Using 3D Groundwater Visualization to Support Project Management

Application of Leapfrog Hydro at the Puchack Well Field Site.

Katie Mishkin and Jon Gorin

U.S. Environmental Protection Agency, Region 2

May 2, 2016

EPA United States Environmental Protection Agency

24th NARPM Training Program

Site Location

Ę

Puchack Conceptual Site Model

Puchack Conceptual Site Model

- Goal: Reduce the level of chromium in the groundwater to meet New Jersey's Groundwater standard for *total* chromium (70 ug/l)
- Method: Reduce the Cr⁶⁺ to trivalent chromium (Cr³⁺) through injection of an *unspecified* reducing agent into the areas of groundwater contamination

The PRPs Response "We Didn't Do it"

- Financial records proved the company could not have purchased enough chromate to have caused the plume.
- There are other sources of CrVI in the area, including a sewer pipe and a landfill.
- EPA's data do not show a link between the middle aquifer and the lower aquifers.

Puchack Conceptual Site Model

Puchack Conceptual Site Model

=

C:WMSIG/S/Puchack/ProjectalChromium_Contoura.mxd

7

Pennsauken Township, New Jersey

Question #1

How could we have better shown the PRPs that there is a link between their property and the groundwater plumes?

24th NARPM Training Program

General Design Approach

Full Scale Design/Implementation

Divided Groundwater Cleanup into Two Phases

Phase 1, upgradient portion with higher Cr concentration
Underlies commercial properties.

Phase 2, remaining portion

- Underlies residential properties.

Ę

USPuchack/Projectr/Figure_1-2_Construction_Sequence.mxd

How can we demonstrate how well (or poorly) the remedy's first phase worked?

24th NARPM Training Program

Phase 2 Pilot Study

Can horizontal well screens resolve our logistical issues?

- Need to properly locate the screens
- Lactate needs to discharge evenly over screen length

24th NARPM Training Program

Well Installation "The Plan"

- Drill 850 foot pilot hole using a gyroscopic steering tool.
- Chase pilot hole using a "knock-off" drill bit and a large diameter drill rod – guidance through magnetic transmitter
- Well material inserted inside drill rod, bit sacrificed and drill rod removed.

Well Installation "The Reality"

- The Gyroscopic steering tool (GST) was amazingly accurate
- Changes in formation material increased the risk of losing the GST; - switched to the knock-off bit/magnetic transmitter before completing the pilot hole
- The magnetic transmitter was at the maximum range of functionality final screen off target area by about 50'

Planned Vs Actual Well Location

F

Variable Slotted Screen

Ţ

Phase 2 Pilot Study - Total Injection Quantities

Period of Injection	Total 60% Sodium Lactate Injected (gallons)	Total 60% Sodium Lactate Injected (pounds)
July 15, 2015 – August 5, 2015	22,132	246,329

Note: Density of 60% sodium lactate is 11.13 pounds per gallon.

Phase 2 Pilot Study Performance Round 1 COD Concentrations

Ţ

Question #3

How can we be confident we're installing the horizontal wells in the optimal locations?

24th NARPM Training Program

Seeing in 3D Might Help

F

Groundwater communication between aquifers

Fee

Lower Aquifer

How could we have convinced the non-technical PRPs that there is a link between their property and the groundwater plumes?

Ţ

Topography and Chromium >70 μg/L

5-1k ug/L 1000

Plunge +12 Azimuth 013

Question #1 How could we have better shown the PRPs that there is a link between their property and the groundwater plumes?

F

Pre-treatment Cr ⁶⁺> 70 ug/L

Question #2 How can we demonstrate how well (or poorly) the remedy's first phase worked?

Post-treatment Cr ⁶⁺> 70 ug/L

Pre-treatment Cr ⁶⁺> 1000 ug/L

Question #2 How can we demonstrate how well (or poorly) the remedy's first phase worked?

Post-treatment Cr ⁶⁺> 1000 ug/L

Cross-sectional view of remaining Cr⁶⁺ plume

Question 3: How can we be confident we're installing the horizontal wells in the optimal locations?

1000

ecc

Ę

Considering 3D visualization?

- Robust dataset
- Sufficient hydrogeologic information from well logs
- Complicated aquifer system (e.g. multiple aquifers, fractured bedrock)
- Multiple/co-mingled contaminant plumes

Leapfrog Hydro Viewer

24th NARPM Training Program

Extras

Extent of CR⁺⁶ >70 µg/L for Middle Aquifer with Middle Potentiometric Surface Map

Ę

Extent of CR⁺⁶ >70 µg/L for Intermediate Sand with Intermediate Potentiometric Surface Map

Extent of CR⁺⁶ >70 µg/L for Lower Aquifer with Lower Potentiometric Surface Map

