Feet	30.48	Centimeters	Pounds/Square Inch	51.715	Millimeters of Mercury at 0°C
Feet	12	Inches			,
Feet	0.3048	Meters	Square Centimeters	1.973 x 10 ⁵	Circular Mils Square Feet
Feet	1/3	Yards	Square Centimeters Square Centimeters	1.076 x 10 [.] ₃ 0.1550	Square Inches
Feet of Air			Square Feet	929.0	Square Centimeters
(1 atmosphere 60°F)	5.30 x 10 ⁻⁴	Pounds/Square Inch	Square Feet	0.09290	Square Meters
Feet/Minute	0.5080	Centimeters/Sec.	Square Inches	1.273 x 10 ⁶	Circular Mils
Feet/Minute	0.01667	Feet/Second	Square Inches	6.452	Square Centimeters
Feet/Minute	0.01829	Kilometers/Hour	Square Inches	6.944 x 10 ⁻³	Square Feet
Feet/Minute	0.3048	Meters/Minute	Square Inches	10 ⁶	Square Mils
Feet/Minute	0.01136	Miles/Hour	Square Inches	645.2	Square Millimeters
Grams/Cu. Cm.	62.43	Pounds/Cubic Foot	Square Kilometers	10.76 x 10 ⁶	Square Feet
Horsepower	42.44	British Thermal Units/Min.	Square Kilometers	10 ⁶	Square Meters
Horsepower	33,000	Foot-Pounds/Min.	Square Kilometers	1.196 x 10 ⁶	Square Yards
Horsepower	10.70	KgCalories/Min.	Square Meters	10.764	Square Feet
Horsepower	745.7	Watts	Square Meters	1.196	Square Yards
Horsepower-Hours	2547	British Thermal Units	Temp. (Degs. C.) + 273	1	Abs. Temp. (Degs. C.)
Inches	2.540	Centimeters	Temp. (Degs. C.) + 17.8	1.8	Temp. (Degs. Fahr.)
Inches	10 ³	Mils	Temp. (Degs. F.) + 460	1	Abs. Temp. (Degs. F.)
Inches of Mercury	0.03342	Atmospheres	Temp. (Degs. F.) -32	5/9	Temp. (Degs. Cent.)
Inches of Mercury	13.60	Inches of Water	Watts	0.05692	British Thermal Units/Min.
Inches of Mercury	345.3	Kgs./Square Meter	Watts	10 ⁷	Ergs/Second
Inches of Mercury	25.40	Mms. of Mercury	Watts	44.26	Foot-Pounds/Min.
Inches of Mercury	0.4912	Pounds/Square In.	Watts	1.341 x 10 ⁻³	Horsepower
Inches of Water	0.002458	Atmospheres	Watts	0.01434	KgCalories/Min.
Inches of Water	0.07355	Inches of Mercury	Watts	10 ⁻³	Kilowatts
Inches of Water	25.40	Kgs./Square Meter	Watts-Hour	3.415	British Thermal Units
Inches of Water	5.204	Pounds/Square Ft.	Watts-Hour	1.341 x 10-	Horsepower/Hours
Inches of Water	0.03613	Pounds/Square In.	Watts-Hour	10 ⁻³	Kilowatt-Hours

Density Correction Chart

Specific Gravity and Density of Various Gases at 60°F (1 ATM)

Gas or Vapor	Chemical Formula	Specific Gravity	Density (Ibs./cu/ ft.)
Acetylene	C2H2	0.899	.0686
Air	-	1.00	.0763
Ammonia	NH₃	0.587	.0454
Argon	A	1.377	.1053
Benzene	C6H6	2.70	.205
Carbon Dioxide	CO2	1.539	.1166
Chlorine	Cl2	2.448	.0738
Ethane	C2H6	1.038	.0799
Ethylene	C ₂ H ₄	0.969	.0739
Helium	He	0.138	.01054
Hydrogen	H2	0.0695	.00531
Hydrogen Sulfide	H₂S	1.19	.0897
Methane	CH₄	0.555	.0424
Methyl Chloride	CH₃CI	1.785	.1356
Nitrogen	N2	0.967	.0738
Oxygen	O2	1.105	.0843
Propane	C3H8	1.55	.1180
Sulfer Oxide	SO ₂	2.26	.1720
Water Vapor	H₂O	0.622	.0373

Explosive Atmosphere Classification

North American	European	
Class I Group A Group B Group C Group D	Zone 1 Group II C Group II C Group II B Group II A	Acetylene Hydrogen or equivalent hazard Ethyle ether vapors, ethylene or cyclopropane Gasoline, hexane, naptha, benzene, butane, alcohol, acetone, benzol, lacquer vapors or natural gas
Class II Group E Group F Group G	_ _ _	Metal dust Carbon black, coal or coke dust Flour, starch or grain

Temperature Conversion Chart

*In the center column, find the temperature to be converted. The equivalent temperature is in the left column, if converting to Celsius, and in the right column, if converting to Fahrenheit.

°C	Temp	°F	°C	Temp	°F	°C	Temp	°F	°C	Temp	°F
-78.9	-110	-166	1.7	35	95.0	27.2	81	177.8	182	360	680
-73.3	-100	-148	2.2	36	96.8	27.8	82	179.6	188	370	698
-67.8	-90	-130	2.8	37	98.6	28.3	83	181.4	193	380	716
-62.2	-80	-112	3.3	38	100.4	28.9	84	183.2	199	390	734
-56.7	-70	-94	3.9	39	102.2	29.4	85	185.0	204	400	752
-51.1	-60	-76	4.4	40	104.0	30.0	86	186.8	210	410	770
-45.6	-50	-58	5.0	41	105.8	30.6	87	188.6	216	420	788
-40.0	-40	-40	5.6	42	107.6	31.1	88	190.4	221	430	806
-34.4	-30	-22	6.1	43	109.4	31.7	89	192.2	227	440	824
-28.9	-20	-4	6.7	44	111.2	32.2	90	194.0	232	450	842
-23.3	-10	14	7.2	45	113.0	32.8	91	195.8	238	460	860
-17.8	0	32	7.8	46	114.8	33.3	92	197.6	243	470	878
-17.2	1	33.8	8.3	47	116.6	33.9	93	199.4	249	480	896
-16.7	2	35.6	8.9	48	118.4	34.4	94	201.2	254	490	914
-16.1	3	37.4	9.4	49	120.2	35.0	95	203.0	260	500	932
-15.6	4	39.2	10.0	50	122.0	35.6	96	204.8	266	510	950
-15.0 -14.4	5 6	41.0 42.8	10.6 11.1	51 52	123.8 125.6	36.1 36.7	97	206.6	271	520 530	968
-14.4	6 7	42.8 44.6	11.7	52 53	125.0		98	208.4	277	530	986 1004
-13.9	8	44.6 46.4	12.2	53 54	127.4	37.2 37.8	99 100	210.2 212.0	282 288	540	1004
-12.8	9	48.2	12.2	55	131.0	43	110	230	293	560	1022
-12.0	10	40.2 50.0	13.3	56	132.8	43	120	230	293	570	1040
-11.7	11	51.8	13.9	57	132.6	49 54	130	240	304	580	1036
-11.1	12	53.6	14.4	58	136.4	60	140	284	310	590	1094
-10.6	13	55.4	15.0	59	138.2	66	150	302	316	600	1112
-10.0	14	57.2	15.6	60	140.0	71	160	320	321	610	1130
-9.4	15	59.0	16.1	61	141.8	77	170	338	327	620	1148
-8.9	16	60.8	16.7	62	143.6	82	180	356	332	630	1166
-8.3	17	62.6	17.2	63	145.4	88	190	374	338	640	1184
-7.8	18	64.4	17.8	64	147.2	93	200	392	343	650	1202
-7.2	19	66.2	18.3	65	149.0	99	210	410	349	660	1220
-6.7	20	68.0	18.9	66	150.8	100	212	413	354	670	1238
-6.1	21	69.8	19.4	67	152.6	104	220	428	360	680	1256
-5.6	22	71.6	20.0	68	154.4	110	230	446	366	690	1274
-5.0	23	73.4	20.6	69	156.2	116	240	464	371	700	1292
-4.4	24	75.2	21.1	70	158.0	121	250	482	377	710	1310
-3.9	25	77.0	21.7	71	159.8	127	260	500	382	720	1328
-3.3	26	78.8	22.2	72	161.6	132	270	518	388	730	1346
-2.8	27	80.6	22.8	73	163.4	138	280	536	393	740	1364
-2.2	28	82.4	23.3	74	165.2	143	290	554	399	750	1382
-1.7	29	84.2	23.9	75	167.0	149	300	572	404	760	1400
-1.1	30	86.0	24.4	76	168.8	154	310	590	410	770	1418
-0.6	31	87.8	25.0	77	170.6	160	320	608	416	780	1436
0	32	89.6	25.6	78	172.4	166	330	626	421	790	1454
0.6	33	91.4	26.1	79	174.2	171	340	644	427	800	1472
1.1	34	93.2	26.7	80	176.0	177	350	662	432	810	1490
°F = 9/50				RANKIN (F + 460					
$^{\circ}C = 5/9$	(F - 32)	ABS	SOLUTE	KELVIN (F	<) K = °	C + 273					

NEMA Classifications

NEMA	Type 1	_	General Purpose – Indoor
	Type 2	_	Dripproof – Indoor
	Туре 3	-	Dusttight, Raintight and Sleet (Ice)
			Resistant – Outdoor
	3R	-	Rainproof and Sleet (Ice) Resistant
			– Outdoor
	3S	-	Dusttight, Raintight and Sleet (Ice)
			Proof – Outdoor
	Type 4	-	Watertight and Dusttight – Indoor
	4X	-	Watertight, Dusttight and Corrosion
			Resistant – Outdoor
	Type 5	-	Superseded by Type 12 for Control
			Apparatus

Туре 6 –	Submersible, Watertight, Dusttight and
	Sleet Resistant – Indoor and Outdoor
Туре 7 –	Class I, Group A, B, C or D Hazardous
	Locations; Air Break Equipment – Indoor
Туре 8 –	Class I, Group A, B, C or D Hazardous
	Locations; Oil-immersed Equipment – Indoor
Туре 9 –	Class II, Group E, F or G Hazardous
	Locations; Air-break Equipment – Indoor
Type 10 –	Bureau of Mines
Type 11 –	Corrosion Resistant and Dripproof;
	Oil-immersed – Indoor

- **Type 12** Industrial Use, Dusttight and Driptight Indoor
- Type 13 Oiltight and Dusttight Indoor

Physical Laws for Blower Applications

In the following formulae these symbols are used:

P – Pressure in pounds per square inch (PSI) or inches of mercury column (inches Hg)

CFM - Volume in cubic feet per minute

- RPM Speed in revolutions per minute
- D Density in pounds per cubic foot (lbs./cu. ft.)
- H Height of air or gas column (ft.)
- SG Specific Gravity (ratio of density of gas to the density of air)

"Standard Air" – Air at 68° F (absolute temperature 528°) and 29.92" Hg. (barometric pressure at sea level). The density of such air is 0.075 lbs./cu. ft. and the specific volume is 13.29 cu. ft./lb. The specific gravity is 1.0.

The outlet pressure of a blower depends on the condition of the air or gas at the inlet. The inlet condition is influenced by:

- a Specific gravity (The ratio of density of the gas to density of standard air)
- b Altitude (location of blower)
- c Temperature of inlet air

Basic Fan Laws Chart

VARIABLE	VOLUME	PRESSURE	HORSEPOWER
WHEN SPEED CHANGES	Varies DIRECT with Speed Ratio $CFM_2 = CFM_1 \left(\frac{RPM_2}{RPM_1}\right)$	Varies with SQUARE of Speed Ratio $P_2 = P_1 \left(\frac{RPM_2}{RPM_1}\right)^2$	Varies with CUBE of Speed Ratio HP ₂ = HP ₁ $\left(\frac{\text{RPM}_2}{\text{RPM}_1}\right)^3$
WHEN DENSITY CHANGES	Does Not Change	Varies DIRECT with Density Ratio $P_2 = P_1 \left(\frac{D_2}{D_1}\right)$	Varies DIRECT with Density Ratio HP ₂ = HP ₁ $\left(\frac{D_2}{D_1}\right)$

Volume

The Volume changes in *direct* ratio to the speed.

Example – A blower is operating at 3500 RPM and delivering 1000 CFM. If the speed is reduced to 3000 RPM, what is the new volume?

$\begin{array}{lll} V_1 &= & \text{Original Volume (1000 CFM)} \\ V_2 &= & \text{New Volume} \\ \text{RPM}_1 &= & \text{Original Speed (3500 RPM)} \\ \text{RPM}_2 &= & \text{New Speed (3000 RPM)} \end{array}$

$$V_2 = V_1 \left(\frac{\text{RPM}_2}{\text{RPM}_1}\right)^1 = 1000 \text{ x} \left(\frac{3000}{3500}\right)^1 = 1000 \text{ x} .857 = 857 \text{ CFM}$$

Pressure

Pressure (barometric) varies in direct proportion to altitude.

Example – A blower is to operate at an elevation of 6000 feet and is to deliver 3 PSI pressure. What pressure (standard air) blower is required?

Pressure = 3 x
$$\frac{29.92}{23.98}$$
 = 3.75 or 3 3/4 lb.

If it is desired to determine what pressure a 3 lb. (standard air) blower will deliver at 6000 feet -

Pressure =
$$3 \times \frac{23.98}{29.92}$$
 = 2.4 or about 2 1/2 lb.

When a blower is to operate at a high altitude it is frequently specified that the blower be capable of handling a given volume of "standard air". It is then necessary to determine the equivalent volume of air at the higher altitude.

Example – A blower is to operate 6000 feet altitude and is to handle 1000 CFM of standard air. What is the CFM of air the blower must handle at 6000 feet altitude?

Let: V_1 = Volume of standard air (1000 CFM)

- V_2 = Volume of thinner air
- Hg₁ = Barometric pressure sea level (29.92)
- Hg_2 = Barometric pressure 6000' (23.98)

$$V_2 = V_1 \times \frac{Hg_1}{Hg_2} = 1000 \times \frac{29.92}{23.98} = 1248 \text{ CFM}$$

The pressure changes as the *square* of the speed ratio.

Example - A blower is operating at a speed of 3500 RPM and delivering air at 5.0 pounds pressure. If the speed is reduced to 3000 RPM, what is the new pressure?

P₁ = Original Pressure (5 lbs.) P₂ = New Pressure RPM₁ = Original Speed (3500 RPM) RPM₂ = New Speed (3000 RPM)

$$P_2 = P_1 \left(\frac{RPM_2}{RPM_1}\right)^2 = 5 \times \left(\frac{3000}{3500}\right)^2 = 5 \times .735 = 3.68 \text{ pounds}$$

The Air Density varies in inverse proportion to the absolute temperature.

Example – A blower is to handle 200°F air at 3 PSI pressure. What pressure (standard air) blower is required?

Let: P_1 = Pressure hot air (3 PSI)

P₂ = Pressure standard air

 $AT_1 = Absolute temperature hot air (200+460=660°F)$

AT₂ = Absolute temperature standard air (68+460=528°F)

$$P_2 = P_1 x \frac{AT_1}{AT_2} = 3 x \frac{660}{528} = 3.75 \text{ or } 3 3/4 \text{ lb.}$$

A blower is capable of delivering 3 PSI pressure with standard air. What pressure will it develop handling 200°F inlet air?

$$P_1 = P_2 x \frac{AT_2}{AT_1} = 3 x \frac{528}{660} = 2.4 \text{ or about } 2 \frac{1}{2} \text{ lb.}$$

Pressure varies in direct proportion to the density.

Example - A 3 lb. (standard air) blower is to be used to handle gas having a specific gravity of 0.5. What pressure does the blower create when handling the gas?

Let: Pa = Air pressure (3 lb.)

Pg = Gas pressure

SG = Specific gravity of gas (0.5)

Pg = Pa x SG = 3 x .5 = 1.5 lb.

If we are required to handle a gas having a specific gravity of 0.5 at 1.5 lb. pressure, we can determine the standard air pressure blower as follows:

Let: Pa =
$$\frac{Pg}{SG} = \frac{1.5}{.5} = 3$$
 lb.

The following table gives the barometric pressure of various altitudes: Absolute Pressure At Altitudes Above Sea Level (Based on U.S. Standard Atmosphere)

Altitude	Pres	sure	Altitude	Pres	sure	Altitude	Pres	sure
Feet	In. Hg.	PSIA	Feet	In. Hg.	PSIA	Feet	In. Hg.	PSIA
0	29.92	14.70	2,500	27.31	13.41	7,000	23.09	11.34
500	29.38	14.43	3,000	26.81	13.19	7,500	22.65	11.12
600	29.28	14.38	3,500	26.32	12.92	8,000	22.22	10.90
700	29.18	14.33	4,000	25.84	12.70	8,500	21.80	10.70
800	29.07	14.28	4,500	25.36	12.45	9,000	21.38	10.50
900	28.97	14.23	5,000	24.89	12.23	9,500	20.98	10.90
1,000	28.86	14.18	5,500	24.43	12.00	10,000	20.58	10.10
1,500	28.33	13.90	6,000	23.98	11.77			
2,000	27.82	13.67	6,500	23.53	11.56			

Horsepower

The horsepower changes as the *cube* of the speed ratio.

Example – A blower is operating at a speed of 3500 RPM and requiring 50 horsepower. If the speed is reduced to 3000 RPM, what is the new required horsepower?

HP₁ = Original Horsepower (50)
HP₂ = New Horsepower
RPM₁ = Original Speed (3500 RPM)
RPM₂ = New Speed (3000 RPM)

 $HP_{2} = HP_{1} \times \left(\frac{RPM_{2}}{RPM_{1}}\right)^{3} = 50 \times \left(\frac{3000}{3500}\right)^{3} = 50 \times .630 = 31.5 \text{ horsepower}$

The above is known as the 1-2-3 rule of blowers.

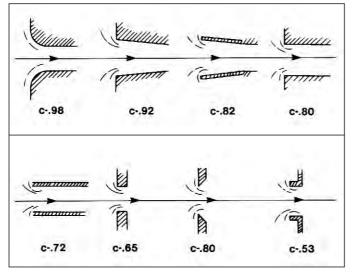
Horsepower vs. Specific Gravity & Ratio of density.

The horsepower varies in direct proportion to the specific gravity (ratio of density of gas to density of air).

Example – A standard air blower requires a 10 HP motor. What horsepower is required when this blower is to handle a gas whose specific gravity is 0.5?

 $HP = 10 \times 0.5 = 5$ horsepower

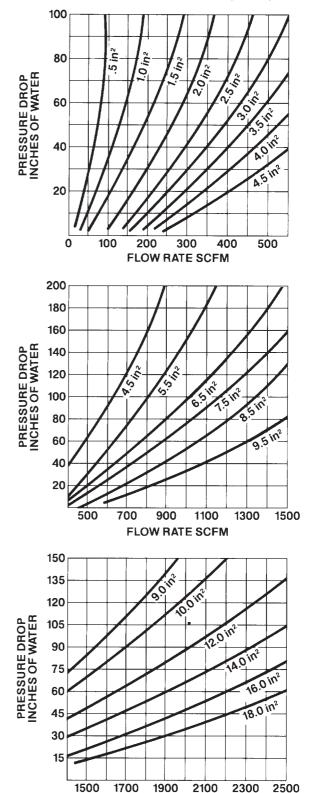
It is possible that several of the above modifications may be required on one installation. Therefore, it may be necessary to use various combinations of these formulae.


Orifice Flow Calculation

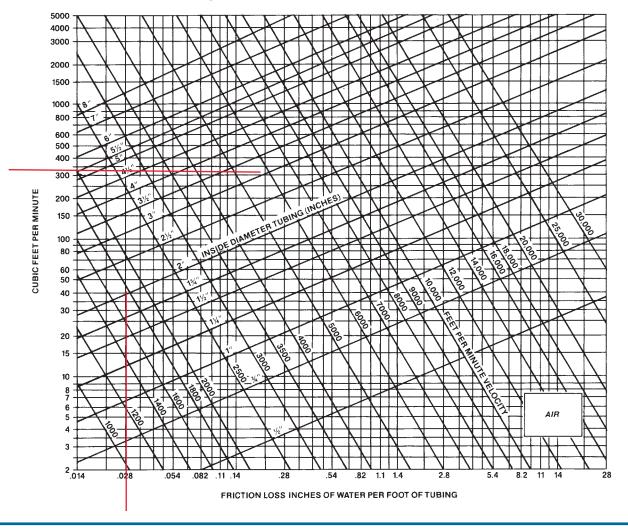
$$V = CK \sqrt{P}$$
 $Q = AV$ $VP = \left(\frac{V}{K}\right)^2$

Where:

- V = Velocity in feet per minute (fpm)
- C = Orifice Coefficient
- K = Constant = 14,786 when P is expressed in In. Hg 21,094 when P is expressed in PSIG 4,005 when P is expressed in In. of Water (Above constants are based on an air density of 0.075 lbs/ft³)
- P = Pressure differential across the orifice
- Q = Flow rate in cubic feet per minute (CFM)
- A = Total orifice area expressed in square feet
- VP = Velocity pressure (units are those of pressure)


Coefficient C for Orifices Under Vacuum or Pressure Flow

	Area of Orifices Orifice Diameter in Inches										
Diameter in Inches	Square Inches	Square Feet									
1/8	.01227	.000085									
3/16	.02761	.00019									
1/4	.04908	.00034									
3/8	.11044	.00076									
1/2	.19634	.00136									
5/8	.30679	.00213									
7/8	.60132	.00417									
1.0	.78539	.00545									


Orifice area (in sq. inches) = $.25 \ X \pi X$ (orifice diameter in inches)² Orifice area (in sq. feet) = Area in sq. inches \div 144

ORIFICE PRESSURE DROP AS A FUNCTION OF FLOW AND ORIFICE AREA (C=.65)

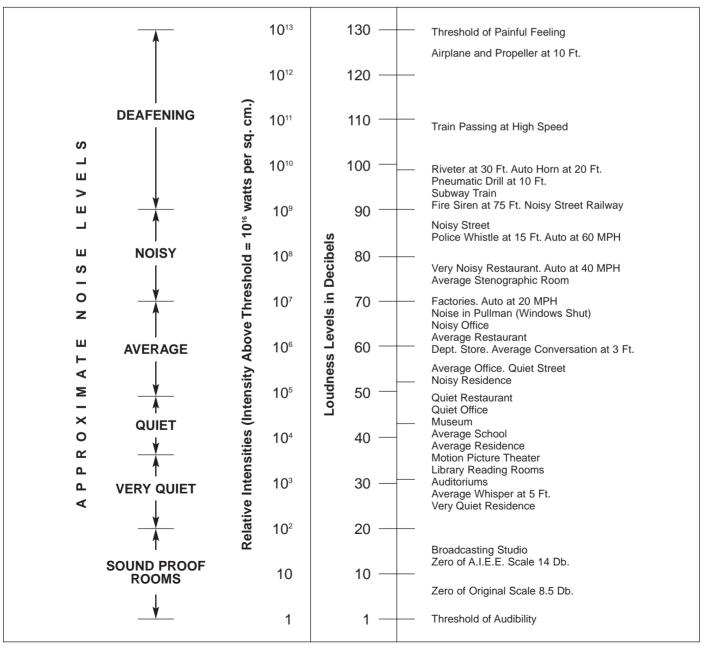
FLOW RATE SCFM

Friction Loss Per Foot of Tubing

Friction Loss in Fittings

To calculate friction loss in fittings use chart below. This chart will yield equivalent lengths (in feet) of tubing. Use this length with graph above to find friction loss in inches of water column.

NOMINAL PIPE SIZE (INCHES)	EQUIVALENT TUBI	NG LENGTH (FEET)
	90° EL	45° EL
1 1/4	3	1.5
1 1/2	4	2
2	5	2.5
2 1/2	6	3
3	7	4
4	10	5
5	12	6
6	15	7.5
8	20	10

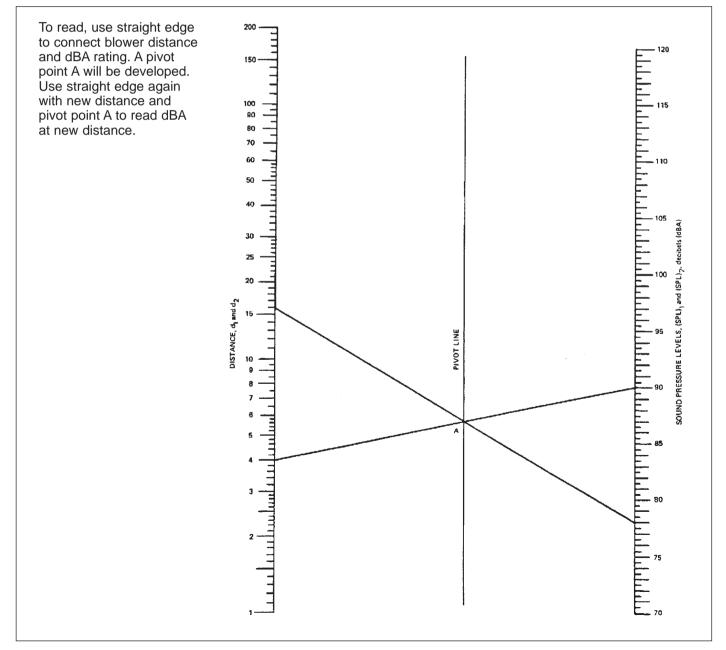

Noise Facts

- OSHA (Occupational Safety & Health Administration) regulates and monitors in-plant noise.
- Allowable noise is a function of dBA level at certain distance over an exposure time.
- OSHA regulations state 90 dBA for an 8 hour work period using slow responic setting on meter.
- Adding a second noise producer of equal dBA will add 3 dBA to the first dBA reading.
- Sound pressure level (SPL) decreases with distance (d)

 $(SPL)_2 = (SPL)_1 - 20LOG\left(\frac{d2}{d1}\right)$

Therefore, each doubling of distance results in 6 dBA reduction.

Loudness Levels of Familiar Noises (Approximate Average Including Ear Network)



* Average at 1 meter, 4 places around the blower

Mode Mode Mode Mode Mode Model Model Model Model Model Suction Pressure Suction Pressure Suction Pressure Suction Pressure Suction Pressure SE 60-62 60-62 101 65-67 66-68 513 80-81 80-81 707 83-85 84-86 S/P 9 90-91 90-91 MF 64-65 64-65 202M 67-69 68-70 505M 77-78 76-77 808 84-85 84-85 909 81-82 84-86 RDC 76-78 84-85 76-78 303M 65-67 67-69 523 82-83 82-83 623 81-82 81-82 1223 84-85 SL2 69-72 69-72 353M 72-73 73-74 555 80-81 80-81 S7 88-89 88-89 S/P 13 87-88 90-91 SL4 72-78 72-78 404M 73-74 74-75 656 82-83 82-83 858 84-85 84-85 14 86-87 86-87 SL5 76-79 76-79 454M 76-77 75-76 85-86 85-86 823 82-84 82-84 S/P 15 91-92 6 91-92

Industrial Blower Noise Chart* in dBA

dBA at Distance Conversion Chart

D									ings		7-2	0.		
K	esistance			ent	N (I	ise					NV-/	2g)		_
Fittir	a a	LD	1/2	3/		11/	N		al Pipe	-	6	0 10	12-16	10 54
L'IUU.	lg		72	-74		174	172	-	Value	<u> </u>	0	8-10	12-10	18-24
Angle V	alve	55	1.48	1.38	1.27	1.21	1.16				0.83	0.77	0.72	0.66
Angle Valve			4.05	3.75	3.45	3.30	3.15	2.85	2.70	2.55	2.25	2.10	1.95	1.80
Ball Va	alve	3	0.08	0.08	0.07	0.07	0.06	0.06	0.05	0.05	0.05	0.04	0.04	0.04
Butterfly	Valve	Î.			1.00			0.86	0.81	0.77	0.68	0.63	0.35	0.30
Gate V	alve	8	0.22	0.20	0.18	0.18			0.14				0.10	0.10
Globe V	alve	340	9.2	8.5	7.8	7.5	7.1	6.5	6.1	5.8	5.1	4.8	4.4	4.1
Plug Valve Br	90	2.43	2.25	2.07	1.98	1.89	1.71	1.62	1.53	1.35	1.26	1.17	1.08	
Plug Valve St	raightaway	18	0.48	0.45	0.41	0.40	0.38	0.34	0.32	0.31	0.27	0.25	0.23	0.22
Plug Valve 3-Wa	y Thru-Flow	30	0.81	0.75	0.69	0.66	0.63	0.57	0.54	0.51	0.45	0.42	0.39	0.36
	90°	30	0.81	0.75	0.69	0.66	0.63	0.57	0.54	0.51	0.45	0.42	0.39	0.36
Standard Elbow	45°	16	0.43	0.40	0.37	0.35	0.34	0.30	0.29	0.27	0.24	0.22	0.21	0.19
	long radius 90°	16	0.43	0.40	0.37	0.35	0.34	0.30	0.29	0.27	0.24	0.22	0.21	0.19
Close Retu	rn Bend	50	1.35	1.25	1.15	1.10	1.05	0.95	0.90	0.85	0.75	0.70	0.65	0.60
Standard Tee	Thru-Flow	20	0.54	0.50	0.46	0.44	0.42	0.38	0.36	0.34	0.30	0.28	0.26	0.24
Staliuaru Tee	Thru-	60	1.62	1.50	1.38	1.32	1.26	1.14	1.08	1.02	0.90	0.84	0.78	0.72
	r/d=1	20	0.54	0.50	0.46	0.44	0.42	0.38	0.36	0.34	0.30	0.28	0.26	0.24
	r/d=2						<u> </u>	_	0.22			<u> </u>		0.14
- /	r/d=3					-							0.16	0.14
- 6	r/d=4	14	0.38	0.35	0.32	0.31	0.29	0.27	0.25	0.24	0.21	0.20	0.18	0.17
90 Bends,	r/d=6	17	0.46	0.43	0.39	0.37	0.36	0.32	0.31	0.29	0.26	0.24	0.22	0.20
Pipe Bends, Flanged Elbows,	r/d=8	24	0.65	0.60	0.55	0.53	0.50	0.46	0.43	0.41	0.36	0.34	0.31	0.29
Butt-Welded	r/d=10		-	<u> </u>									0.39	
Elbows	r/d=12												0.44	
	r/d=14								-	-			0.49	
	r/d=16	<u> </u>			<u> </u>								0.55	
	r/d=18	45	1.24	1.15	1.06	1.01	0.97	0.87	0.83	0.78	0.69	0.64	0.60	0.55

	a=0°	2	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.02
	a=15°	4	0.11	0.10	0.09	0.09	0.08	0.08	0.07	0.07	0.06	0.06	0.05	0.05
	a=30°	8	0.22	0.20	0.18	0.18	0.17	0.15	0.14	0.14	0.12	0.11	0.10	0.10
Mitre Bends	a=45°	15	0.41	0.38	0.35	0.33	0.32	0.29	0.27	0.26	0.23	0.21	0.20	0.13
	a=60°	25	0.68	0.63	0.58	0.55	0.53	0.48	0.45	0.43	0.38	0.35	0.33	0.3
	a=75°	40	1.09	1.00	0.92	0.88	0.84	0.76	0.72	0.68	0.60	0.56	0.52	0.4
	a=90°	60	1.62	1.50	1.38	1.32	1.26	1.14	1.08	1.02	0.90	0.84	0.78	0.72
Note: Fittings are	standard wit	th full	open	ings.										

	1	Minin						No	omina	l Pipe	Size				
Fitting	L/D	Velocity for Full Disc Lift		1/2	3/4	1	11/4	11/2	2	21/2-3	4	6	8-10	12-16	18-24
		General ft/sec	Water ft/sec	K Value											
Swing Check Valve	100	35√⊽	4.40	2.70	2.50	2.30	2.20	2.10	1.90	1.80	1.70	1.50	1.40	1.30	1.20
Swillg Check Valve	50	48√⊽	6.06	1.40	1.30	1.20	1.10	1.10	1.00	0.90	0.90	0.75	0.70	0.65	0.60
Lift Check Valve	600	40√⊽	5.06	16.2	15.0	13.08	13.2	12.6	11.4	10.8	10.2	9.0	8.4	7.8	7.2
	55	140√v	17.7	1.50	1.40	1.30	1.20	1.20	1.10	1.00	0.94	0.83	0.77	0.72	0.66
Tilting Disc Check Valve	5	80√⊽	10.13						0.76	0.72	0.68	0.60	0.56	0.39	0.24
Thung Disc Check Valve	15	30√⊽	3.80						2.30	2.20	2.00	1.80	1.70	1.20	0.72
Foot Valve with Strainer Poppet Disc	420	15∀⊽	1.90	11.3	10.5	9.70	9.30	8.80	8.00	7.60	7.10	6.30	5.90	5.50	5.0
Foot Valve with Strainer Hinged Disc	75	35\√⊽	4.43	2.00	1.90	1.70	1.70	1.70	1.40	1.40	1.30	1.10	1.10	1.00	0.90

Disting.	Description	All Pipe Size
Fitting	Description	K Value
Pipe Exit	Projecting Sharp-Edged Rounded	1.00

	41.0>b\1	0.04
	01.0=b/1	60.0
user i communa odu	90.0=b\r	\$1.0
Pipe Entrance Flush	p0.0=b/r	0.24
	20.0=b\r	82.0
	Sharp-Edged	05.0
Pipe Entrance	Inward Projecting	87.0

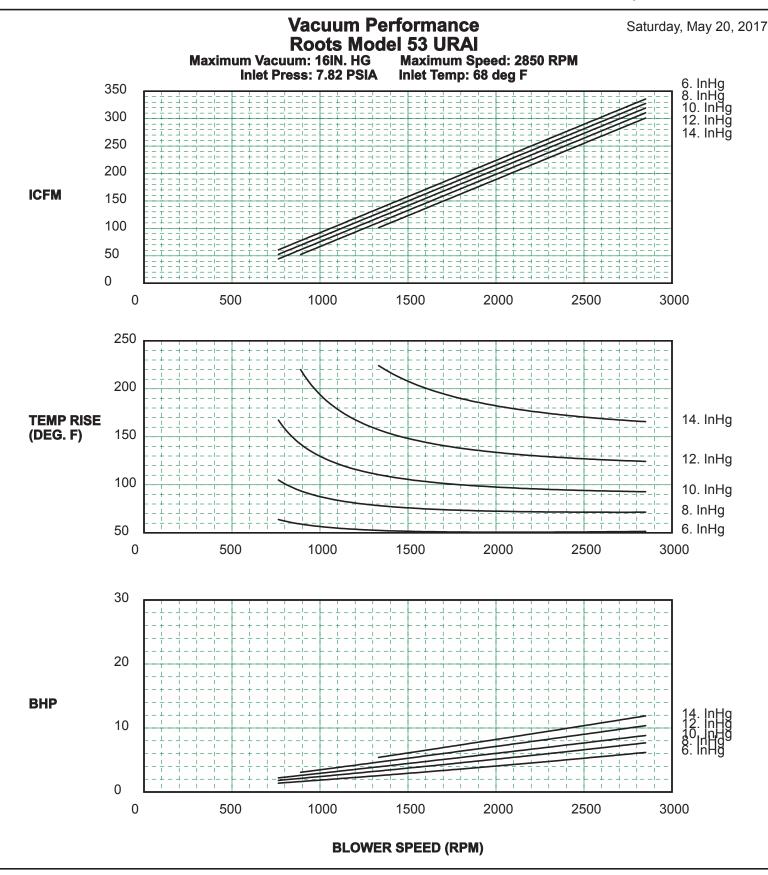
The K values given below are for making estimates of friction loss in cases not covered in the previous tables.

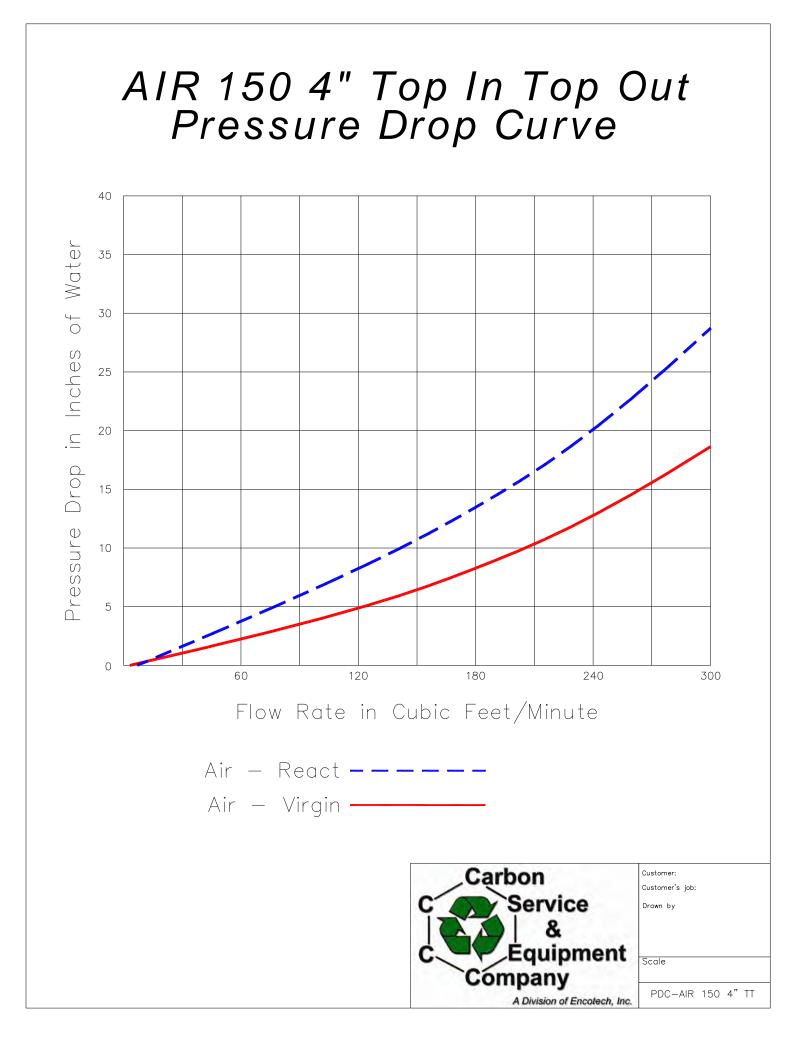
		ənla	КΛ					gnitting	to sqy	T			
		- 10	3.4						Aeter	v əlddo	W ro AsiC		
		0	I				(notzi9	loodW-go	r or Co	eter (Sta	M Visto?		
		Ş	I			eciprocating Piston Meter							
		S.T	- <u>ç</u>			urbine Wheel (Double-Flow) Meter							
F	oth bend	ie for smo	ilby 29	mit d. I	- £.1			er Radius	uuI bət	Corruga)/M spuə{		
_		t length	nəlsviu	ıpə to sı	n191 ni 23n	ittit əq	liq ni se	ol noitoirt)					
					·92	sis ədic	1 04 əlul	s for Sched		-	e to teet of a Assume a		
		əqiq ()4 əlut	or Schee	i l bas C i	oolos b	oue yons		X ətsi:	appropr	select the		
J	D Ieet	Pipe Size Inches Sch. 40	ł	D Teet	Pipe Size Inches Sch. 40			Pipe Size Inches Sch. 40	-		Sch. 40 Inches 912		
210.0	7288.1		7100	05£8.0		810.0	8202.0		220.0	8120.0			
	2.3333			8766.0			LSS2.0			L890 .0			
110.0	2.8333			7560.1			2255.0	4		¢780.0	I		
12.1	3.3333		1.000	052.1			0.4206			0511.0			
010.0	5558.5			1.5678 1,5678			1299.0 4202.0	2		0.1342 0.1342			

09	۶I	71	07		340	051	24 to 48 = 100 = 100	05	09	50	91	0E	8		Γ\D	
530 500 110	28 20 73	40 40 34	L'9L L'99 L'95					165 167 142	530 500 140	L'9L L'99 L'95	6.13 53.3 45.3	511 001 58	30 [.] 7 26 [.] 7 22 [.] 7	010 [.] 010 [.] 110 [.]	46 40 34	48 45 36
140 113 641 2844	32 5'82 5'82 1'12 8'81	52.6 52.6 18.8 16.9 15.0	25.0 28.1 31.4 28.1	1'24 2'65 2'55 5'15	941 233 428 458	583 552 017 881	5.28 2.07 2.05	LII 5*76 7'8L 5'0L 5'79	140 113 113 132 140 140	7.94 7.75 1.82 1.82 25.0	30.2 30.2 30.2 30.2	70 56.6 47.0 37.5	2.81 7.81 7.81 6.91 0.01	ε10. 210. 210. 110.	78 57.628 18.814 16.876 15.00	30 54 50 18 19
9 [.] \$9 <i>L</i> .6\$ 1.0\$ 6.6£ £.0£	86.9 8.51	1.61 6.11 0.01 86.7 70.0	8.12 6.61 7.61 1.01	38'3 34'8 56'5 55'2 55'2	372 338 284 226 172	164 149 152 152 75.8	2't'2 2'6'2 1'8'1 23'3 20'2	24 ^{.7} 49.7 33.3 25.3	9.29 2.65 1.05 6.65 E.0E	8 [.] 17 6'61 2'91 5'51 1'01	60.8 5.71 2.81 2.01 2.71	32.8 32.8 29.8 20.0 1.52	4.04 4.04 4.04	013 014 013 013 013	13.124 10.02 12.06 136.7 180.7 12.05	14 15 10 8 9
52.2 50.1 12.3 10.3	6.31 3.08 3.84 2.58	2.05 2.47 2.47 2.03 2.03	3.45 4.12 3.41 8.41 8.41	18'6 1'51 5'11 9'56 5 <i>L</i> ' <i>L</i>	143 143 143 143 143 143 143 143 143 143	22.8 20.3 38.4 30.9	45'1 33'9 52'2 50'9 12'5	10.3 10.3 10.3 10.3 10.3	25.2 1.02 1.2.3 1.0.3 1.0.3 1.0.3	8'41 8'41 8'11 3'15 3'42	2.37 4.09 3.29	9.21 1.01 7.67 71.8 71.8	3.36 2.04 1.68 1.38	910 [°] 210 [°] 810 [°] 810 [°] 610 [°]	2.067 2.469 2.469 2.469	2 7 3 7/7 5
					42.6 39.1 29.7 23.3 17.6	1.02 2.71 1.51 2.01 2.01	13.4 81.5 8.13 81.2	9.71 5.75 5.43 2.43 2.59	8.05 6.90 5.25 4.12 3.11	2,68 2,30 2,30 7,1 7,5 7 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8		4 [.] 03 3 [.] 42 5 [.] 62 1 [.] 22	14. 25. 20. 20. 70. 70. 70. 70. 70. 70. 70. 70. 70. 7	120 220 520 \$20 220	1.610 1.049 1.049 1.049 1.049 1.049	² /ι Ι ¹ /ι Ι Ι ¹ /ε ² /1
₀06 puəq	Mitre 45°	gnibla wo = b/1	qlə	Butter- fly valve	svidve valve Svidv Svidv		Swing check - - - - - - - - - - - - - - - - - - -	1	flow branch -	woll	wodla	wodia	-	Friction factor f	diameter inches d	azıs adı
			tuəla			Pipe	ni synit JAyirrt	tifi S fo	- Feet	gth.	иәЛ	0 550'		Fricti		

GALLERY

INFILTRATION GALLERY DESIGN


Select gallery dimensions of:	10 ft, length (L) 3 ft, width (W) 3 ft, depth
Discharge rate (avg) = 0.5 gal/min = (avg. flow rate of discharge)	96.3 ft^3/day
Gallery recharge rate = Discharge rate / (L*W) *=	4.81 ft/day
Infiltration rate = Based on the USDA data for Sparr fine sand, bouldery subsurface, 0 to 5 percent slopes;	19.2 ft/day 68 micrometers per second


GALLERY RECHARGE RATE < INFILTRATION RATE 4.8 ft/day < 19.2 ft/day OK

Blower Performance Curves

PDAnalysis 2013 Version 4.20

Ingersoll Rand 7.5-HP 80-Gallon Rotary Screw Air Compressor

Click to Enlarge Image

Free Freight

- Ships via Semi-Truck
- Requires a loading dock or forklift
- Free to Lower 48 States
- Watch Our Freight Delivery Video

Lift Gate Service

- Safely Lowers Products Off the Tri
- Requires Special Hydraulic Lift
- \$75.00 Service Charge
- Learn More About Lift Gate Service

*We currently CANNOT ship this proc Connecticut, Hawaii, Massachusetts, or any destination outside of the Unit

Energy Efficient

· More air for less horsepower reducing yearly energy cost

Smart Energy Controls

· Eliminate running unloaded by cycling the compressor on/off

Whisper Quiet Operation

- · Allows for installation closer to point-of-use
- Sound levels as low as 68dBa

Compact Footprint Design

· Frees up valuable floor space and reduces install costs

Fewer Connections

· Eliminates leaks and pressures drops maximizing reliability

Simple Diagnostics

· Displays operating status and run hours reducing downtime

Poly-V Belt Drive

· Drive system eliminates belt stretch and increases air output

High-Efficiency Filter

· Clean air quality to run tools and equipment long term

Pump

CFM	28
CFM Rated @	125 PSI
Pump Type	Rotary
Max PSI	125 PSI
After Cooler	Yes
Pump Drive	Belt Drive
Oil Type	Oil Lubricated
Duty Cycle	100%

Tank

80 Gallons	
3/4 Inch	
No	
Horizontal	
	3/4 Inch No

Accessories

Air Dryer	No	
Air Filter	Yes	

Overview

Certification	ASME
Weight	925 Pounds
Product Length	54 Inches
Product Width	29 Inches
Product Height	61 Inches
Consumer Warranty	1 Year
Commercial Warranty	1 Year
Power Type	Electric
UPC	678384030953

SYSTEM SAMPLING SCHEDULE

System/ Samples			Day 1	Day 2	Day 3	Week 2	Week 3	Week 4	Month 2	Month 3
		Influent	х	х	х	x	х	х	х	х
		Effluent	х	х	х	х	х	х	х	х
AS/SVE	Air (TO-18)	Mid			х	х	х	х	х	х
AS/SVL	All (10-18)	Ambient								
		in the	х		x	x	х	х	х	х
		store								
		effluent								
	Effluent water (8260, 8270,	before	x		x	x	х	х	х	х
SVE*		carbon								
	TRPH)	effluent								
		after	х		x	x	х	х	х	х
		carbon								

*Effluent water samples will be collected based on water accumulation (may not be collected if no water accumulated).

Monitoring Wells/Period		Y1Q1	Y1Q2	Y1Q3	Y1Q4	Y2Q1	Y2Q2	Y2Q3	Y2Q4
OB-1, OB-2, MW-12, MW-8R, MW-8I, MW-5R, MW-5I,	MW-	8260	8260	8260	8260	8260	8260	8260	8260
21D (proposed)	VI V V -	BTEX/MTBE,							
21D (proposed)		8270 PAHs							

MILESTONE SCHEDULE

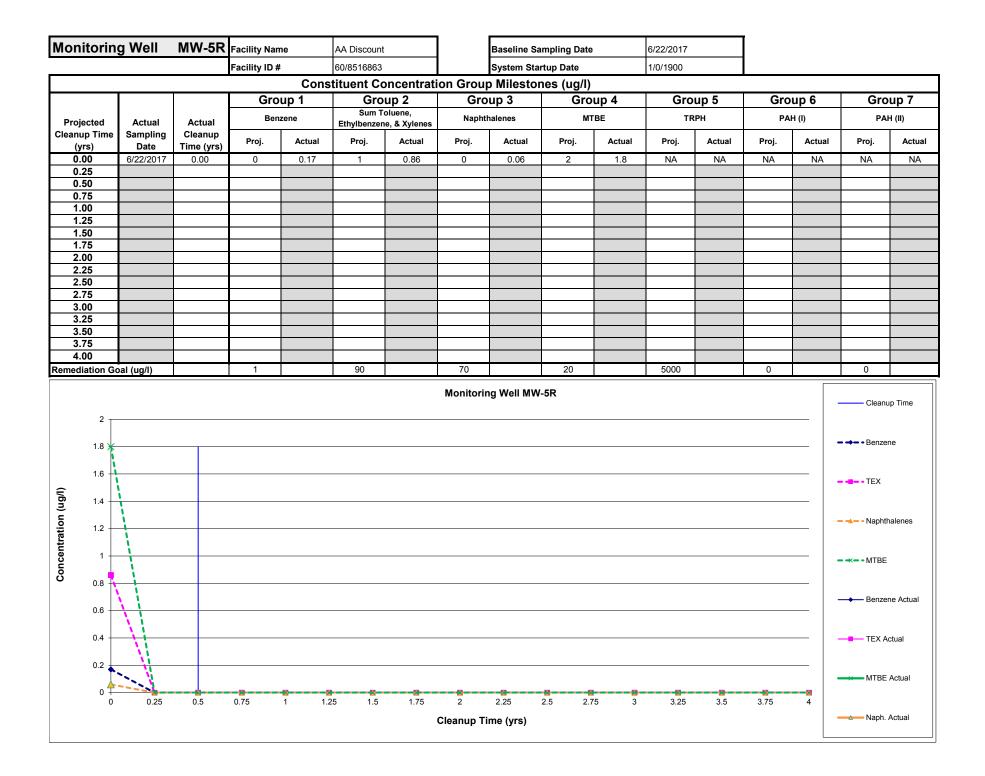
Facility Name	AA Discount
Facility ID #	60/8516863

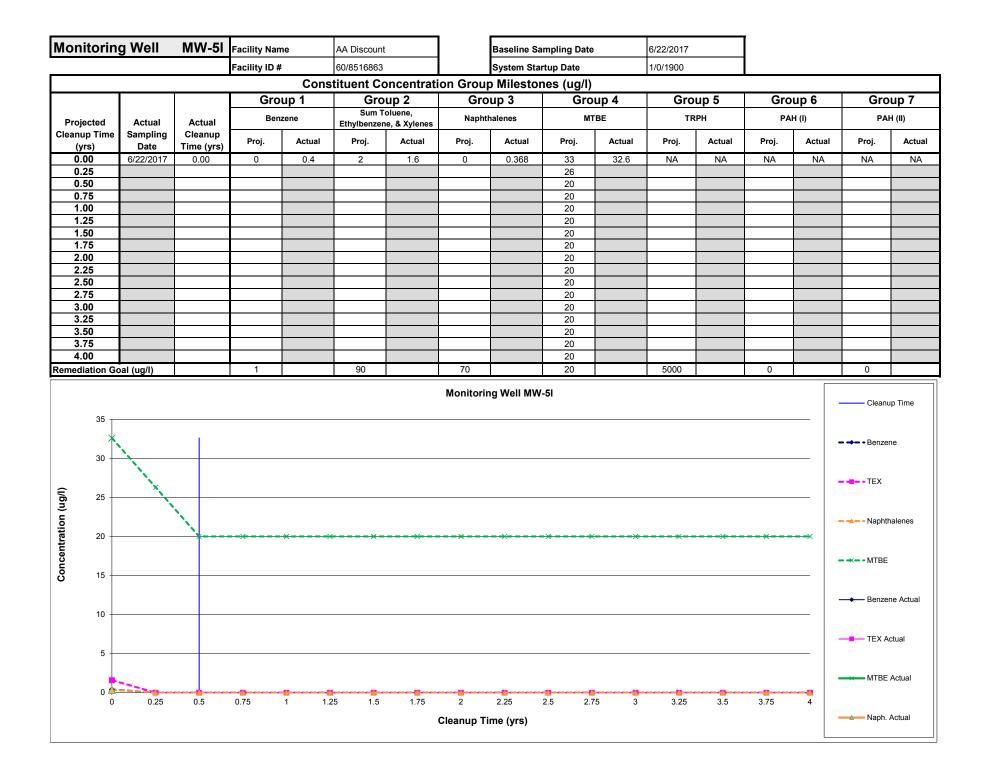
Baseline Sampling Date 6/22/2017
System Startup Date

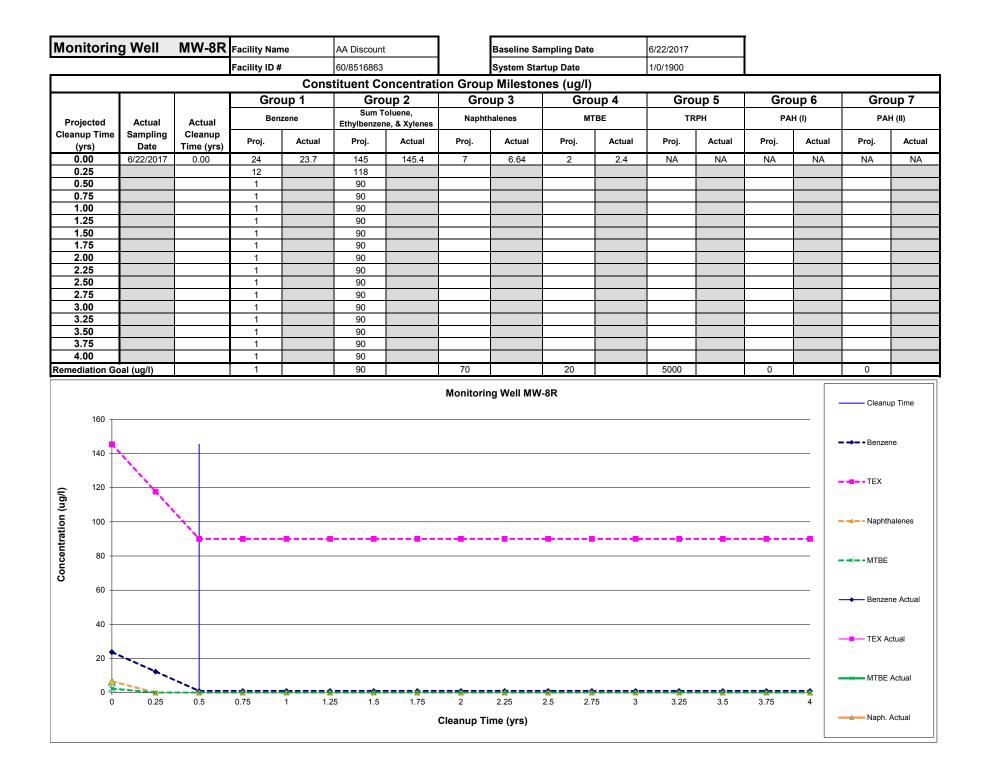
	Baseline Constituent Concentrations (ug/I)													
Contaminant Group Per M	arch 1, 2004 RAI	Group 1	Group 2				Group 3				Group 4	Group 5	Group 6	Group 7
Milestone Well #	Monitoring Wells	Benzene	Toluene	Ethyl- benzene	Xylenes	Sum TEX	Naph- thalene	1-Methyl Naph.	2-Methyl Naph.	Sum Naphs	МТВЕ	TRPH	PAH (I) ¹	PAH (II) ²
First Well	MW-5R	0.17	0.14	0.22	0.5	0.86	0.02	0.02	0.02	0.06	1.8			
Second Well	MW-5I	0.4	0.4	0.4	0.8	1.6	0.168	0.1	0.1	0.368	32.6			
Third Well	MW-8R	23.7	47.6	36.8	61	145.4	4.5	1.6	0.54	6.64	2.4			
Fourth Well	MW-8I	5.05	0.4	0.83	0.8	2.03	0.047	0.047	0.047	0.141	3.86			
Fifth Well						0				0				
Sixth Well						0				0				

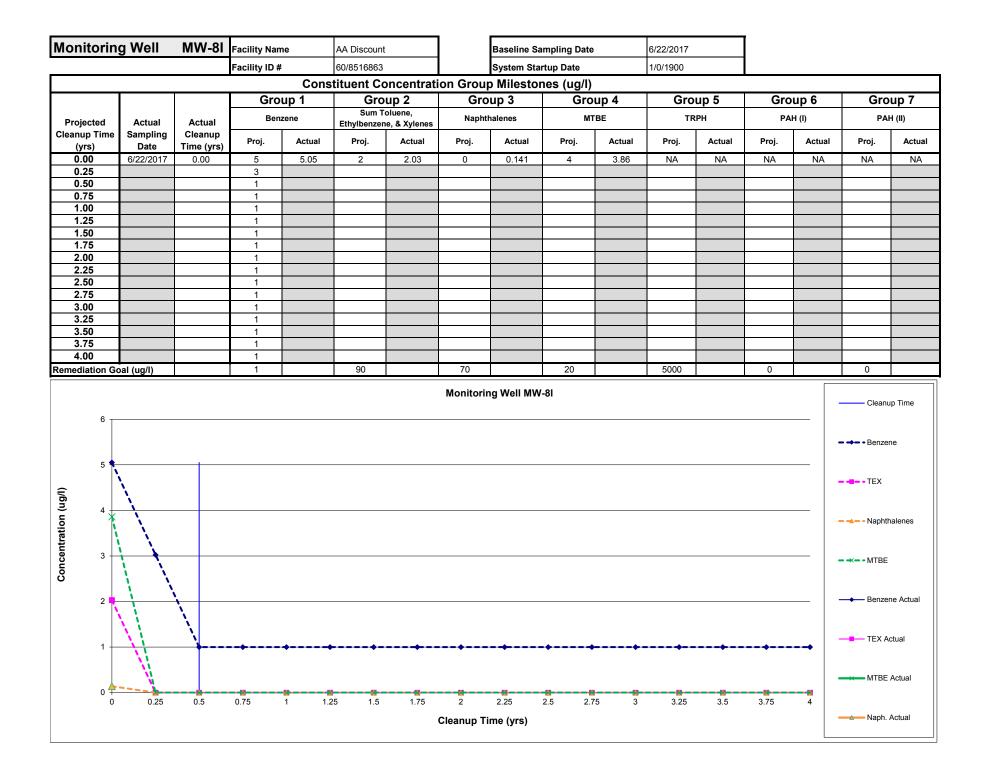
	Defined Cleanup Target Levels (ug/l)										
Contaminant Group Per M	arch 1, 2004 RAI	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7			
Cleanup Tar	get	Benzene	Sum: Toluene, Ethylbenzene, Total Xylenes	Sum: Naphthalenes	MTBE	TRPH	PAH (I) ¹	PAH (II) ²			
Groundwater Cleanup Targ	et Level (ug/l)	1	90	70	20	5000					
Natural Attenuation Default	Conc. (ug/l)	100	900	700	200	50000					
70% Natural Attenuation De	afault Conc. (ug/l)	70	630	490	140	35000					
90% Baseline Reduction (u	ıg/l)										
First Well	MW-5R	0	0	0	0	0	0	0			
Second Well	MW-5I	0	0	0	3	0	0	0			
Third Well	MW-8R	2	15	1	0	0	0	0			
Fourth Well	MW-81	1	0	0	0	0	0	0			
Fifth Well	0	0	0	0	0	0	0	0			
Sixth Well	0	0	0	0	0	0	0	0			

Selected Active Remediation Goal


Groundwater Cleanup Target Level (ug/l)


Estimated Active Remediation Time 0.5 years


Milestones are based on pre-startup baseline sampling per Section C.2 of the March 1, 2004 FDEP RAI.


Groundwater Cleanup Target Levels and Natural Attenuation Default Concentrations (NADC) as established in Chapter 62-777, F.A.C.

¹Sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)flouranthene, Benzo(k)flouranthene, Dibenz(a,h)anthracene, Chrysene, and Indeno(1,2,3-cd)pyrene. ²Sum of other PAH's not included in Group 3 or Group 6

Remedial Action Plan Summary

Site Name	FDEP BF Site ID No.					
Location	Current Data					
CHECK ALL THAT APPLY:						
Media Contaminated: Groundwater Sedimen						
Type(s) of Product(s) Discharged:	Method of Groundwater Disposal:					
Gasoline / Kerosene Analytical Group	□ Infiltration Gallery □ Sanitary Sewer					
□ Listed Hazardous Waste	□ Surface Discharge/NPDES □ Injection Well					
□ Other types of contaminants (solvents, etc.)						
List:						
Plume Characteristics:						
• Estimated Mass (lbs):						
Groundwater Soil Soil	Method of Soil Remediation:					
• Area of Plume(ft ²)	\Box Excavation:					
• Depth of Plume(ft)	Volume to be excavated(yds ³)					
Groundwater Recovery and Specifications:	□ Thermal Treatment □ Land Farming On Site					
• No. of Recovery Wells	□ Landfill □ Bioremediation					
□ Vertical □ Horizontal						
• Design Flow Rate/Well (gpm)	□ Vapor Extraction System (VES):					
• Total Flow Rate(gpm)	• No. of Venting Wells					
• Hydraulic Conductivity (ft/day)	□ Vertical □ Horizontal					
• Recovery Well Screen Interval(ft)						
• Depth to Water (ft)	• VES - Applied Vacuum (wg)					
Method of Groundwater Remediation:	• Design Air Flow Rate (cfm)					
□ Pump-and-Treat:	• Design Radius of Influence (ft)					
□ Air Stripper	• Air Emissions Treatment					
□ Low Profile □ Packed Tower	□ Thermal Oxidizer □ Catalytic Converter					
□ Diffused Aerator	Carbon Other					
□ Activated Carbon	□ Soil Bioventing:					
□ Primary Treatment □ Polishing	• No. of Venting Wells					
In Situ Air Sparging - Pressure:(psi)	□ Vertical □ Horizontal					
• No. of Sparge Points	• Design Air Flow Rate(cfm)					
□ Vertical □ Horizontal	□ In Situ Bioremediation					
• Design Air Flow Rate/Well (cfm)	□ Other					
• Total Air Flow Rate (cfm)	Natural Attenuation:					
□ Biosparging:	□ Groundwater □ Soil					
• No. of Sparge Points	• Method of Evaluation:					
□ Vertical □ Horizontal	□ Historical Trends					
• Design Air Flow Rate/Well (cfm)	□ Site-Specific Parameters					
□ Bioremediation:	Estimated Time of Cleanup: (days)					
🗆 In Situ 🛛 Ex Situ	• Method of Estimation:					
□ Other	\Box Pore Volumes (no. of pore vols. =_)					
<u>Free Product Present:</u> Yes No	\Box Exponential Decay (Decay Rate)(day ⁻¹)					
• Estimated Volume (gal)	Groundwater Transport Model					
• Maximum Thickness (in)	□ Other					
• Method of Recovery (check all that apply):						

Site Manager: Samuel Shiver	Purchase Order #:	B1F490
RAP Approval Date & Technology:		
FACILITY INFORMATION		
Facility ID Number: (9 digit)	608516863	
Facility Name:	AA Discount	
Location:	181 West Kings Highway, Center Hill	
Special Circumstances:		
Reviewer		
ATC Name & CID#:		

NOTICING

GENE	GENERAL						
~	RAP signed, sealed, and dated by Florida P.E. (per section 471.025, F.S.)	Yes					
\checkmark	Indication whether proposed plan is for Procurement, Non-program, or Voluntary cleanup	Yes					
~	Recap of SAR information and conclusions pertinent to RAP preparation	Yes					
~	Current sampling results [within nine (9) months] used for remediation system design	Yes					
7	 Potable water considerations: method of potable water supply to site and surrounding area locations of private wells within ¼ mile, public wells within ½ mile radius of site FDEP district office drinking water program has been notified if contaminated groundwater contamination may affect any public or private well. Method of notification, person notified, and date 	Yes					
~	Identification of underground utility locations; any which may enhance transport of contaminants	Yes					
~	Estimated cleanup time for the groundwater and soil	Yes					
~	Fencing of treatment area (unless public access is restricted by institutional controls	Yes					
~	Local, state, and federal permits to be obtained, and conditions stated	Yes					

Site M	anager: Samuel Shiver	Purchase Order #:	B1F490
~		or alternatives selected during pre-RAP can atives and identification of recommende	
~	Statement, signed, and sealed as-built	t (record) drawings will be provided	Yes
7	Nuisance noise and odor to neighbors exhaust stacks or other mitigating me	avoided by careful location of equipmen asures	t and Yes

REQUI	REMENTS OF THE PROCUREMENT PROCESS	
	For cleanup projects affected by the Pre-Approval Program Remedial Action Initiative, the requirements of this section apply. The items listed below in this section are to be taken into account for each of the operations covered by the other sections of this checklist.	Yes
	Cleanup Goals established. End of the Active Remediation goal: 70% of natural attenuation default concentrations (NADC), or 90% reduction of each contaminant group, in each key well in the source area, whichever is more stringent, in the specific time frame (typically one to four years). Longer cleanup times to achieve end of active remedial action goal require special justification.	Yes
~	Pilot testing of the proposed remediation strategy is generally required. Exceptions require special justification.	Yes
\checkmark	Remediation equipment must meet the specifications contained in the Remedial Action Initiative including reasonable safety factors.	NA
~	System design includes adequate source area treatment wells, e.g. a safety factor of 2, and consideration of using parallel or zoned systems.	NA
\checkmark	Ultimate cleanup target levels need to be indicated, either (CTLs) of Chapter 62-780 for unconditional NFA, or Alternative CTLs for conditional NFA. For conditional NFA, owner's acknowledgement of future institutional controls at cleanup completion should be documented.	Yes
	End of Active Remediation to be followed by Natural Attenuation Monitoring (NAM). An evaluation of "time to switch" from active remedial action to NAM to reach ultimate cleanup target levels may be preformed to allow for the continuation of active remedial action if justified.	NA
	Milestones schedule must be included in the RAP using the BPSS milestone model. The schedule must identify key wells, contaminants of concern, baseline contaminant concentrations, and time to reach the end of active remedial action. A linear concentration vs. time profile shall apply to each contaminate group in each key well.	Yes
~	RAP must include Construction Plan and a construction schedule.	Yes

Site M	Ianager: Samuel Shiver Purchase Order #:	B1F490
~	RAP must include a Startup Test Plan, and startup testing must be conducted with manufacturer's recommendations.	in accordance Yes
~	Analysis of designated / key monitoring well samples for appropriate contamic concern for the site.	inants of Yes
~	Sampling of influent from recovery well(s); daily first 3 days, monthly next 2 quarterly thereafter.	months, Yes
~	Sampling of system effluent, daily for first three days, monthly for next two m quarterly thereafter.	nonths, Yes
\	Water level data collected at same time & frequency of monitoring well and r sampling.	recovery well Yes

REMEDIAL ACTION OPTIONS

FREE PRODUCT REMOVAL		
	Free product plume identification	NA
	Description/design details of free product recovery system including:Oil/water product separator sizing calculations and detention time	NA
	Automated product pump shutdown for high level in product tank	NA
	Safety considerations: • Static electricity	NA
	Proper disposal and safe handling of flammable free product	NA

SOIL REMEDIATION - GENERAL		
	Volume of contaminated soil.	NA
	Recap of Source Removal activities and soil volume already excavated, if any.	NA
	Indication that contaminated soil will be remediated, or provide rationale for "no action".	NA
	Soil cleanup target levels identified, extent of soil contamination should be delineated by use of both OVA screening results and laboratory analysis results.	NA
	Use of Level 1 Risk Management Options for soil considered, if applicable, including SPLP, TRPH fractionation, and calculation of site specific SCTLs based on soil properties.	NA
	Proper handling & treatment of excavated, contaminated soil, or proper handling & disposal of hazardous soil (e.g. ignitable, corrosive, reactive, toxic, or peteroleum refining waste).	NA

Site Manager:	Samuel Shiver	Purchase Order #:	B1F490

LAND FARMING OF SOIL		
	Adequate surface area available (sq ft) to spread soil 6 to 12 inches thick.	NA
	Location of land farming operation.	NA
	Land farming area is flat (less than 5% slope).	NA
	Impermeable base provided. Type:	NA
	Surface water runoff controls provided.	NA
	Groundwater monitoring plan proposed if land farm is outside of immediate contamination area.	NA
	Frequency of tilling provided.	NA
	Frequency and details of nutrient application or other enhancements provided (if proposed).	NA
	Soil sampling frequency and sampling methods provided.	NA
	Potential for land farming causing nuisance conditions evaluated.	NA
	Underlying soil and groundwater monitoring procedures provided and acceptable.	NA
	Land farming will be continued until the contaminants of concern meet soil cleanup target levels.	NA
	Cost-effectiveness.	NA
	Ultimate disposition of soil discussed.	NA
	Need to fence land farm area considered.	NA

LANDF	LANDFILLING OF SOIL		
	Landfill lined and permitted by FDEP.	NA	
	Name and location of landfill provided along with conditions of acceptance.	NA	
	Cost-effectiveness.	NA	
	For out-of-state landfill disposal. Evidence provided that petroleum contaminated soil disposal in the landfill complies with the landfill regulations of the other state.	NA	

Site Manager: Samuel Shiver

Purchase Order #:

B1F490

SOIL THERMAL TREATMENT / COMMERCIAL BIOREMEDIATION OF SOIL		
	Name and location of thermal treatment or bioremediation facility provided.	NA
	Facility is permitted for thermal treatment or bioremediation of petroleum contaminated soil.	NA
	Pretreatment soil sample analyses.	NA
	Cost-effectiveness.	NA

IN-SITU	IN-SITU BIOVENTING OF SOIL		
	Soil cleanup criteria indentifcation		
	Estimated mass of contaminants of concern in the vadose zone		
	Recap of inofmation and data from pilot test study that is pertinent full-scale system design		
	 Layout: Well type – vertical or horizontal. Well construction details. Location of air injection and air extraction with respect to contaminated soil plume location and depth. Location and depth of soil gas monitoring probes with respect to contaminated soil plume and the air 		
	Design and operating parameters, equipment sizing calculations, mechanical details.		
	Instruments, controls, gauges, and valves.		
	Monitoring plan: CO ₂ ; pertinent bioremediation parameters; contaminants of concern.		
	 Air emissions: Demonstration that primary mechanism of remediation will be bioremediation and volatilization. Air flow rates will be limited based on oxygen demand for bioremediation as demonstrated by pilot study results. Evaluation of methods for off-gas treatment if pilot test indicated that a significant amount of hydrocarbon volatilization will occur. 		

SOIL V	APOR EXTRACTION	
_	Prerequisites:Relatively permeable soil	Yes

Purchase Order #: B1F490 Site Manager: Samuel Shiver Recap of information and data from pilot study that is pertinent to full-scale system design. Yes \checkmark Full-scale design. Yes \checkmark Layout and spacing of SVE wells (consideration given to radius of influence and overlapping Yes \checkmark radii) Vapor extraction well(s): \checkmark • Number of wells • Cubic feet per minute (cfm) of each well Yes Total cfm • Well type (vertical or horizontal) Well construction details Pneumatic design: \checkmark • Operating vacuum @wellhead(s) (inches of water). Yes • Piping system friction losses. • Pump motor (hp) based on system losses plus required vacuum at wellhead. Vacuum source type: regenerative blower, positive displacement vacuum pump, or other Yes \checkmark • Design specifications: cfm @ inches of water Moisture separator/condensation trap ("knock out pot") prior to inlet of vacuum pump \checkmark Yes \checkmark Surface sealing provided for vacuum extraction, or existing concrete or asphalt adequate Yes Safety Yes \checkmark • System operation at approximately 25% of Lower Explosive Limit (LEL). Instrumentation, gauges, and appurtenances Yes \checkmark \checkmark Air emissions control (general) - method of off-gas treatment to be provided during first month of system operation (provide details in Section X or XI for carbon adsorption or Yes themal oxidation of off-gas, or provide details of an alternative method. • Sample and analyze air emissions for total petroleum hydrocarbons, weekly for the first \checkmark month, monthly for the next two months, quarterly thereafter. Vacuum measurement locations (suggestion: use monitor wells at various radial distances from extraction wells). Yes Acknowledge that air emission controls must be provided for at least first 30 days, but may have to be continued longer until petroleum hydrocarbon emissions to the atmosphere are less than 13.7 lbs/day.

VAPOR-PHASE CARBON ADSORPTION (for control air emissions)		
~	Recap information and data from pilot stude that is pertinent to full-scale system design, if a pilot was conducted.	Yes
~	Cost-effectiveness evaluation in comparison to other alternatives for control of air emissions.	Yes
\checkmark	Mechanical details, sizing calculations, and operating parameters.	Yes

Site M	Site Manager: Samuel Shiver Purchase Order #: B1F49		
	Instrumentation, controls, gauges, samplin	ng, and valves.	Yes
~	 Safety: Operation of system below LEL for type of vapors being handled 		Yes

 Image: A start of the start of	Cost-effectiveness evaluation in comparison to other alternatives for control of air emissions	NA
√	Mechanical details, equipment sizing calcuations, and operating parameters	NA
7	Instrumentation, controls, gauges, and valves. [Schematic or mobile unit manufacture's drawings indicating instrumentation, controls, gauges, and valves for all process streams (contaminant-laden influent, fuel gas, and combustion air)].	NA
	 Safety considerations include (but not limited to): Bleed valve or dilution control valve to maintain influent flammable vapor concentration at 25% of the LEL Air purge prior to re-ignition Observance of appropriate requirements in Series 500 articles of the National Electrical Code - equipment shall meet either Class 1, Group D, Division 1 or Class 1, Group D, Division 2 hazardous area requirements, whichever is applicable, when located in a hazardous area as defined by the code. Use of thermal or catalytic oxidizers which meet appropriate fire codes for handling natural or propane gas and prevention of furnace explosions – National Fire Protection Association, Industrial Risk Insurer's, Factory Mutual, etc. Some of the most important safety shutdowns for gas-fired burners occur upon: high gas pressure; low gas pressure; loss of combustion supply air; loss or failure to establish flame; loss of control system actuating energy; power failure. 	NA

GROU	GROUNDWATER EXTRACTION		
~	Feasibility of using existing on-site wells for groundwater extraction considered	NA	
~	 Recovery well summary: Recovery well or trench location(s) and construction details included (diameter, screen length, grout, etc.). Recovery well depth and screen length for depth of contamination. 	NA	
~	Predicted horizontal and vertical area of influence provided.	NA	
~	Expected drawdown in recovery well or trench.	NA	

Site M	anager: Samuel Shiver	Purchase Order #:	B1F490
~	Consideration of multiple well configurat	ion to minimize drawdown.	NA
~	 Groundwater pump performance require Hydraulic design considerations (friction Pump performance curve or informatio Pump manufacturer, model; hp, rpm. 	n losses and suction lift).	NA
~	Automated well level controls provided for	or stopping/starting groundwater pump(s).	NA
~	Totalizing flowmeter installed on influent	line from each groundwater recovery pum	p. NA
~	Check valve provided on pump discharge	piping if not integral to pump.	NA
~	Shutoff/throttling valve provided on pum	p discharge piping.	NA

GROU	GROUNDWATER TREATMENT SYSTEM - GENERAL		
7	Influent concentrations for each contaminant of concern, for design of treatment system, based on either actual dynamic pump test sample, weighted averaging procedure, or other reasonable assumption.	NA	
~	Feasibility & cost-effectiveness of direct discharge of recovered contaminated groundwater to sewer treatment plant, instead of onsite treatment.	NA	
7	 Site piping summary: Schematics of all treatment components, piping, valves, controls and appurtenances provided. Influent and effluent sampling ports provided. Piping type and size provided. 	NA	
	 Fouling & scaling considerations Whether control of iron fouling is necessary, either by filtration of influent to remove particulate-bound iron, and/or by removal or sequestering of dissolved iron to prevent precipitation in process equipment items. Whether pretreatment or other measures necessary to prevent precipitation of calcium carbonate (Langelier Index). Whether pretreatment or scheduled O&M measures will be needed for control of biofouling. 	NA	

AIR STRIPPING TREATMENT PROCESS

Site Ma	anager: Samuel Shiver	Purchase Order #: B1	F490
	 Packed tower Type, size, and surface area of packing. Design and operating parameters, sizing calcupacking type, height, surface area; air/water ramist eliminator; etc.). 		NA
	Diffused aerator (tank type) - Design and opera mechanical details (tank volume; contact time; efficiency of contaminants of concern; blower	air flow rate; pressure drop; removal	NA
	Low profile air stripper - Design and operating details (number of trays; water flow rate; air f blower type, model, hp; mist eliminator).		NA
	General: • Instrumentation, controls, gauges and valves • Air emissions calculations; emissions stack he • Equipment description if emissions treatmen • Automated recovery well shutdown when blo • Sampling of effluent, daily for first three days thereafter	eight. t necessary. ower failure occurs.	NA

LIQUID	-PHASE CARBON ADSORBTION	
\checkmark	Recap of information and data from pilot study that is pertinent to full-scale system design, if a pilot was conducted.	Yes
7	Indication whether adsorption is for primary treatment of groundwater or polishing of effluent.	Yes
\checkmark	Carbon specifications.	Yes
Y	Carbon unit(s) sizing calculations (carbon usage rate, contact time, pressure losses) design assumptions.	NA
$\overline{}$	TOC in groundwater determined and effect on carbon usage considered.	NA
\checkmark	Need for sand filter or cartridge unit prior to carbon unit considered.	NA
$\overline{}$	Pressure gauge and pressure relief valve provided on carbon (and sand) filter.	NA
$\overline{}$	Carbon disposal and replacement method.	NA
\checkmark	Series configuration of carbon units considered to allow for maximum carbon utilization and prevention of contaminant breakthrough to system effluent.	NA
$\overline{}$	Automated recovery well shutdown if primary carbon unit pressure too high.	NA

Site Ma	anager: Samuel Shiver	Purchase Order #:	B1F490
\checkmark	Schedule for sampling between and after	r carbon adsorption units.	NA

N SITI	J AIR SPARGING OF GROUNDWATER	
	 Prerequisites: No or little free product which could spread via sparge turbulence, or prolong sparging. Volatile (C3-C10) petroleum fractions with Henry's Constant ≥ 0.00001 atm*m3/mol (approx. rule of thumb, unless biosparging is proposed). No high concentrations of metals (iron, magnesium) to form oxides which plug aquifer or well screens, or high concentrations of dissolved calcium, which could react with CO2 in air to clog aquifer w/calcium carbonate. 	Yes
√	Recap of information and data from pilot study that is pertinent to full-scale system design.	Yes
1	 Groundwater contamination plume coverage: Location(s) and radius of influence for full-scale air injection well(s). Adequate coverage by overlapping radii of influence if multiple well system. 	Yes
~	Air injection well(s): no. of wells; well design; operating air pressure at wellheads; cfm each well; total cfm 26.	Yes
√	Avoidance of long screen allowing air to diffuse at top portion only, where air flow resistance is least (typ screen is 1 to 3 ft long).	Yes
√	Well depth and screened interval (or depth of sparge tip) appropriate with respect to depth of contamination.	Yes
~	 Vapor extraction well(s) in conjunction w/sparging situated properly to recover volatiles and prevent their release to atmosphere: Injection cfm of air typically 20 to 80% of vapor extraction cfm (0.2 to 0.8). Automatic shutdown of air injection upon loss of, or low, vapor extraction system vacuum, or failure of vacuum pump motor, to prevent air emissions. Adequate and cost-effective treatment of vapor extraction system off-gas proposed to prevent air emissions. 	Yes
~	 Compressor: Design: cfm @ psig; operating cfm @ psig. Type; manufacturer; model; motor hp; rpm; performance curves; air filter at compressor inlet; oil trap or oil-free compressor to avoid introducing more contamination to aquifer. 	Yes
~	Safety: pressure relief valve at discharge of compressor and/or high pressure switch for automatic shutdown.	Yes
√	Instrumentation and gauges: pressure indicating gauges at each sparging well.	Yes
\checkmark	Air flow control: shutoff/throttling valve at each well; other flow control device or method.	Yes

Site Manager: Samuel Shiver

Purchase Order #:

B1F490

IN SITU	N SITU AIR SPARGING OF GROUNDWATER		
V	 General: Media to be remediated: groundwater; soil. Application method: direct-injection; recirculating/re-injection type system; addition to excavation pit. Aerobic or anaerobic. Stimulation of indigenous microorganisms or addition of microorganisms. 	Yes	
\checkmark	Recap of information and data from pilot study that is pertinent to full-scale system design.	Yes	
7	Design and operating parameters (e.g.: injection well construction details; layout and spacing of wells commensurate with injection radius of influence for adequate horizontal coverage; screened interval of injection wells commensurate with vertical extent of contamination for adequate vertical coverage; injection pump develops adequate pressure and flow rate for injection, for the site-specific conditions).	Yes	
	Dosage (of nutrients and/or microorganisms, per pound of hydrocarbon contaminants to be biodegraded). (Some bioremediation products may express dosage as a required amount per cubic yard of contaminated media.)	Yes	
	 RAP (or RAP Mod) must contain the necessary underground injection control information required by Chapter 62-528 FAC. [That is, the RAP must contain enough information for a state or local program reviewer to fill out the 2-page UIC notification memorandum titled "Proposed Injection Well(s) for In Situ Aquifer Remediation at a Petroleum Remedial Action Site".] This includes the following information: Chemical analysis (composition) of the fluid to be injected. Note: The injected fluid must meet primary and secondary drinking water standards of Chapter 62-550, FAC, and the minimum groundwater criteria of Chapters 62-520 and 62-777 FAC, otherwise Rule 62-522.300(2)(c) may apply and/or a zone of discharge variance may be necessary. Number of injection wells. Injection volume per well per injection event. Total injection volume (i.e. the total for all injection wells, all injection events). 	Yes	
~	Anticipated schedule of injection events for nutrients and/or microorganisms (i.e. the timing and frequency of injections over the life of the project).	Yes	

Site M	anager: Samuel Shiver	Purchase Order #:	B1F490
7	Provide additional oxygen, if necessary, if the groundwater is lacking in dissolved oxygen. (delivered; provide design details if method of injection, iSOC, etc.; provide chemical informa magnesium peroxide, calcium peroxide, hydro	method by which additional oxyg f delivery is mechanical, e.g. air sp ation if oxygen is supplied chemic	en will be barge, O2 Yes
7	Sampling plan includes not just the analysis or concern at a site, but also analyses necessary compliance with the underground injection co compliance with Rule 62-522.300(2)(c); and co of discharge variance. Also, analysis for more depending on the situation. In some cases, if concerns, it may be necessary to include anal the reagents, or intermediate by-products for with the petroleum contaminants of concern	for any of the following that app ontrol regulations of Chapter 62-5 compliance with the terms of an in e than just the reagents may be n there are environmental or toxic ysis for intermediate degradation rmed by the interaction of those	ly: 528; njection zone recessary, Yes cological n products of
7	Other samples and operating parameter mea include, but are not necessarily limited to the TOC, Alkalinity., microbe counts.		

INFILT	INFILTRATION GALLERY		
\checkmark	Recap of field percolation test results (preferably with double-ring infiltrometer).	Yes	
~	Infiltration gallery construction details and location (upgradient location if site layout allows).	Yes	
\checkmark	Gallery calculations/assumptions with mounding analysis.	Yes	
\checkmark	Piezometer and cleanout pipe in gallery.	Yes	
\checkmark	Geotextile filter fabric to be installed around and above gallery.	Yes	
\checkmark	Discussion or modeling of gallery for effect on plume migration.	Yes	

INJECTION WELL (FOR EFFLUENT DISPOSAL)								
~	Discussion of injection zone and relevant lithology information.	NA						
~	Recap of information and data from pilot study that is pertinent to full-scale system design, if a pilot was conducted.	NA						
\checkmark	Injection well location and construction details.	NA						
~	Screened interval appropriate.	NA						

Site M	anager: Samuel Shiver	Purchase Order #:	B1F490
~	Effluent discharge pump adequately sized f	or required injection flow rate and pre	ssure. NA
~	Carbon polishing unit (or equivalent).		NA
~	Air release valve at highest point of effluen	NA	
~	Injection rate (well hydraulics) calculations.		NA
~	Underground Injection Control (UIC) invent must contain enough information for a tech effluent injection notification.)	, , ,	
\checkmark	Evaluation of injection well's effect on pota	ble wells and plume migration.	NA

N SITI	J CHEMICAL OXIDATION	
~	Media to be remediated: groundwater; soil.	NA
√	Recap of information and data from pilot study that is pertinent to full-scale system design.	NA
7	Design and operating parameters (e.g.: injection well construction details; layout and spacing of wells commensurate with injection radius of influence for adequate horizontal coverage; screened interval of injection wells commensurate with vertical extent of contamination for adequate vertical coverage; flow rates; temperatures; pressures; pH; concentrations, etc.).	NA
<i>✓</i>	Amount of reagents required per pound of hydrocarbons to be destroyed (theoretical amount, actual amount).	NA
	 RAP (or RAP Mod) must contain the necessary underground injection control information required by Chapter 62-528 FAC. [That is, the RAP must contain enough information for a state or local program reviewer to fill out the 2-page UIC notification memorandum titled "Proposed Injection Well(s) for In Situ Aquifer Remediation at a Petroleum Remedial Action Site".] This includes the following information: Chemical analysis (composition) of the fluid to be injected. Note: The injected fluid must meet primary and secondary drinking water standards of Chapter 62-550, FAC, and the minimum groundwater criteria of Chapters 62-520 and 62-777 FAC, otherwise Rule 62-522.300(2)(c) may apply and/or a zone of discharge variance may be necessary. Number of injection events. Injection volume per well per injection event. Total injection volume (i.e. the total for all injection wells, all injection events). 	NA

Site Ma	ite Manager: Samuel Shiver Purchase Order #: B1F49		IF490	
	concerr complia complia of disch depend concerr the rea	ng plan includes not just the analysis of samp n at a site, but also analyses necessary for ar ance with the underground injection control ance with Rule 62-522.300(2)(c); and compli- narge variance. Also, analysis for more than ling on the situation. In some cases, if there ns, it may be necessary to include analysis for gents, or intermediate by-products formed l e petroleum contaminants of concern at a si	ny of the following that apply: regulations of Chapter 62-528; ance with the terms of an injection zone just the reagents may be necessary, are environmental or toxicological or intermediate degradation products of by the interaction of those reagents	NA
~		amples and operating parameter measurem cude, but are not necessarily limited to the alinity.		NA
~		ated schedule of injection events for reagen ns over the life of the project).	ts (i.e. the timing and frequency of	NA
	include • Mate catalyst • Safe F of incor • Lowe • Poter gases u of free • The m and any • The n associa risk of f • Obser Divisior hazardo • Appro equipm • Perso	(items applicable to fire, explosion, toxicolog , but are not necessarily limited to those list rial safety data sheets, toxicity, or other info ts involved. nandling of chemicals: avoidance of mixing, mpatible chemicals. r Explosive Level (LEL) considerations. ntial for vapor migration, either passively or sed, or generated by the heat of exothermic product by such heat. ninimum tolerable distance between underg y in situ heat-generating process. eed to replace the flammable contents of po ted piping with non-flammable inerts such a fire and explosion. rvance of National Electrical Code (typically S n 1 or 2 hazardous area requirements) (for e pus area). opriate chemical-resistant and/or spark-resist nent items. mal protection of workers. y considerations regarding neighbors and pa	ed below): prmation pertinent to the chemicals and premature mixing, or improper storage by convection, or driven by air or other c chemical reactions or the vaporization ground storage tanks and product piping etroleum storage tanks and their is nitrogen or carbon dioxide, to reduce Series 500 articles for Class I, Group D, lectrical equipment items located in a stant materials of construction for	
LEAD (This sec	tion may be adapted to other heavy metals if	necessary.)	
	Discuss	ion of area(s) where groundwater lead conc	entration exceeds 15 ppb.	NA

Lead concentrations (ppb): unfiltered (_____); filtered (_____); background (_____).

NA

Site Manager:	Samuel Shiver	Purchase Order #:	B1F	490
· ·	al for lead removal by filtration if unfiltered I sample is less than 15 ppb.	sample is greater than	15 ppb and	NA
Metho	Method of lead removal, including pertinent design calculations.			NA
	(or other heavy metals) will not be removed ed treatment.	by filtration, then prov	vide details of	NA

ALTER	ALTERNATIVE EFFLUENT DISPOSAL METHODS								
~	Cost-effectiveness comparison of alternatives (including general permit fee of \$2,500 per year in the cost estimate for NPDES disposal, if it is one of the alternatives being compared).	NA							
7	 For surface water discharge: Conditions for NPDES general permit met. Indication that notice of intent for NPDES permit will be submitted after RAP approval. 	NA							
~	If applicable, consumptive use permit obtained from Water Management District.	NA							
~	Approval from municipality for sewer discharge, and conditions and effluent standards to be met.	NA							
~	Applicable permits for stormwater discharge.	NA							

Florida Department of Environmental Protection

Memorandum

TO:	Cathy McCarty, P.G. Florida Department of Environmental Protection Bureau of Water Facilities Regulation Underground Injection Control Section – MS 3530 2600 Blair Stone Road, Tallahassee, Florida 32399-2400
THROUGH:	John F. Wright, P.E. Bureau of Petroleum Storage Systems Petroleum Cleanup Section 2 – MS 4545
FROM:	<u>Robert Schroeder & Thomas H. Bennett</u> (An employee of a contracted local cleanup program) <u>MAS Environmental, LLC</u>
DATE:	4/25/2018

SUBJECT: In Situ Air Sparging Aquifer Remediation Well(s) at a Petroleum Remedial Action Site

Pursuant to paragraph 62-528.630(2)(c), F.A.C., inventory information is provided below to notify you of proposed Class V, Group 4, aquifer remediation well(s) to be constructed for groundwater remediation at a petroleum remediation site. The remediation system has been designed to inject atmospheric air only with no additional chemical additives.

Facility name:	AA Discount Beverage
Facility address:	181 West Kings Highway
City/County:	Center Hill, Sumter County, FL
Latitude/Longitude: (of center of air sparging well field	_ <u>28°38'58.85''N -82°0'2.37'' W</u> I)
FDEP Facility Number:	60/8516863
Facility owner's name:	Gautambhai & Falguni Patel
Facility owner's address:	7300 SR 471
	Bushnell, FL
	MAS Environmental LLC
(or environmental cleanup contra	actor responsible for design)
Well contractor's (or environm	nental cleanup contractor) address: <u>1808 N Franklin St</u>

Tampa, FI 33602

The design of the treatment system consists of the following:

Design total air flow rate: <u>3</u> (cfm) at <u>30</u> (psi) Number of air sparging wells: <u>10</u> Total estimated aquifer area affected by air sparging: <u>1000</u>

The air sparging wells will be installed in the surficial aquifer. The following is a summary description of the affected aquifer:

 Name of aquifer: surficial

 Depth to groundwater (feet): 22

 Aquifer thickness (feet): at least 50 feet

 Areal extent of contamination (square feet): 900

A site map showing the air sparging well locations and depicting composite radii of influence is attached. The air sparging wells will be designed as follows:

Number of wells: <u>AS-1 through AS-10</u> Diameter of well(s) (i.e., riser pipe & screen) (inches): <u>2</u> Total range of depths of screened intervals of all air sparging well(s) (feet): <u>43</u> to <u>45</u> feet below land surface

Note: As the site rehabilitation proceeds, it may be necessary to cease operation of some air sparging wells, modify air flow rates to other wells, or add additional wells based on changes in the extent and degree of groundwater contamination. Such changes to increase contaminated groundwater cleanup efficiency do not need to be reported to the UIC Section.

The RAP estimates that site rehabilitation will take <u>0.2</u> years.

The proposed remediation plan was approved on ______ by an enforceable approval order. A copy is attached. The remediation system installation is expected to commence within 60 days. Please call me at ______ if you require additional information.

APPENDIX F

RA CONSTRUCTION AND START-UP PLAN OF ACTION

Remedial Action Plan

Sunoco Station-American Inn

		MON	ITH 1	М			ITH 2		MONTH 3					MON	ITH 4		MONTH 5				м	ONTH	6	MONTH 7		
	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6	WEEK 7	WEEK 8	WEEK 9	WEEK 10	WEEK 11	WEEK 12	WEEK 13	WEEK 14	WEEK 15	WEEK 16	WEEK 17	WEEK 18	WEEK 19	WEEK 20	WEEK 21	WEEK 22	WEEK 23	WEEK 24	WEEK 25	WEEK 26
TASK																										
PE Sealed Construction Drawings																										
Equipment Order																										
Permit application																										
Baseline Sampling																										
Pre-Construction Meeting(s)																										
Well Installations (including preburn collection)																										
Underground Construction																										
Equipment Delivery / Setup																										
Electrical Inspection /Power Release																										
System Start-up																										
As-built Drawings																										
Start-up Report																										