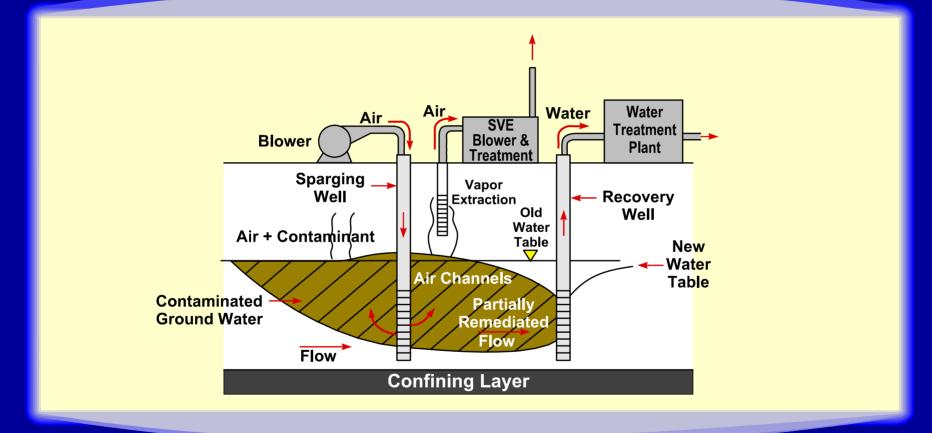
IN-SITU AIR SPARGING

Presentation Objectives

- Discuss important processes affecting success
- Describe in-situ air sparging technologies, applicability
- Identify data needs for technology selection/design
- Recommend pilot testing approaches
- Provide design guidance
- Discuss operational strategies
- Identify closure strategies and tools to determine progress toward close-out
- Identify IAS frontiers

Air Sparging Technology Description

- Concept description
 - Inject air into aquifer
 - Volatilize contaminants into air
 - Oxygenate water promote bioremediation of light hydrocarbon contaminants
- Basic components
 - Subsurface
 - Vertical injection wells
 - Horizontal wells
 - Gravel-filled trenches
 - Air delivery system



Air Sparging Technology Description

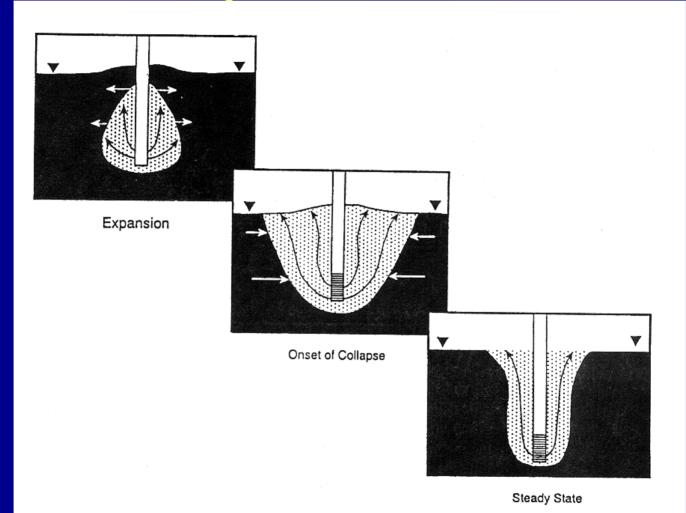
- Other components
 - Soil vapor extraction system
 - -Rarely, collection/containment wells
 - -Treatment system (vapor and liquid)
 - Monitoring

Schematic of Air Sparging

39522-06

Important Processes Governing Air Movement During Air Injection

- Air must displace water from pores
- Air will displace water from largest pores first, need higher pressure to displace water in smaller pores due to higher capillary forces to be overcome
- Most pores will not be aerated: variation in saturation
- Air will move in channels that represent easiest paths
- Depend on diffusion between contamination and channel
- Initiation of air injection
 - Need higher pressure to move water
 - Upwelling of water table occurs
 - Once air discharges to water table, paths equilibrate and pressure typically drops, water table back to static


Important Processes Governing Air Movement, Continued

- Cessation of sparging
 - Channels collapse
 - Air trapped in pores, slowly dissolve
 - Water table falls, then recovers
- Channels may be widely separated, shunted past contaminants, or migrate far from injection
- Pulsing
 - Re-inflate channels periodically
 - May deflect particles, change channel location
 - Allow delivery of dissolved oxygen with minimum effort
- Reduced transmissivity due to air

Air Injection Behavior

Applicability Air Sparging

- Contaminants
 - Chlorinated volatiles, volatile hydrocarbons
 - Low solubility/high vapor pressure compounds
 - Biodegradable contaminants
- Homogenous, permeable soils
 - Subtle differences in soil pore size affects where air can displace water at a given pressure
 - If shallow water table, can overcome heterogeneous geological strata by installing sparging trench
- Unconfined aquifer (limited application to confined aquifers)

Limitations

- Not appropriate for thick product layers
- Limitations
 - Preferred pathways
 - Low permeability zones
 - Dispersal of plume

Air Spargine Enhancements, Variations

- Injection of other gases
 - Ozone oxygen source, oxidizer, limited lifespan
 - Pure oxygen
 - Methane, propane as co-metabolites
- Biosparging
- Ground water recirculation wells
 - Closed system, various configuration, treatment in "well"
 - More in later lecture

Design Data Needs In-Situ Air Sparging

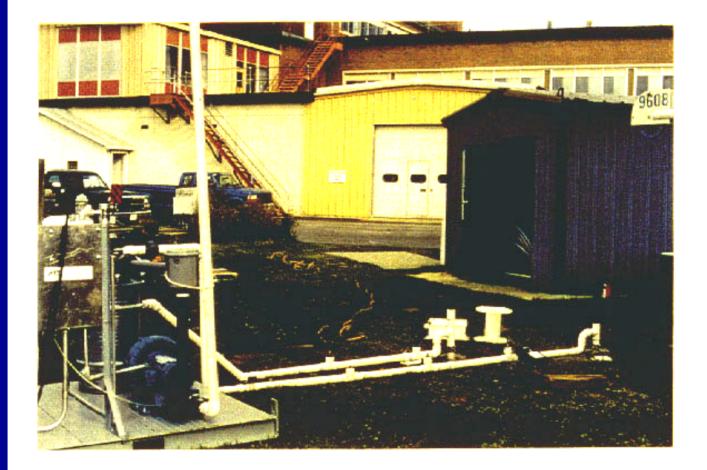
- Water table depth, fluctuations, gradient
- Stratigraphy
- Distribution and nature of contaminants
 - Solubility / vapor pressure
 - Location relative to flow
 - Biodegradability
- Soil permeability and air entry pressures
- Ground water geochemistry
- SVE properties, bacteriological nature
- Cleanup levels

Pilot Testing

SVE pilot

- Primary objective determine air distribution
 - Neutron probe data, time-domain reflectometry
 - Dissolved oxygen increase
 - Change in SVE performance
 - Groundwater response to air injection
 - Tracer gases
 - Geophysics electrical resistivity tomography

Pilot Testing, Continued


- Air injection pressures and rates
 - Compare pressure at which air begins to enter well to air entry pressure of predominant soil type
 - Air entry pressure of predominant soil type can be measured or estimated based on gradation
 - If pressure when flow begins is substantially less than air entry pressure, preferred flow, poor air contact

AOC-9 layout, looking North-northeast, with blue Ice Well building in gackground.

Neutron Probe

Design Issues

Well Spacing Screen Placement

- Well placement
 - Cover <u>3-D</u> extent with adequate air distribution to achieve removal. Do NOT just draw circles on site map
 - Channels likely less laterally extensive at depth
 - Criteria:
 - Achieve minimum air saturation/channel spacing (10-20% air saturation)
 - Models: generally inadequate information at scale of interest determining air distribution

Well Spacing, Continued

- Well placement, continue
 - Strategy
 - Can orient line of wells across plume
 - Distribute wells through plume
 - Address source
 - Can use vertical or horizontal wells

US Air Force Design Paradigm

- Determine feasibility
- Well spacing 5 meters
- Well depth 5 meters below water table
- Inject at 0.5 cubic meters/minute
- Site considerations

Component Design

- Well design
 - Drill method: do not use drilling mud if possible
 - Careful logs of materials encountered, take samples
 - Diameter: typical 5 cm diameter, larger at high flows
 - Materials: typically steel, some PVC, plastic is dangerous under high pressure
 - Screen: continuous wrap, size slot based on formation, short screen length (most air goes out the top)
 - Filter pack: design as for water wells
 - Grout seal very important
 - Development important, pulsing will draw in fines
 - Horizontal wells: most appropriate with thin saturated zone

Component Design, Continued

- Trench Alternative to Wells
 - Applicable if shallow water table, plume containment is goal
 - Avoids heterogeneity issues
 - Consider ground water flux
 - Inject adequate air to strip contaminants or transfer oxygen
 - Geochemical changes, mineral precipitation
 - Trench may be preferred path
 - Backfill sized for formation

Component Design, Continued

- Piping:
 - Can use flexible tubing
 - Air under pressure materials need to handle pressures
 - Calculate balanced flow for individual piping legs
 - Spreadsheets useful to design
- Blowers/compressors
 - Type: typically rotary vane or air compressor,
 - Identify necessary pressure to inject air, predict flow
 - Match blower performance curve to system conditions, including the losses in piping

Component Design, Continued

- Monitoring systems
 - Parameters: pressure/air flow, ground water and soil gas concentrations
 - Permanent probes, small diameter, SHORT SCREEN
 - Multiple depths use to confirm design
 - Choose representative locations based on geology, contaminants
 - Flow control valves, pressure gauge at each well
 - Flow measurement device for each wellhead
 - Pitot tubes, orifice plate, rotometers, anemometer
 - Temperature, vacuum/pressure measurement before/after blower

Other Components, Continued

- Control system
 - Typically unattended operation
 - Typically modest level of automation
 - Automatic pulsing
 - Auto-dial for shut-down condition
 - Thermal cut-off on blower motor, high pressure
 - Pressure relief valves

Start-Up/O&M

- Objective: operate equipment, gather baseline data, adjust operating parameters to achieve desired air injection
- Perform equipment checks
- Initial/baseline monitoring of GW, soil gas concentrations
- Start up: open bleed valve, start blower, gradually close bleed valve to get air to flow to formation
- Note pressure at which air begins to flow into each well
 indication of preferred flow
- Balance air flow to multiple wells by adjusting valves

Start-up Of IAS Systems, Data Collection

- Verify vacuum/pressure distribution
- Monitor water table rise around representative wells, moisture content
- Monitor contaminant and DO concentrations in subsurface
- Monitor equipment performance (current draw, temperature)

IAS System O&M Monitoring

- Verify vacuum / pressure distribution
- Monitor water table rise around representative wells, moisture content (e.g., using neutron logs)
- Monitor contaminant and DO concentrations in subsurface
- Monitor equipment performance (pressures, temperature)
- Subsurface monitoring
 - Verify vacuum / pressure distribution
 - Periodic soil gas, ground water sampling
 - Concentrations in "blowing" wells are unrepresentative
 - Water level monitoring
 - Air quality in nearby buildings

IAS System Operations and Maintenance

- Periodic system checks and routine maintenance
 - Check, lubricate blower
 - Check/clean particulate filter
 - Verify flow rates (total, individual wells)
 - Balance multi-well system
 - If simple offgas treatment (for SVE), O&M not costly

IAS System Operations and Maintenance, Continued

- Pulsing
 - Take advantage of air channel expansion
 - Reduce costs for power
 - Base pulse time on time for water table rise and decay after start-up
- Safety
 - Vapor migration to buildings, utilities
 - Blowers (rotating equipment, hot piping)
 - Piping failure
 - Liquids (fuels, etc.) Ejected from monitoring points

IAS System Optimization

- Periodic analysis of monitoring data critical
 - Verify adequacy of air flow, distribution
 - Evaluate ground water concentrations
 - Recommend changes in operation
- Tracer testing
- System rebound analysis of data clarifies progress toward cleanup
- Rebound is very common at sites with poor monitoring system design
- Subsurface performance evaluation checklist

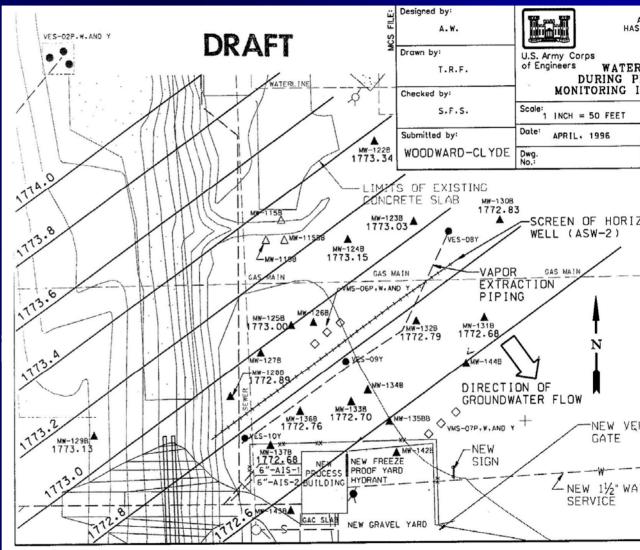
IAS Site Shutdown & Closure

Closure goals

- Meet absolute concentration in ground water
- Minimum rebound

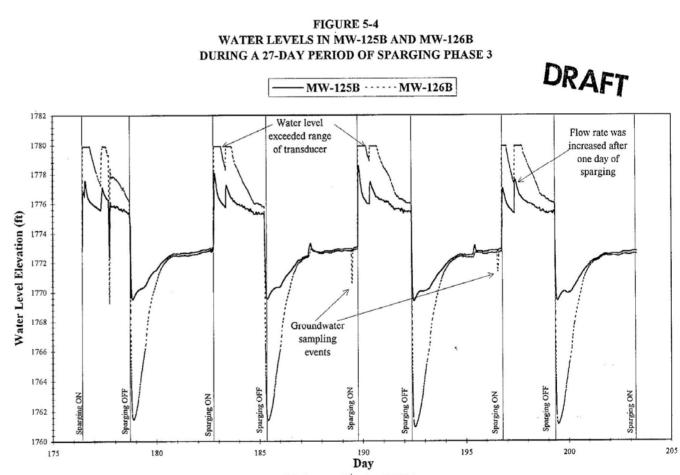
Air Sparging Case Study Hastings, Nebraska USA

- Building 124, Former Ammunition Loading Plant, 1942-1958
- Trichloroethylene up to 16,000 ug/L
- Hydrogeology:
 - Water table at 33 m
 - Silt over sand/gravel
 - 1-m thick clay aquitard at 38 m
 - Deeper sand/gravel aquifer with few silt/clay layers below, also contaminated



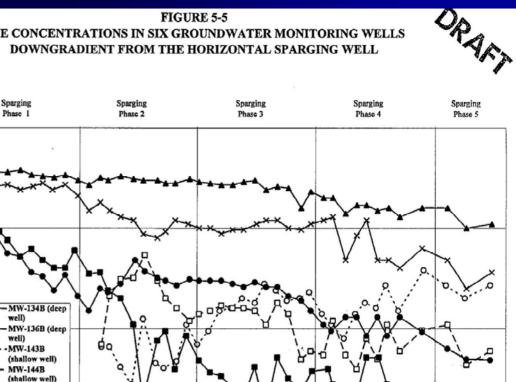
Air Sparging Case Study Hastings, Nebraska USA, Continued

- Applied technology (large pilot study)
 - Air sparging with co-metabolic biosparging and SVE
 - Both horizontal and vertical wells used in shallow aquifer
 - Vertical wells in source area
 - Horizontal wells
 - Downgradient to contain plume
 - Installed 15 cm diameter well with petroleum industry and utility burial rigs
 - 8.5 cu m/min rotary lobe blowers for air injection at 310 kilopascals
 - 17 cu m/min from 2 regenerative SVE blowers up to 40 kilopascals vacuum
 - Vapor-phase carbon off-gas treatment
 - Methane, nitrous oxide, tetraethyl phosphate injection



Air Sparging Case Study Hastings, Nebraska USA, . S Continued

Air Sparging Case **Study** Hastings, Nebras Wat USA, Continued



Note: MW-126B is screened 10 feet below MW-125B and both are within the zone of sparging of ASW-2

Air Sparging **Case Study** Hastings, Nebraska Conce **USA**parge Continued

FIGURE 5-5 TCE CONCENTRATIONS IN SIX GROUNDWATER MONITORING WELLS DOWNGRADIENT FROM THE HORIZONTAL SPARGING WELL

Note: Dashed lines indicate wells installed during Sparging Phase 2. See Figure 2-2 for well locations.

50

MW-131B (shallow well) MW-133B (shallow well)

75

100

125

150

175

Day Number

200

225

250

275

300

325

350

375

N:\EXCEL\4E11120\FINAL\FIGS.XLS FIG5-5 4/2/96 12:23 PM

25

Vapor Extraction

Only

10000

1000

100

FCE Concentration (µg/L)

Air Sparging Case Study Hastings, Nebraska USA, Continued

- Results
 - Operated for approximately a year
 - Concentrations were reduced
 - Good air distribution with horizontal well
 - Phosphate injection discontinued
 - Injected air reduced aquifer transmissivity
 - Evidence of plume displacement, underflow
 - Difficulty in sparging down to underlying clay

Air Sparging References

- EM 1110-1-4005 In-Situ Air Sparging http://140.194.76.129/publications/eng-manuals/em1110-1-4005/toc.htm
- Battelle Air Sparging Paradigm
 - http://www.estcp.org/documents/techdocs/Air_Sparging.pdf
- EPA/600/R-96/041 Diagnostic Evaluation of In-Situ SVE-Based System Performance
- Remediation System Evaluation Checklists http://www.environmental.usace.army.mil/rse.htm

Presentation Summary

- Applicability: VOCs, aerobically degradable organics
- Pilot tests: determine air distribution, injection pressures and flow rates
- Design:
 - Do NOT use radius of influence
 - Consider three dimensional air distribution
- Operation:
 - Collect subsurface, above-ground equipment data
 - Check/maintain equipment
- Closure
 - Evaluate concentrations remaining
 - Rebound tests
- Enhancements: other gases, biosparging

