#### **SOIL VAPOR EXTRACTION**

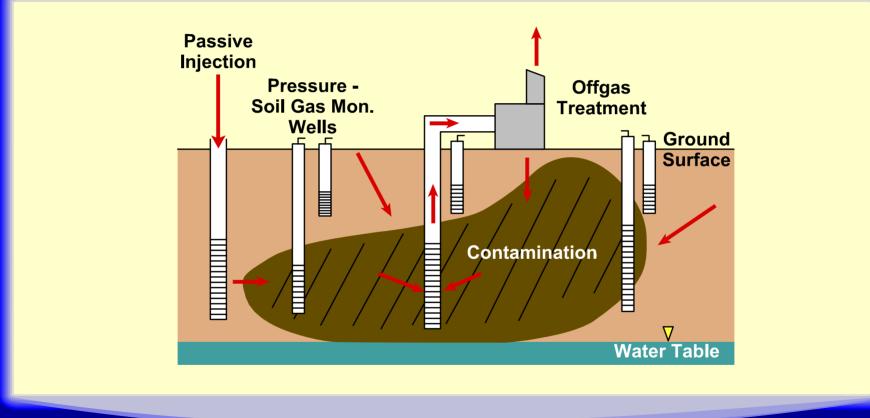


# **Presentation Objectives**

- Describe SVE technology and applicability, including enhancements
- Identify data needs for SVE selection/design
- Recommend pilot testing approach
- Provide design guidance
  - Avoid radius-of-influence approach
  - Consider air throughput
- Consider start-up data collection & evaluation
- Discuss operational strategies
- Compare closure strategies and tools to determine progress toward close-out
- Identify contracting approaches






# **Soil Vapor Extraction**

- Operating principles
  - Volatile organics evaporate into soil gas
  - Remove air from vadose zone
  - This removes vapors, promotes additional evaporation
  - This removes contaminant mass
  - Also promotes biodegradation
  - Passive extraction (and injection)
  - Soil pile treatment (excavated soil)





# Soil Vapor Extraction Schematic



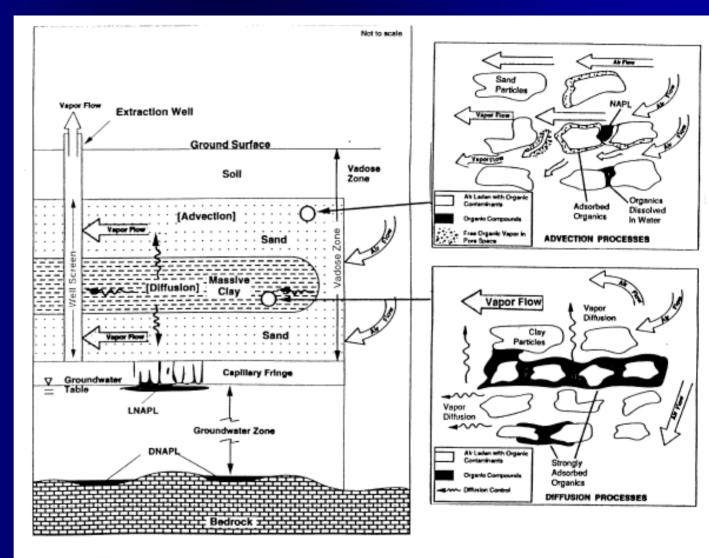
39522-01



#### Applicability **Soil Vapor Extraction**

- Soils only
  - Not for groundwater cleanup
  - Require adequate permeability to air
  - May remove minor light floating product
- Volatile components
  - Vapor pressure >0.5 mm hg
  - High henry's law constant
- Semivolatile/heavy hydrocarbons Indirectly applicable
- Landfill gas control
- Remediation in months to years






# Limitations

- Silts and clays very difficult to treat
- Fine soil retains moisture, blocks pores
- Dead-end pores may retain contaminants
- Diffusion limitations important for tight soils
- Geologic heterogeneity may result in nonoptimal air paths
- Difficult to SVE implement in fractured rock due to highly anisotropic air flow



### Diffusion Limitations



Source: after USEPA 1991c



# Air Permeability As Function Of Water Content

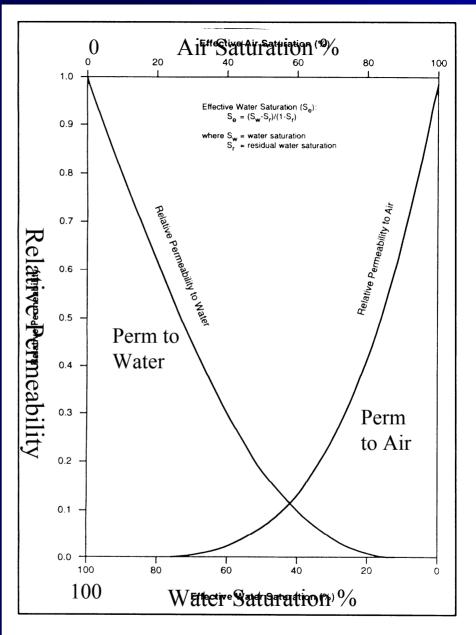





Figure 4-2. Relationship between water saturation and relative permeability to air

#### Important Processes Governing Air And Contaminant Movement

- Air flow is governed by equations similar to ground water (darcy's law) but air is compressible
- At low gauge vacuums/pressures, many equations for groundwater can be used for air
- Models available to predict air flow and vacuum/pressure distribution
- Sorption of contaminant, moisture content will affect contaminant transport



#### **Design Data Needs** SVE Design Consideration

- Stratigraphy
  - Take care in logging
  - Note secondary permeability features
- Depth to water table
  - Fluctuations
  - Ground water concentrations offgasing
- Nature, extent, and mass of contaminant
  - Difficult to determine mass, use method 5035
- Soil vapor concentrations (primary and secondary contaminants)
- Moisture content of soil very important
- Organic carbon content of soil
- Oxygen content for biodegradation issues
- Site features: basements, utilities, topography
- Available utilities, sound issues



#### DESIGN DATA NEEDS SOIL PARAMETERS

|                             |             |         |       |                   |                  |                                     |                                    | SC                   | DIL              | P/             | AR,          | AM               | ET                | EF       | RS                  |                          |               |             |                |                        |                                       |               |
|-----------------------------|-------------|---------|-------|-------------------|------------------|-------------------------------------|------------------------------------|----------------------|------------------|----------------|--------------|------------------|-------------------|----------|---------------------|--------------------------|---------------|-------------|----------------|------------------------|---------------------------------------|---------------|
| TECHNOLOGIES                | Temperature | Soil pH | TOC   | Kjeldahl nitrogen | Nitrate, Nitrite | Available P (soil), Totat P (water) | Sieve Analysis/Grain Size Analysis | Specific Heat BTU/Ib | Moisture Content | Field Capacity | Bulk Density | Particle Densigy | Soil Permeability | Porosity | Soil classification | Alkalinity (HCO3-, CO3=) | Fe III, Mn IV | Soil Oxygen | CO2 (soil gas) | Conductivity (thermal) | Capillary pressure - saturation curve | Strataigraphy |
| Soil Vapor Extraction (SVE) | X           | X       | X     | 0                 | 0                | 0                                   | X                                  |                      | X                |                | 0            |                  |                   | 0        | X                   |                          |               | X           | X              |                        | X                                     | X             |
| Thermally Enhanced SVE      | X           | X       | X     |                   |                  |                                     | X                                  | 0                    | X                | 0              | 0            | 0                | 0                 | 0        | 0                   | X                        | 0             | X           | X              | 0                      | X                                     | X             |
| Bioventing (BV)             | X           | X       | X     | X                 | 0                | 0                                   | X                                  |                      | X                | X              | 0            |                  | 0                 | 0        | X                   |                          | 0             | X           | X              |                        | 0                                     | X             |
|                             |             |         |       |                   |                  |                                     |                                    |                      |                  |                |              |                  |                   |          |                     |                          |               |             |                |                        |                                       |               |
| NOTE: "X" Recommneded d     | urin        | ig e    | arly  | site              | e in             | ves                                 | tiga                               | tior                 | is b             | efo            | re a         | ny f             | trea              | tme      | ent i               | s b                      | eing          | j co        | nsi            | der                    | ed                                    |               |
| "O" Recommended in          | ad          | ditic   | on te | <b>x" c</b>       | (" if            | the                                 | tec                                | hno                  | olog             | y is           | s be         | ing              | cor               | isid     | lere                | d o                      | r ha          | s b         | een            | se                     | ecte                                  | be            |





#### DESIGN DATA NEEDS WATER PARAMETERS

|                                   |                   |                     |           |      |            | W            | AT                    | ER    | P.   | AR                           |                         | ΛE <sup>-</sup>      | ΓE    | RS                  |                      |                           |            |            |                   |                  |
|-----------------------------------|-------------------|---------------------|-----------|------|------------|--------------|-----------------------|-------|------|------------------------------|-------------------------|----------------------|-------|---------------------|----------------------|---------------------------|------------|------------|-------------------|------------------|
| TECHNOLOGIES                      | <b>DO (field)</b> | Temperature (field) | Turbidity | H2S  | pH (field) | ORP (field)  | Ca++,Mg++,Mn++,Na+,K+ | TOC   | COD  | Total Dissolved Solids (TDS) | Alkalinity (HC03-,C03=) | Conductivity (field) | BOD   | Phosphorous (total) | Ferrous Iron (Fe II) | Total Iron (Fe II,Fe III) | SO4=, SO3= | NO2-, NO3- | Kjeldahl Nitrogen | Sieve Analysis * |
| Air Sparging (AS)                 |                   | X                   | X         | 0    | X          | X            |                       | X     | 0    | X                            | X                       | X                    | 0     | 0                   | X                    |                           | 0          | 0          | 0                 | X                |
| Multiphase Phase Extraction (MPE) | X                 | X                   | X         |      | X          | X            | 0                     | X     |      | 0                            | X                       | X                    |       | 0                   |                      | X                         |            | 0          | 0                 | X                |
| In-Well Air Stripping             | Se                | e A                 | 5         |      |            |              |                       |       |      |                              |                         |                      |       |                     |                      |                           |            |            |                   |                  |
| Free Product Recovery             | Se                | e M                 | PE        |      |            |              |                       |       |      |                              |                         |                      |       |                     |                      |                           |            |            |                   |                  |
|                                   |                   |                     |           |      |            |              |                       |       |      |                              |                         |                      |       |                     |                      |                           |            |            |                   |                  |
| NOTE: "X" Recommened during ea    | rly :             | site                | inv       | esti | gati       | ions         | s be                  | fore  | e an | y tr                         | eat                     | mer                  | ıt is | bei                 | ing                  | con                       | sid        | ere        | d                 |                  |
| "O" Recommended in addition       | on t              | o ")                | (" if     | the  | e tec      | hn           | olog                  | yy is | s be | ing                          | CO                      | nsic                 | lere  | d o                 | r ha                 | ıs b                      | een        | se         | lect              | ed               |
| * Estimate of soil hydrauli       | c n               | on                  | artie     | e ir | h th       | <b>a</b> a o | mife                  | ar w  | her  | o th                         |                         | amı                  | hles  | we                  | re f                 | ake                       | n          |            |                   |                  |



#### PILOT STUDIES Typical Objectives

#### Determine Mass Removal Rates

- Typically Highest at Start
- Exponential Decay Over Time
- Useful for Offgas Treatment Design
- Determine Air Flow Paths
  - Identify Heterogeneity Effects
- Air Permeability Estimate
  - Critical for Well Layout Design
- Achievable Residual Concentrations (Long Term)
- Amount of Necessary Air Throughput (Long Term)



# **Pilot Studies**

- Typical pilot equipment
  - Similar to ground water pump test
  - Single extraction well
    - Designed as a typical production well (preferred)
    - 10-cm diameter monitoring well with adequate screen above water table
  - Monitoring points
    - Multiple depths to asses
    - Logarithmically increasing distances
  - Rental blower and associated equipment
    - Need power, permit (?), treatment (?)
  - Means to measure flow, vacuum, concentrations



# Pilot Studies Typical Pilot Procedures

- Note barometric pressure lag
- Step test
  - Run blower at different settings of bleed valve (different applied vacuums at well head)
  - Measure flow at stable vacuums
- Air permeability test
  - Pick steady air flow rate from step test
  - Run test at steady rate, measure transient and (pseudo)steady state vacuum at monitoring points
  - Duration: <5 min to >8 hours

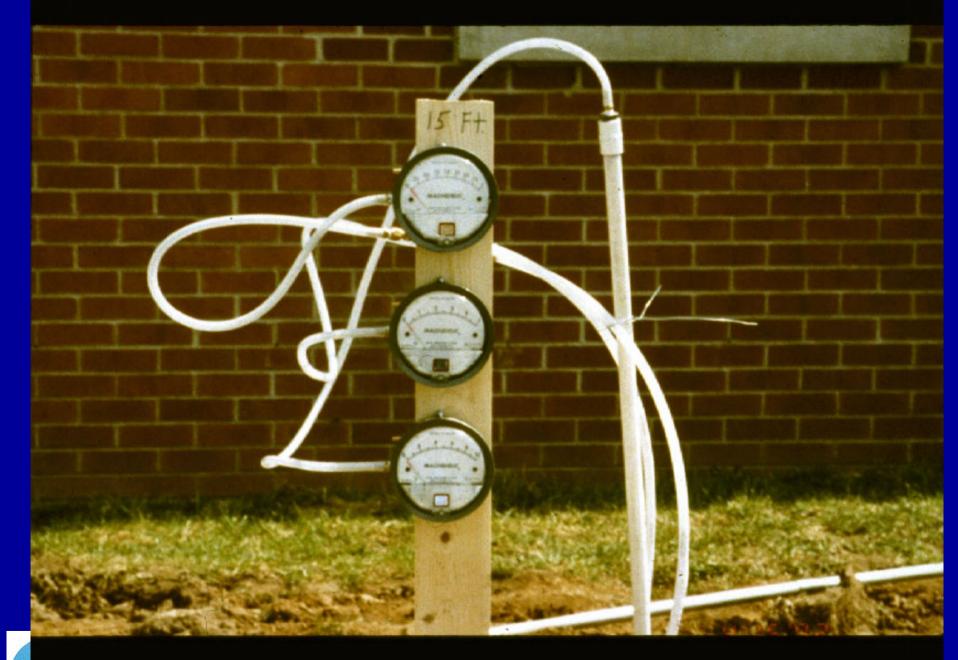


# **Pilot Studies Typical Pilot Procedures, Continued**

#### Long-term concentration trend

- Continue operation, measure conc. Vs time for weeks/months
- Monitor gross concentration (PID/FID), some definitive analysis for specific constituents (on- or off-site lab)




#### Pilot Studies Data Analysis

- Step test: graph of flow vs. applied vacuum, look at water table response
- Air permeability (k<sub>a</sub>)
  - Similar to groundwater, different boundary conditions
  - Differences between k<sub>w</sub> and k<sub>a</sub>
  - Johnson et al. 1990 (Johnson, P. C., Stanley, C. C., Kemblowski, M. W., Byers, D. L., and Colthart, J. D. 1990a. A practical approach to the design, operation, and monitoring of in situ soil-venting systems. *Ground Water Monitoring Review*. 10(2):159-78)
  - Shan et al. 1992 (Shan, C., Falta, R., and Javandel, I. 1992. Analytical solutions for steady state gas flow to a soil vapor extraction well. *Water Resources Research* 28(4): 1105-20)
  - GASSOLVE software
- Concentration trend: plot concentrations vs. time for different constituents

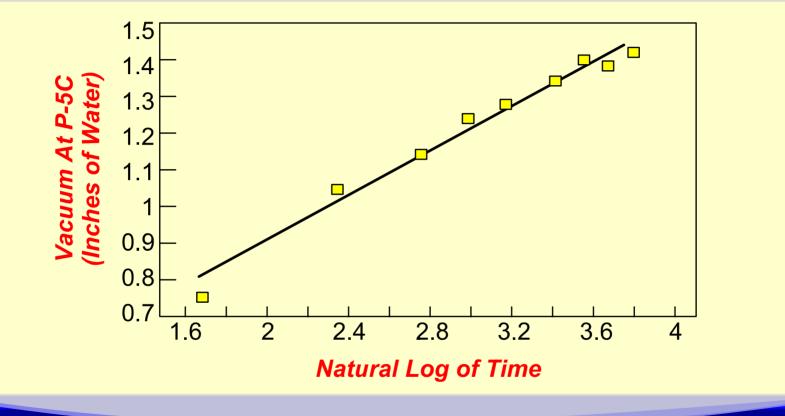








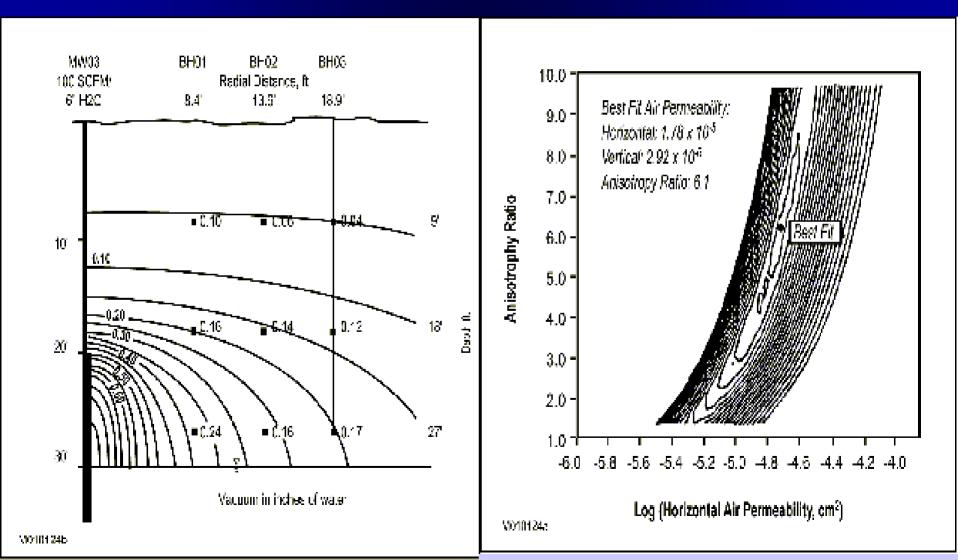












### **Typical Pilot Test Result**



39522-02



# Permeability Estimating Using Best-fit Techniques



# System Design

#### Subsurface Design Above-Ground Equipment



# Well Spacing -Screen Placement

- Well placement
  - Cover 3-dimensional extent with adequate flow to achieve removal in required time
  - Do NOT use radius of pressure influence
  - Key: amount of air moved through target zone
  - Criteria:
    - Travel times for air through target zone
    - Minimum velocities in target zone



# **Subsurface Design Criteria**

- Travel time through contaminated zone that results in adequate air exchanges to achieve goal accounting for diffusion limits
  - Need 100s to 1000s of air exchanges
  - Common criteria: 0.25 1 day travel times
- Minimum air velocity of 0.01 cm/sec within contaminated zone

Identify stagnation zones – little flow

- Use of pilot test data permeability, paths
- SVE models, 2DSTREAM
- Nomographs in Shan et al, 1992 and USACE SVE EM



# **Well Layout Selection**

- Assess travel times/velocities for single well
  - Covered and uncovered (open) surface
  - Different equations

$$Q_{v}^{*} = \frac{\pi r^{2} bn_{a}}{t_{ex}} \qquad Q_{v}^{*} = \frac{2\pi b^{2} n_{a} A(L-1)\tau}{t_{ex}}$$

r = horizontal distance from well, b = vadose zone thickness,  $n_a$  = airfilled porosity,  $t_{ex}$  = time for 1 pore volume, L = depth to water table, I = depth to top of screen, A =  $k_h/k_v$ ,  $\tau$  = dimensionless travel time



#### Travel Time Nomograph

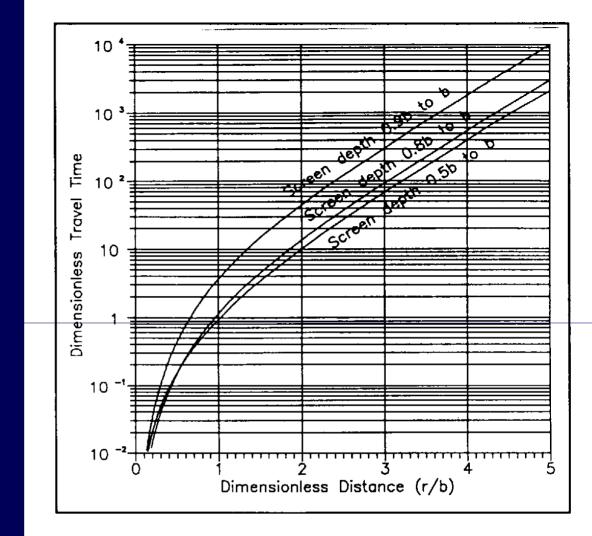
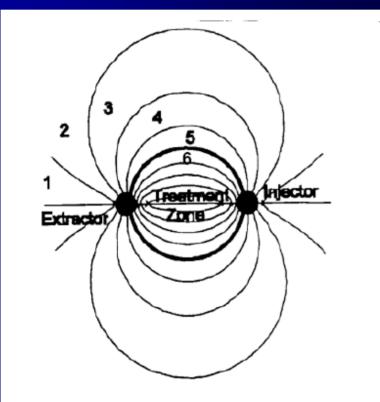
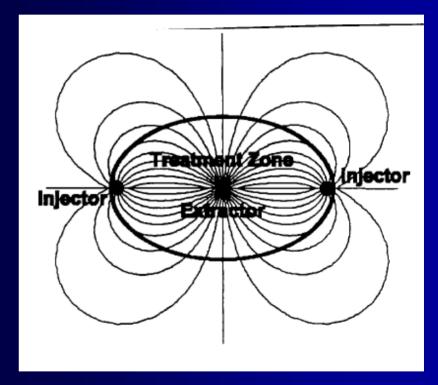


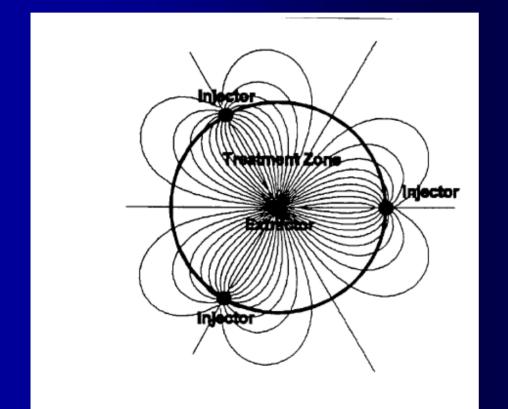

Figure 5-14. Dimensionless travel times at the water table for wells screened within the lower half, fifth, and tenth of the vadose zone (Brailey 1995, unpublished data)





# Well Spacing -Screen Placement, Continued

- Active and passive air injection
  - Improve throughput, especially near water table
  - Reduce upwelling
  - Avoid stagnation zones
  - Isolate offsite sources
  - Consider air intrusion into basements, utilities
  - Passive injection: depends on achievable flow
- Screen placement
  - Focus flow in contaminated zone
  - Depths vs. Volume of effective treatment
  - Avoid water table upwelling




#### **Two- And Three-well Systems**







#### **Four-well And Multiple Well Systems**



- Air-flow modeling can assist in assess flow in larger systems
- Models can assess velocities
- Identify stagnation zones

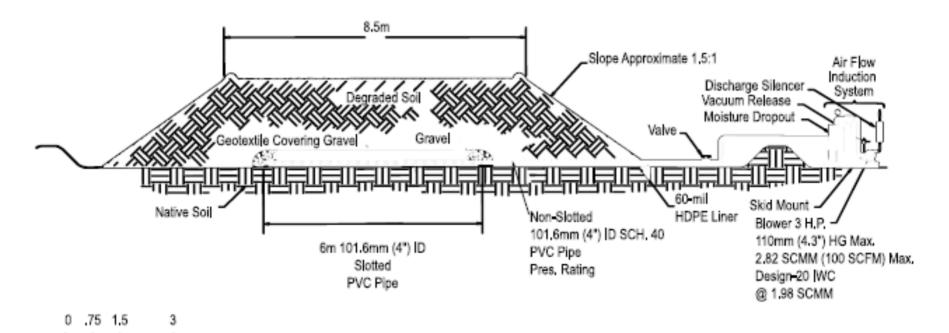


# **Subsurface Component Design**

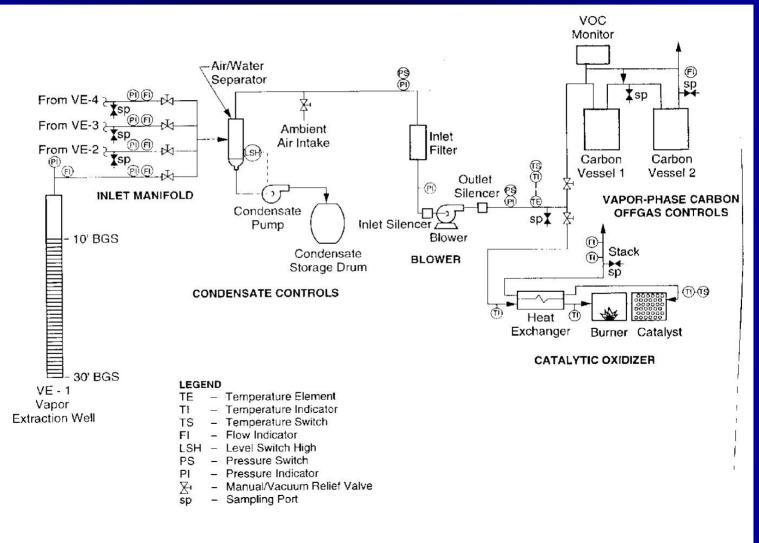
- Well design
  - Drill method: do not use fluids if possible
  - Diameter: minimum 10 cm, larger at high flows
  - Materials: typically PVC, consider others if soil concentrations high or in contact with residual pure solvent or if thermal enhancement possible



# **Subsurface Component Design**


- Well design, continued
  - Screen: continuous wrap, moderate slot size
  - Filter pack: coarse pack or as for water wells,
  - Grout seal important
  - Horizontal wells: most appropriate with shallow water
    - Most methods use fluids (including mud) which may prove problem for effective SVE
    - Trenching may be more effective, need effective seal above trench




#### **Above-Ground Piles**

- Excavated soil, less heterogeneity in soil structure
- Control moisture but allow air in, liner under soil
- Extract at bottom of pile

GALE IN METERS



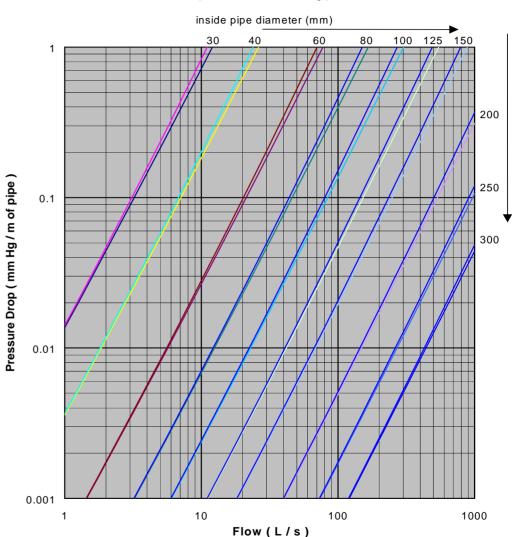
### **Typical SVE Process Schematic**



TWTAL PROTECTIC

TIMI + DEPA

STATES OF N


# **Piping Design**

- Often Not Buried Due to Short Duration
- Must Consider Pressure Drop along Piping Use Adequate Diameter for Flow. Loss Charts Available
- Separate Piping to Each Well Vs. Header Piping
- Consider Drains at Low Points
- Calculate Balanced Flow for Individual Piping Legs
- Spreadsheets Useful to Design
- Materials: Plastic (PVC) Fine for Vacuum, Consider Concentrations, Temperatures. High Temps Deform PVC
- Degradation of PVC in Sunlight



### Pressure Loss Chart





Friction Losses in Pipe for Air @ STP Conditions

 $(20^{\circ} \text{ C and } 760 \text{ mm Hg})$ 

Top line of pair for steel pipe and lower line for PVC pipe.

### **Blower Design**

- Types: Typically Regenerative, Positive Displacement (Rotary Lobe, Liquid Ring)
- Positive Displacement Types Develop Vacuum Needed to Generated Desired Flow
- Identify Necessary Flow, Predict Wellhead Vacuum
- Match Blower Performance Curve to System Conditions, Including the Losses in Piping
- Minimize Energy Use, Maximize Speed, Need Flexibility
  - Consider Variable Speed Drive Motors Flexibility Input From Mechanical Engineers
- Consider Potential for Hazardous Atmospheres



# **Monitoring System Design**

- Parameters: pressure/air flow, soil gas concentrations, barometric pressure
- Permanent probes, small diameter, good seal
  - Multiple depths use to confirm design
  - Choose representative locations based on geology, contaminants
- Flow control valves, sample port
- Flow measurement device for each wellhead
  - Pitot tubes, orifice plate, rotometers, anemometer
- Temperature, vacuum/pressure measurement before/after blower



### **Other Components**

- Covers very similar to landfill covers
- Condensate handling
  - Vapor near 100% RH, cooling causes condensation
  - Entrained water
  - Cyclone separator
  - Insulate, heat tracing
  - In-situ moisture control
- Particulate filters
  - Dust generation usually limited to debris in piping
  - Can get dust in fractured piping
  - Filters: ~10 um paper cartridge, others
  - Measure pressure drop across filter

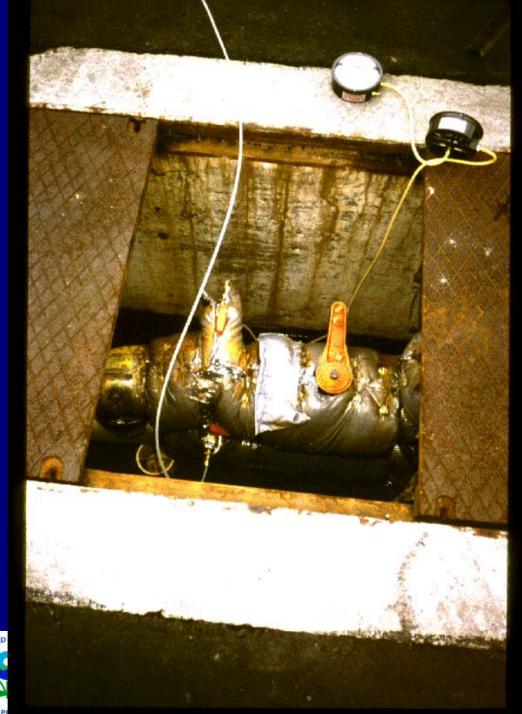


### **SVE Off-gas Treatment**

- Offgas treatment
  - Carbon adsorption, resin adsorption
  - Thermal destruction
  - Catalytic oxidation
- Problems
  - Carbon high cost, not effective for MEK, VC, etc
  - Thermal destruction & catalytic oxidation
    - High energy
    - Cl-voc can produce acid gases, high corrosion

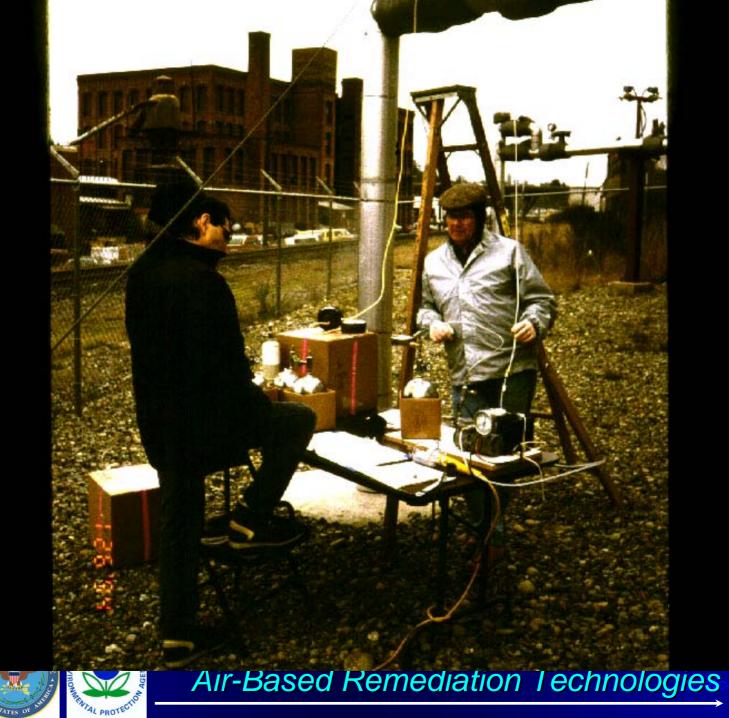


### **Control System**


- Well suited to unattended operation
- Typically modest level of automation
- Auto-dial for shut-down condition
- Thermal cut-off on blower motor, high condensate tank level, high vacuum/low pressure
- Pressure relief valves, bleed valve
- Automated chemical monitoring



### **Off-Site Considerations**


- Noise < 120 db</li>
- VOC reduction set by local air board – Mass/day, e.g. Purity site 0.3 kg/day
   90% reduction of all VOCs



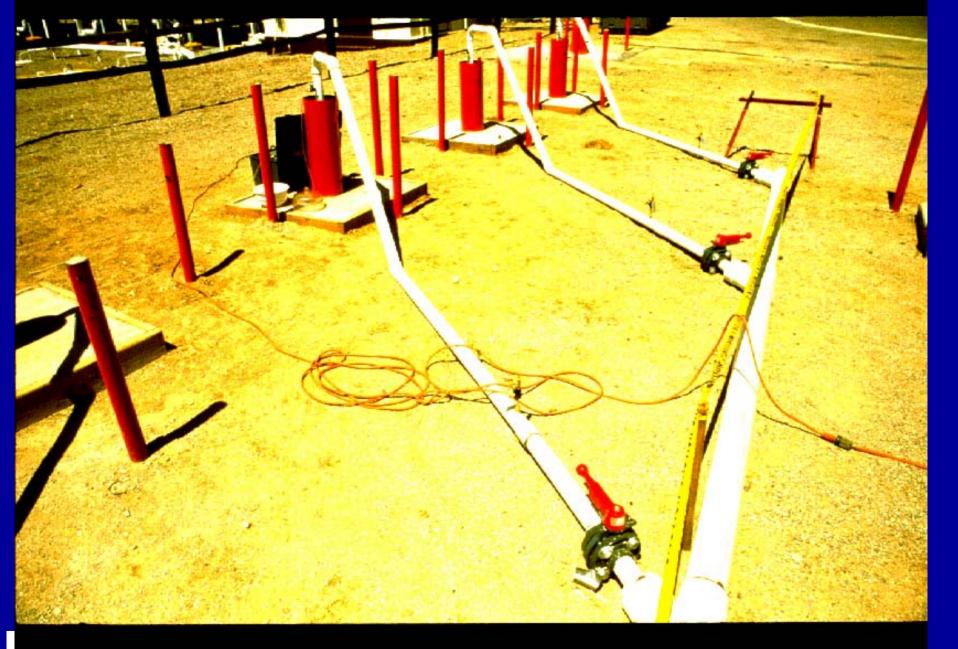


















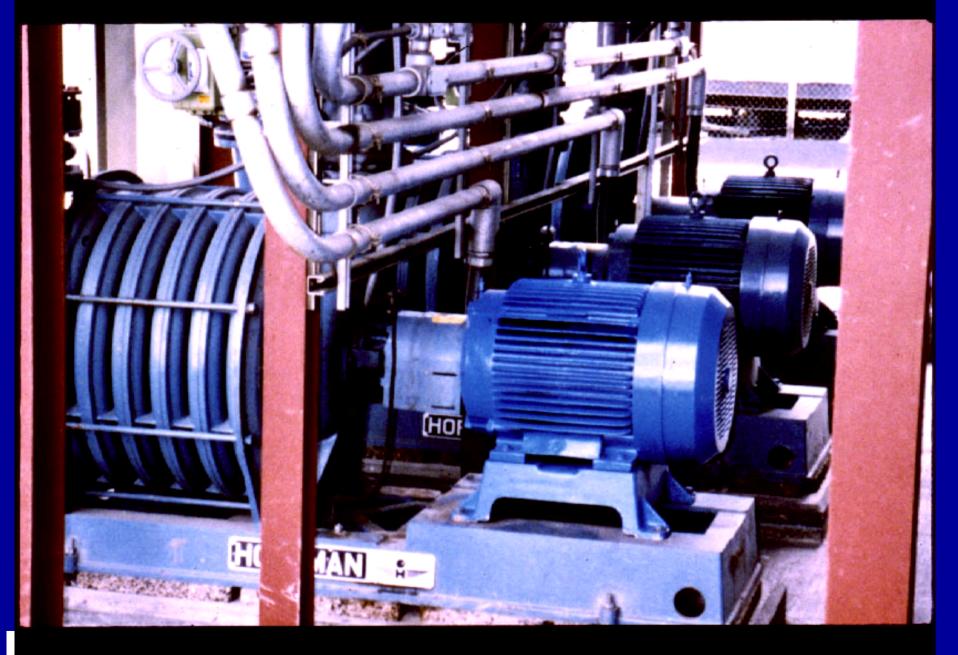












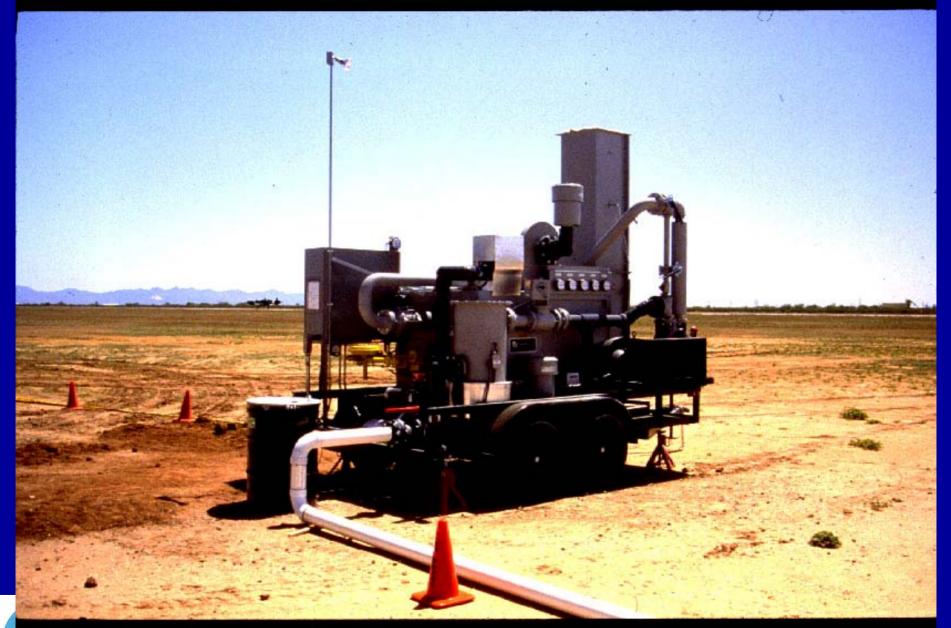























#### **Downhole Pressure Transducers**





#### Start-Up and Operation Of SVE Systems

- Construction can take weeks
- Operations often months to few years
  - Some systems have operated for over 7 years
- Safety issues
  - Explosion-proof equipment
  - Safety checks of control equipment equipment shut-down under certain conditions
  - Covers over rotating equipment or hot piping



# Start-up Of SVE Systems

- Objective: operate equipment, gather baseline data, adjust operating parameters to achieve desired air flow, treatment
- Perform checks:
  - Equipment functional performance
  - Safety shutdowns, other safety checks (circuits, etc.)
  - Checklists available
- Initial/baseline monitoring of concentrations
- Pneulog testing of new wells
- Start up: open bleed valve, start blower, gradually close bleed valve - A VFD motor easier
- Highest concentrations typically encountered first, often problem for treatment





# Start-up Of SVE Systems, Continued

- Verify vacuum/pressure distribution
- Monitor concentrations in subsurface, influent, effluent
- Monitor equipment performance (current draw, temperature, condensate production)
- Operate equipment typically much down time



#### SVE System Operations And Maintenance

#### Periodic system checks and routine maintenance

- Check, lubricate blower
- Drain condensate, check transfer pump
- Check/clean particulate filter
- Attend to offgas treatment system
- Verify flow rates (total, individual wells)
- Measure influent and effluent concentrations, temp
- Balance multi-well system
- If simple offgas treatment, O&M not costly



#### SVE System O&M Monitoring Consideration

- Measure the vacuum, flow rates,  $\bigcirc$ concentration/composition at each extraction well, not just the header
- Effluent VOC concentration eventually becomes asymptotic - steady-state removal of very low concentration
- A drop in effluent mass does not necessarily mean a drop in available contaminants or system efficiency
  - Chemical speciation
    Soil drying
  - Diffusion control
  - Water table upwelling
    Dilution
- Short-circuiting





#### SVE System O&M Monitoring, Continued

#### Effluent Sampling

- Monitoring often done with screening instruments, e.g., photoionization detector (PID) / flame ionization detector (FID)
- Periodic confirmation samples sent for lab analysis
- Carbon Adsorption Units
  - Measure concentrations between carbon contactors, e.g., PID/FID
  - Lab analysis to confirm, identify changes in composition
  - Measure humidity
- Other treatment methods sample stack
- System Monitoring
  - Pressure (P), temperature (T), flow (Q) at various points
  - Influent headers (P,T,Q), either side of blower (P,T), downstream of air inlet (P, T, Q), across particulate filter (P)



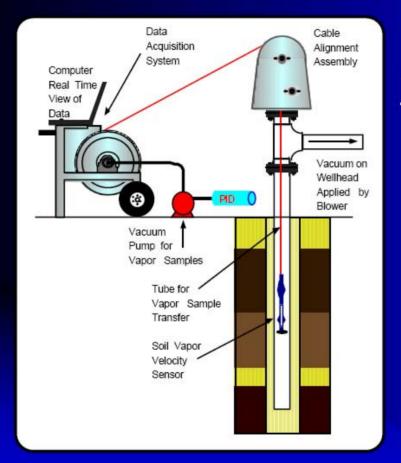


#### DJB2 New Slide Dave Becker, 6/2/2009

#### SVE System O&M Monitoring, Continued

#### Subsurface monitoring

- Verify vacuum/pressure distribution
- Periodic soil gas, extraction wellhead sampling
- Water level monitoring




# **SVE System Optimization**

- Periodic analysis of monitoring data critical
  - Verify adequacy of air flow
  - Evaluate mass contribution individual wells
  - Recommend changes in operation
  - Need trained personnel to evaluate
  - Evaluate need for continued offgas treatment
- PneuLog tool use to clarify source of mass being removed
- System rebound analysis of data clarifies mass distribution
- Subsurface performance evaluation checklist



# What is PneuLog<sup>®</sup>?



#### Diagnostic Tool:

measures contamination and air permeability in vadose zone soils during vapor extraction.



### **Pneulog<sup>®</sup> Results**

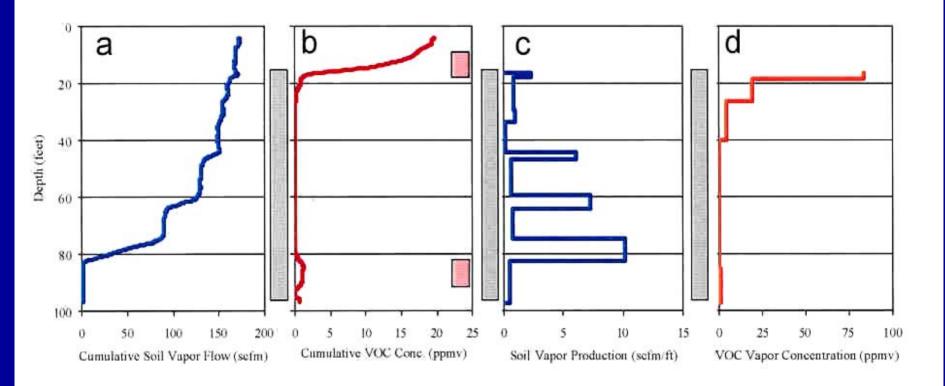
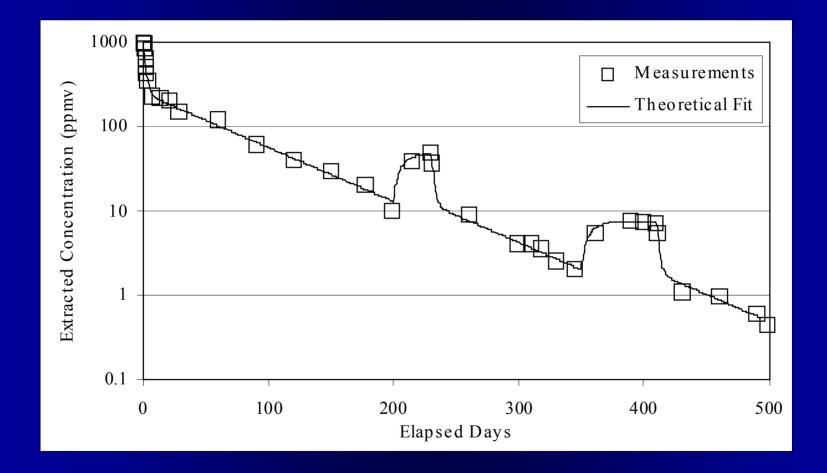



Figure 8. PneuLog from VW-1 Screened 17 to 97 feet.



### **SVE Site Shutdown & Closure**

- Closure goals
  - Remove set mass of contaminant
  - Meet absolute concentration in soil
  - Achieve specific max soil gas concentration
  - Minimum rebound
  - Avoid impact on ground water
    - Require modeling, mass distribution
  - Economic analysis of cost for more SVE vs removal by ground water




#### SVE Site Shutdown & Closure, Continued

- Verification sampling
  - Soil sampling
  - Soil gas sampling
    - Monitoring points (especially in areas of stagnation)
    - Extraction wells
    - Influent monitoring (inadequate basis if sole means of monitoring progress)
    - Require adequate purging
    - Offgassing from ground water
  - Rebound test



### **Rebound Behavior**





# **SVE Site Shutdown & Closure**

#### • Evaluation:

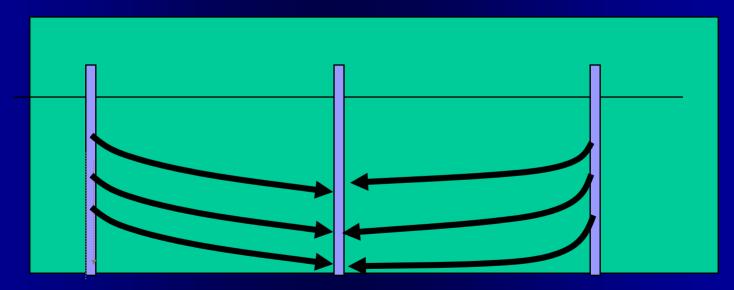
- Verify adequacy of operation adequate distribution of air flow? Water table impact?
- Reach asymptote? Consider temporary shut down for rebound (can be only part of system)
- Rebound test look for concentrations in monitoring points, extraction wells after temp shutdown
- Restart system, monitor concentrations
- Repeat until little rebound occurs or concentrations below target
- PneuLog study
- Conduct soil sampling, modeling, cost analysis



#### **SVE Enhancements, Variants**

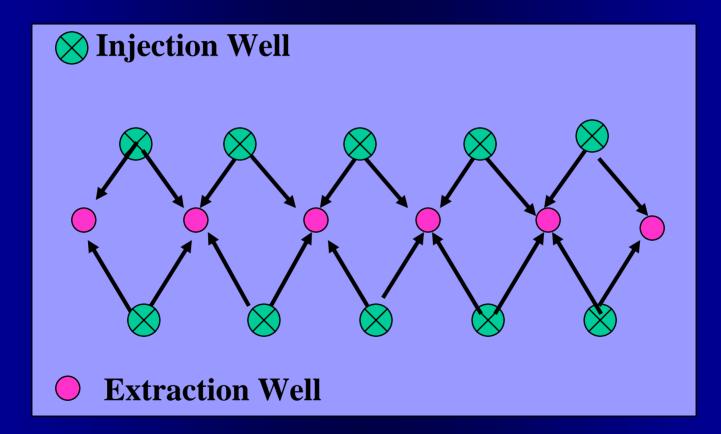
- Soil fracturing
  - Pneumatic, hydraulic
  - Shorten diffusion paths in tight soils
  - Questions on control of fractures
- Thermal enhancement
  - Hot air, electrical resistive heating, conductive heating
  - More later
- Passive SVE (more sustainable configuration)
  - Use barometric pressure changes to remove vapors
  - Check valves on wells allow one direction of flow
  - Need some isolation of subsurface from atmosphere




### References

- US Army Corps of Engineers, Engineer Manual 1110-1-4001 SVE/BV http://www.environmental.usace.army.mil/sve.htm
- EPA/540/R-95/513 Review of Mathematical Modeling for Evaluating SVE Systems http://www.geotransinc.com/publications/Modeling-SVE.pdf
- EPA/600/R-96/041 Diagnostic Evaluation of In-Situ SVE-Based System Performance
- EPA Guidance "Development of Recommendations & Methods to Support Assessment of Soil Venting Performance & Closure" EPA/600/R-01/070, September 2001 http://www.epa.gov/ada/download/reports/epa\_600\_r01\_070.pdf
- Remediation System Evaluation Checklists
  http://www.environmental.usace.army.mil/rse.htm

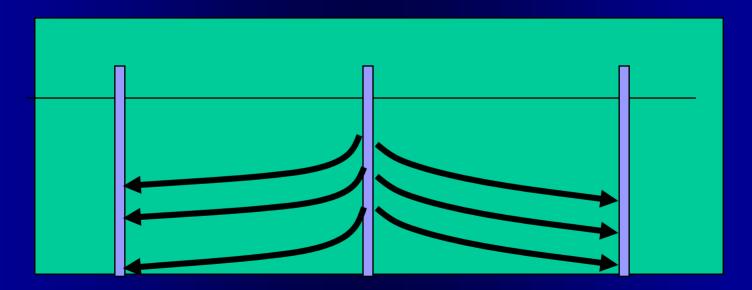



### **Injection/Extraction SVE**

- Injection/Extraction
  - Better formation sweep than extraction
  - Sustained higher removal rates

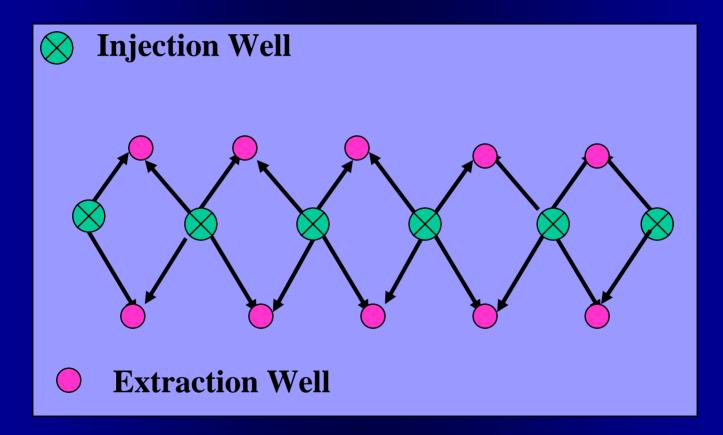





### **Operational Strategy**

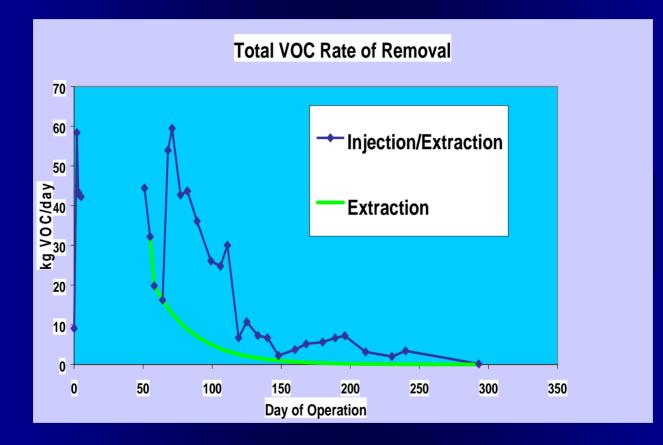





### **Injection/Extraction SVE**

- Injection/Extraction
  - Better formation sweep than extraction
  - Sustained higher removal rates






### **Operational Strategy**





### **Increased VOC Removal**





### **Presentation Summary**

- Applicability: vocs, aerobically degradable organics
- Pilot tests: determine air permeability, concentration trends
- Design:
  - Do NOT use radius of influence
  - Consider air throughput
  - Consider variable speed drive motors for blowers
- Operation:
  - Collect subsurface, above-ground equipment performance data
  - Check/maintain equipment
- Closure
  - Evaluate mass/concentrations remaining, rebound tests
  - Consider impact on ground water, cost
- Enhancements: fracturing, in-situ thermal treatment



