JV TASK 130 – TECHNOLOGICAL SYNERGIES FOR RECOVERY OF ORGANIC POLLUTANTS FROM A COAL SEAM AT GARRISON, NORTH DAKOTA

PHASE I – SYSTEM DESIGN AND INSTALLATION

Final Report

(for the period of February 1, 2008, through January 31, 2009)

Submitted to:

AAD Document Control

U.S. Department of Energy National Energy Technology Laboratory PO Box 10940, MS 921-143 Pittsburgh, PA 15236-0940

Cooperative Agreement No.: DE-FC26-98FT40321 Project Manager: Paula Flenory

Prepared by:

Jaroslav Solc

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, North Dakota 58202-9018

2009-EERC-03-05

March 2009

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report is available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161; phone orders accepted at (703) 487-4650.

ACKNOWLEDGMENT

This report was prepared with the support of the U.S. Department of Energy (DOE) National Energy Technology Laboratory Cooperative Agreement No. DE-FC26-98FT40321. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors(s) and do not necessarily reflect the views of DOE.

EERC DISCLAIMER

LEGAL NOTICE. This research report was prepared by the Energy & Environmental Research Center (EERC), an agency of the University of North Dakota, as an account of work sponsored by the U.S. Department of Energy and North Dakota Petroleum Tank Release and Compensation Fund via its policyholder Farmers Union Oil Company. Because of the research nature of the work performed, neither the EERC nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement or recommendation by the EERC.

ABSTRACT

The Energy & Environmental Research Center (EERC) initiated remediation of hydrocarbon-contaminated soils and groundwater associated with gasoline release at the Farmers Union Oil station in Garrison, North Dakota. The remedial strategy implemented is based on application of two innovative concepts: 1) simultaneous operation of soil vapor and multiphase extraction systems allowing for water table control in challenging geotechnical conditions and 2) controlled hot-air circulation between injection and extraction wells to accelerated in situ volatilization and stripping of contaminants of concern (COC) alternatively using the same wells as either extraction or injection points.

A proactive remedial approach is required to reduce high COC levels in the source and impacted areas and to eliminate long-term health risks associated with contaminant migration to water-bearing zones used as a regional water supply source. This report compiles results of Phase I focused on design, construction, and start-up of remediation systems.

LIST	OF F	FIGURES	ii
LIST	OF T	ABLES	ii
EXE	CUTI	VE SUMMARY	iii
1.0	INTF	RODUCTION	1
2.0	EXP	PERIMENTAL	1
3.0	RES 3.1 3.2 3.3 3.4 3.5	SULTS AND DOCUMENTATION	2 2 2 5 6 6 7 8 8 8 8 9 9 9
4.0	CON	NCLUSIONS	11
5.0	REF	ERENCES	11
SITE		N AND EXTRACTION/INJECTION WELL FIELDS	Appendix A
GRC		WATER TABLE MONITORING – SUMMARY OF DATA	Appendix B
REM	CEN	L SYSTEM DESIGN NEX SVE/AS SYSTEM ORO SVE/AS AND MPE SYSTEM	Appendix C-1
SUM	WAT	Y OF DATA – SYSTEM MONITORING TER QUALITY GAS QUALITY	Appendix D-1
GRC	COC	WATER QUALITY MONITORING – SUMMARY OF DATA C IN GROUNDWATER DEGRADATION INDICATORS	Appendix E-1

TABLE OF CONTENTS

LIST OF FIGURES

1	Thermally enhanced SVE – well field relay	.3
2	Site plan	.4
3	Total hydrocarbon removal	0

LIST OF TABLES

1	SVE System Operational Parameters	.7
2	MPE System Operational Parameters	.7
3	Contaminant Recovery – Liquid Phase	.9
4	Contaminant Recovery – Vapor Phase	10

EXECUTIVE SUMMARY

At the request of Farmers Union Oil Company and the North Dakota Department of Health, the Energy & Environmental Research Center initiated remediation of hydrocarboncontaminated soils and groundwater associated with gasoline release at the Cenex station in Garrison, North Dakota. A proactive remedial approach was required to reduce high contaminants of concern (COC) levels in the source and impacted areas and to eliminate long-term health risks associated with contaminant migration to water-bearing zones used as a regional water supply source. The report compiles results of Phase I focused on design, construction, and start-up of remediation systems.

Based on complex geotechnical conditions, the implemented remedial strategy is based on contaminant recovery and in situ degradation using an innovative combination of 1) thermally enhanced soil vapor extraction (SVE) in the source areas and 2) multiphase extraction supporting SVE in saturated impacted areas. The acceleration of COC recovery in hot spots is achieved by thermal enhancement/hot-air injection conducted simultaneously with the operation of the SVE system. The operational principle is based on controlled hot-air circulation between injection and extraction wells to accelerate in situ COC volatilization and stripping alternatively using the same wells as either extraction or injection points.

A total of 18,137 gallons (68.7 m³) of groundwater and 31.4 million ft³ (891,260 m³) of contaminated soil vapor have been extracted from both well fields since extraction start-up. High contaminant recovery efficiency resulted in removal of over 13,693 lb of hydrocarbons during the first month of operation. The mass of recovered contaminant equals approximately 2188 gal of product.

The system construction and its successful start-up concluded the first phase of the project. The operation of recovery systems will continue until contaminant concentration levels in soils and groundwater are reduced to acceptable regulatory limits. Initial performance monitoring data, high contaminant recovery efficiency, and a well-developed radius of influence within the target area provide favorable conditions to achieve COC reduction within an estimated 3-year operation time frame as proposed.

1.0 INTRODUCTION

At the request of Farmers Union Oil Company and the North Dakota Department of Health (NDDH), the Energy & Environmental Research Center (EERC) initiated remediation of hydrocarbon-contaminated soils and groundwater associated with gasoline release at the Cenex station in Garrison, North Dakota.

This report for Phase I of the project presents a summary of system design and construction activities, including initial operational data. More detailed information, original data sets, and primary documentation are compiled in technical progress reports provided to the sponsors and regulatory agency on a quarterly basis. The project, sponsored by the North Dakota Petroleum Tank Release and Compensation Fund (NDPTRCF) via its policyholder Farmers Union Oil Company and the U.S. Department of Energy (DOE), is supervised by NDDH.

2.0 EXPERIMENTAL

The remedial strategy implemented is based on application of two innovative concepts: 1) simultaneous operation of a soil vapor and multiphase extraction system allowing for watertable control in challenging geotechnical conditions and 2) controlled hot-air circulation between injection and extraction wells to accelerated in situ contaminants of concern (COC) volatilization and stripping alternatively using the same wells as either extraction or injection points.

Complex geotechnical conditions—a high-permeability environment with contaminant transport bound to preferential pathways in the fractured coal seam and abandoned mining voids and cavities—required the combination of remediation technologies capable of:

- Efficiently removing residual free product from the saturated zone while providing for water-table control at desired levels.
- Extracting large volumes of contaminated vapors from the vadose and dewatered zones to accelerate in situ volatilization while being flexible enough to address water-table fluctuation across the contaminant smear zone.
- Stimulating in situ natural biodegradation processes by providing air to the oxygendepleted target/smear zone.

Additional objectives and requirements for this demonstration were:

- A flexible design and operation of mobile extraction and injection systems to overcome site limitations associated with settings in high-traffic areas.
- Well field design that would not be disruptive to traffic and daily operation of facilities at the site.

The three basic operational steps illustrated in Figure 1 are as follows: Step 1 is based on conventional soil vapor extraction (SVE) extraction, with the primary goal to accelerate volatilization of residual free product in the unsaturated zone; Step 2 employs initiation of hot-air injection and circulation of injected air between injection and extraction wells to promote in situ stripping of residual volatile organic compounds (VOCs); and Step 3 consists of relay of hot-air injection into the next row of wells previously used for extraction.

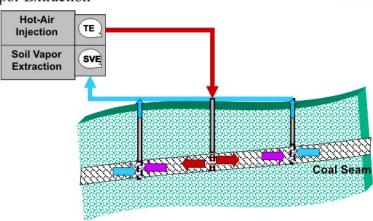
3.0 RESULTS AND DOCUMENTATION

3.1 Site Characteristics

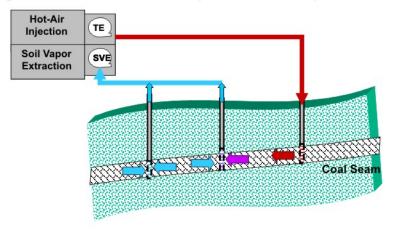
3.1.1 Site Location and Contaminant Release History

The original source area is at Farmers Union Oil Company, 209 Southwest 4th Avenue, T148N R84W Section 8, McLean County, Garrison, North Dakota. The confirmed impacted zone covers an area of about 40 acres, with hot spots being identified at the Cenex station (location of original release), the downgradient west corner of the Tesoro station, and in mining cavities intercepting the plume south of the release area. The site plan and extraction well field layout, including the inferred contaminant plume, are provided in Figure 2 and Appendix A, respectively.

Gasoline-impacted soil and groundwater were discovered during drilling by the Public Service Commission in September 2005. An inventory loss of 30,000 gallons of gasoline at the Farmers Union Oil Company in Garrison, North Dakota, was reported to NDDH in October 2005. Limited site investigation by Western Plains Consulting in 2005/2006 confirmed COC impact downgradient from the Farmers Union service station. A pilot test and feasibility study for vacuum-enhanced recovery was conducted by the EERC in 2007 [1].


3.1.2 Geotechnical Conditions

The sediment profile intercepted by exploratory drilling in source and impacted areas is dominated by a heterogeneous complex of silty, sandy clays interbedded with several layers of fractured lignite. Fractured coal layers ranging in thickness from inches to several feet provide hydraulic conduits for contaminant transport. The first and most distinguished layer of contaminated lignite is documented from the source area at a depth of 15–20 ft. This layer, plunging south–southwest, is continuously developed downgradient from the contaminant release across the entire impacted area (Appendix A). Because of its thickness, ranging between 5 and 10 ft, the lignite was extensively mined from the beginning to the middle of the last century. The coal core samples and samples from outcrops indicate that slightly plastic lignite is intensively fractured and separates along tension and compression fractures as well as along thin peels/horizontal fissures, reflecting its sedimentary origin. Intensity and aperture of fractures increases in areas of coal exposure (outcrops) or disturbance, such as in cavities.


The second continuously developed coal seam used as a primary water source for domestic wells is hydraulically isolated by about 90 ft of silty clays interbedded with discontinuous thinner lignite seams or lenses. This deeper coal seam was not mined, and no contamination has been confirmed from domestic wells to date.

Step 1: Soil Vapor Extraction

EERC JS33837.CDR

Step 2: Soil Vapor Enhanced with Hot-Air Injection – Initial Injection Row

Step 3: Soil Vapor Enhanced with Hot-Air Injection - Relay to Second Injection Row

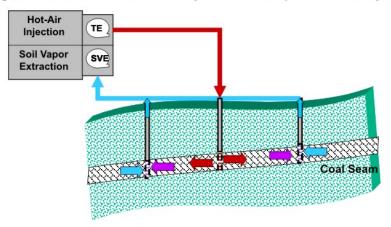


Figure 1. Thermally enhanced SVE – well field relay.

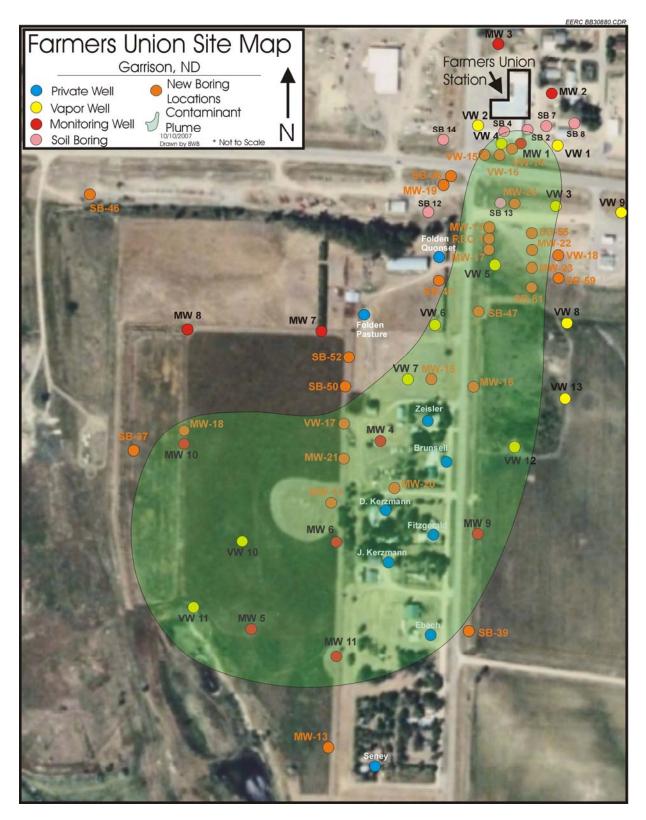


Figure 2. Site plan (conditions prior to system installation).

3.1.3 Hydrogeology and Contaminant Transport

Depth to groundwater across the source and impacted areas exhibits high temporal and spatial variability and reflects the occurrence of abandoned mining cavities that altered the natural gradient and provide for accelerated drainage. The groundwater table configuration for the source and wider area is presented in Appendix B. Primary groundwater occurrence is bound to the fractured coal aquifer, with the dominant flow direction to the south toward Lake Sakakawea.

The targeted sediment profile in the source/contaminant release area (Cenex corner) is not continuously saturated. The groundwater occurs only at the bottom of the coal seam at a depth of about 20 ft (well MW-1), and its level is controlled by relatively quick transport to the south via fractured coal. Coal is more saturated at the Tesoro corner. Depth to water ranged between 19.5 and 26 ft belowground, with about 50% of the coal seam submerged under the water table [1]. Similarly to the release area, the properties of the coal provide for accelerated drainage further magnified by the presence of a discrete network of abandoned cavities. A water table drop from 20 to 25 ft belowground in the source area to 60 ft in the center of the downgradient plume translates into a relatively steep hydraulic gradient. The presence of cavities allowing for relatively unhindered groundwater flow to areas not controlled by natural gradient likely explains the COC occurrence in distant wells MW-10 and MW-18 far west of the dominant flow direction. In addition to aqueous-phase contaminant migration, cavities provide vapor flow channels that allow for migration of gaseous (vapor)-phase volatile organics in response to soil thermal gradients. EERC coal testing confirmed that soils and coal exposed to contaminated vapors can serve as a secondary source of contaminants after resaturation [1].

Contrary to flow acceleration, partial or full collapse of cavities, including structural fill injected during the stabilization effort by the state in 1992–1993, may form underground barriers that dam the flow within the cavities and result in mounding, formation of saturated pockets, or even partial aquifer confinement. Higher saturation of the coal seam is documented in the center of the impacted area around wells MW-6, 14, and 20.

Considering all factors presented, the conceptual migration model is based on repeated saturation and drainage of the contaminated coal seam in the source/recharge area with relatively active COC migration downgradient. The primary factors contributing to off-source migration are highly permeable fractured coal, abandoned mining cavities, and vapor transport. While fast off-site migration would result in a relatively narrow plume (such as the geometry documented at the Cenex and Tesoro corners), the presence of perpendicularly intercepting cavities provides for fast lateral as well as downgradient spreading of COCs. Concentrations of COCs stabilized in the source area; however, slightly increasing trends are documented from some downgradient monitoring wells [1].

Groundwater chemistry at the site is dominated by sodium, calcium, and sulfate ions, with a high concentration of iron (40 mg/l in well MW-20), hardness exceeding 1300 mg/l, and electrical conductivity (EC) over 2500 μ S/cm. Biodegradation parameters exhibit trends typical of an anaerobic contaminant plume, with suppressed oxygen, nitrate, phosphorus, and sulfate concentrations and elevated concentrations of iron and manganese (Appendix E-2). While nitrogen–nitrate concentrations are exceeding the drinking water standard of 10 mg/l in upgradient wells (MW-2), analyses from wells within and downgradient of the impacted area indicate that nitrate is effectively consumed to below detection limit within the dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) plume.

3.2 Extraction, Monitoring, and Injection Well Fields

The extraction well fields consist of 24 dual-purpose SVE-hot-air-sparging (AS) wells and five (5) multiphase extraction (MPE) wells. The SVE and sparging well field at the Cenex corner consists of ten (10) wells. Fourteen (14) SVE-AS wells and five (5) MPE wells comprise the extraction well field at the Tesoro corner. While the primary extraction load will be carried by the thermally enhanced SVE system, the MPE system at the Tesoro corner was designed to provide for water-table control and recovery of dissolved-phase COC in areas with a partially saturated contaminated target zone.

Extraction wells are located approximately 40 ft apart, with a projected pneumatic radius of influence of about 40–50 ft. In addition, the MPE well alignment allows for groundwater flow intercept and water-table control between the most impacted areas and downgradient coal seam. Spacing of MPE wells (50–55 ft) and their completion provide for dewatering of the partially saturated contaminant smear zone bound to the coal seam, thus allowing air to be a primary carrier for contaminant removal.

SVE wells were advanced by a 4-in.-i.d. (8-in.-o.d.) hollow-stem auger using a CME 75 drill rig. Wells were completed with 2-in.-diameter flush-threaded PVC, Schedule 40, with a 0.010-in. slot screen and No. 45-55 red flint gravel pack. SVE wells were equipped with 2-in. Schedule 40 Tee adaptors installed approximately 3–4 ft belowground and connected to the SVE–AS system using 2-in. pipes.

MPE wells were advanced by a 6-in.-i.d. (10-in.-o.d.) hollow-stem auger using a CME 75 drill rig. Wells were completed with 4-in.-diameter flush-threaded PVC, Schedule 40, with a 0.020-in. slot screen and No. 30 red flint gravel pack. MPE extraction wells are equipped with pitless adaptors installed approximately 4 ft belowground with 1-in. PVC suction tubes extending 4 ft below the water table (at the time of construction). All extraction and monitoring wells are further equipped with pressure and water-table-monitoring ports with a ³/₄-in. drop tube extending to <1 ft from the bottom of the well. Well completion data including geologic and survey logs are provided in the Technical Progress Report for March – September 2008 [2].

3.3 Remediation and Treatment Systems

The extraction and treatment system at the Cenex site consists of a 30-hp positive displacement blower package rated for 900 acfm @ 9" Hg and the 60-gal air–liquid separator (ALS). Water from the separator is treated in a 60-lb granular activated carbon (GAC) unit. The AS package includes a 20-hp (140 cfm @ 30 psig) oil-free rotary claw blower system. The entire system is enclosed in a 10- × 20-ft building.

The extraction and treatment system at the Tesoro corner integrates two extraction units (SVE and MPE) with combined water treatment and an AS package. The SVE system consists of a 20-hp centrifugal blower package rated for 1250 acfm @ 40-in. H₂O. Extracted air and soil moisture undergo separation in a 60-gal air–water separator. Water from the separator is conveyed to the MPE treatment system. The MPE extraction and treatment system consists of an SSI four-stage oil-free regenerative vacuum blower rated for 150 acfm and end vacuum of 20-in. Hg. Because no free product is anticipated at the site, recovered water and air pass through the 60-gal vapor–liquid separator (VLS) directly to a low-profile QED LP-2.4P air stripper. Effluent-treated water from the AS is conveyed to a drainage ditch west of the treatment building. The AS package includes a 7.5-hp (100 cfm @ 10 psig) positive displacement blower system. The entire system is enclosed in a 10- × 24-ft building.

Both remediation systems are equipped with a NEMA 4 controller, Simatic S-7-200 programmable logical controller (PLC), and CP 243-1 IT communications processor telemetry package, allowing for both on-site and telemetric control of the power circuits for motors for individual system units. The schematic system layouts including process and instrumentation diagrams are provided in Appendix C; suction links from individual extraction wells are presented in Appendix A.

3.3.1 Initial System Performance Monitoring

The SVE and MPE system at the Tesoro site started operation on November 13, 2008. The SVE system at the Cenex site started break-in operation on November 13, 2008. After a brief period of system optimization and installation of a high-performance exhaust silencer, full-scale operation started November 25, 2008. Performance monitoring for the noted remediation systems consists of water quality monitoring of effluents from individual system units and treated effluent, offgas monitoring using charcoal tubes, and real-time monitoring of total petroleum hydrocarbons (TPH), CO_2 , and O_2 in offgas using a multiparameter hydrocarbon analyzer, flame ionization detector (FID), and photoionization detector (PID).

The current MPE extraction well field consists of wells MPE 1–5; active SVE well fields consist of wells SVE 1–10 at the Cenex site and SVE 11–24 at the Tesoro corner. Operation of the AS subsystem will be initiated after target zone dewatering in the spring months. Initial operational parameters for remediation systems are summarized in Tables 1 and 2.

Table 1. SVL System Operational I	arameters	
Site	Cenex	Tesoro
Well Field	SVE – 1 through 10	SVE – 11 through 24
Well Field Operated (date)	11/25/08–12/16/08	11/13/08–12/15/08
Blower Vacuum (in. H ₂ O)	103–124	45–46
Wellhead Vacuum (in. H ₂ O)	66.3–107.8	0.7-44.3
Combined Airflow (scfm)	438–521	275–305
Run Time – total (h) (operation %)	521.4 (100%)	794.5 (100%)
Down Time – total (h)	0	0

Table 1. SVE System Operational Parameters

Well Field	MPE– 1, 2, 3, 4, 5
Well Field Operated (date)	11/13/08–12/15/08
Blower Vacuum (in. Hg)	10.5–12.0
Wellhead Vacuum (in. H ₂ O)	12.3–61.6
Groundwater Flow (gpm)	0.2–0.4
Groundwater Recovered – total (gal)	17,208
Combined Airflow (scfm)	98–110
Run Time – total (h) (operation %)	757.9 (95%)
Down Time – total (h)	39.0

3.3.2 System Water Quality

Samples of extracted water and treated effluent were analyzed for COC (BTEX, phenols, and TPH as gasoline range organics [GRO]), total iron and manganese, and suspended solids. Field-measured parameters included pH, EC, and temperature. A summary of initial extraction and treatment data is provided in Appendix D-1; complete analytical documentation is in the respective technical progress reports.

3.3.3 Offgas Quality

Offgas quality from individual system exhausts is monitored using charcoal tubes and real-time monitoring of hydrocarbons, CO_2 , and O_2 using a MiniRae[®] multiparameter analyzer, PID, and FID. Initial offgas-sampling results using charcoal tube desorption analyzed by gas chromatography (GC)/FID are summarized in Appendix D-2.

Offgas samples from the Cenex SVE system were collected in a 1-I Tedlar bag filled for 60 seconds at a rate of approximately 0.3 I/min. Charcoal tube samples were subsequently collected from the Tedlar bag using an SKC pump, with flow regulated at 0.28 I/min and a sample interval of 60 seconds. The same procedure was used for sampling of the MPE system at the Tesoro well field. Because of high discharge velocity and negative pressure at the Tesoro SVE system exhaust, offgas samples are collected directly using the SKC pump and flow through the charcoal tube regulated at 0.28 I/min for 60 seconds.

Airflow is measured using a Dwyer[®] handheld manometer to monitor differential pressure at the Pitot tubes (DS-300 flow sensor) mounted on exhaust manifolds from individual blowers. The resulting flow values are presented after conversion to standard conditions. In case air dilution is necessary to lower extraction vacuum, the flow at the dilution valve is subtracted from the exhaust flow values. Effluent airflow at the Cenex SVE system ranged from 438 to 521 scfm; offgas temperature fluctuated between 128° and 148°F. Airflow from the Tesoro SVE system ranged from 275 to 305 scfm, with an offgas temperature between 123° and 130°F; MPE system airflow ranged from 98 to 110 scfm, with temperature fluctuating between 145° and 150°F.

Carbon dioxide and oxygen trends in extracted vapors were monitored using the MiniRae[®] multiparameter analyzer (Appendix D-2). Observed data for CO_2 (4%–5%) and oxygen (10%–17%) are characteristic of the coal seam, with limited air exchange and active biodegradation processes resulting in an oxygen-deficient environment with surplus of methane and carbon dioxide. These trends will reverse as a result of dynamic soil air exchange in response to SVE and MPE system operation.

3.3.4 Hydraulic and Pneumatic Response

Hydraulic response in the area impacted by operation of extraction well fields is monitored during monthly maintenance and sampling events. Depth to water within the area influenced by extraction well fields ranged from 19.35 to 26.56 ft belowground between August 25 and December 16, 2008, indicating a relatively flat configuration in the source with south–southwest gradient. In spite of the high hydraulic conductivity of the target zone (fractured coal seam) and extremely wet fall of 2008, the observed water-table decline on monitoring wells of up to 0.34 ft (well MW-24) is documented within the first month of operation. Vacuum-induced depression and water-table control in response to MPE operation resulted in efficient operation of the SVE well field at the Tesoro site without production of excessive moisture from SVE wells.

Extraction well vacuums ranged from 0.6 to 107.8 in. H_2O and resulted in up to 5.5 ft of water-table drawdown or temporary dewatering of extraction well MPE-3. Pneumatic impact of the robust extraction systems is observed as far as 400 ft (MW-9) from the center of the extraction well field.

3.4 Initial Contaminant Recovery Estimates

The contaminant mass removal estimates were determined using the volumes for extracted groundwater and vapor and average VOC concentration obtained between two consecutive sampling events. A total of 18,137 gallons (68.7 m³) of groundwater and 31.4 million ft³ (891,260 m³) of contaminated soil vapor have been extracted from both well fields since extraction start-up, resulting in removal of over 13,693 lb of hydrocarbons prior to stripping and an additional 0.7 lb from the treated groundwater. The mass of recovered contaminant equals approximately 2188 gal of product, assuming specific gravity for gasoline of 0.75 g/cm³. The average liquid flow rate since MPE system start-up was approximately 0.3 gpm, ranging from 0.2–0.4 gpm; the airflow rate for SVE systems ranged from 275 to 521 scfm. Initial mass removal calculations are provided in Tables 3 and 4; cumulative recovery is presented in Figure 3.

3.5 Groundwater Quality Monitoring

3.5.1 Sampling Program

Monitoring and extraction wells will be sampled for BTEX, GRO, and biodegradation indicators on a semiannual basis to document overall remediation system impact on groundwater quality compared to original background site data collected in August 2008 (prior to system start-up).

Date	Totalizer	Flow	TPH _{water}	BTEX _{water}	TPH _{mass}	BTEX _{mass}
	(gal)	(gpm)	mg/l	mg/l	(lb)	(lb)
Cenex						
11/25/08	227	0.3	31.50	15.5	0.1	0.029
12/16/08	929	0.0	13.79	5.6	0.1	0.061
Tesoro						
11/13/08	339	0.2	9.49	3.8	0.0	0.011
11/25/08	6835	0.4	2.57	1.1	0.3	0.131
12/15/08	17,208	0.4	0.98	0.3	0.2	0.060
Total					0.7	0.3

Table 3. Contaminant Recovery – Liquid Phase

Date	Runtime (cum. h)	Q _{air} (scfm)	Volume (1000 ft ³)	TPH _{air} ¹ (mg/m ³)	BTEX _{air} 1 (mg/m ³)	TPH _{mass} (lb)	BTEX _{mass} (lb)
Cenex S	VE						
11/25/08	20.2	521	172	4180	807.0	45	8.6
12/16/08	521.4	438	13183	1510	433.5	2341	507.4
Tesoro N	<i>IPE</i>						
11/13/08	25.1	98	104	32,850	441.0	212	2.9
11/25/08	318.1	107	1876	1815	91.1	962	31.2
12/15/08	757.9	110	2895	936	40.0	249	11.8
Tesoro S	SVE						
11/13/08	25.1	305	230	41,300	433.0	592	6.2
11/25/08	318.1	275	5100	10,383	444.3	5766	138.8
12/15/08	794.5	278	7912	3890	270.0	3525	175.4
Total			31,471			13,693	882

Table 4. Contaminant Recovery – Vapor Phase

¹ Mean values from replicate samples.

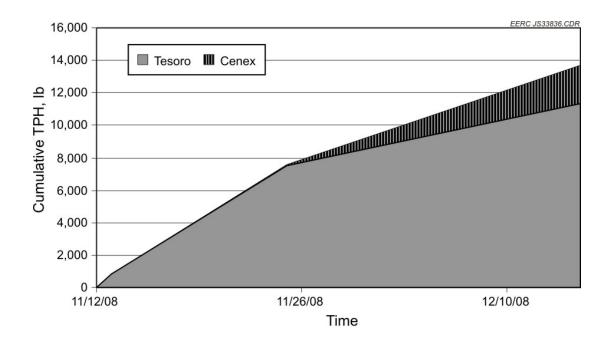
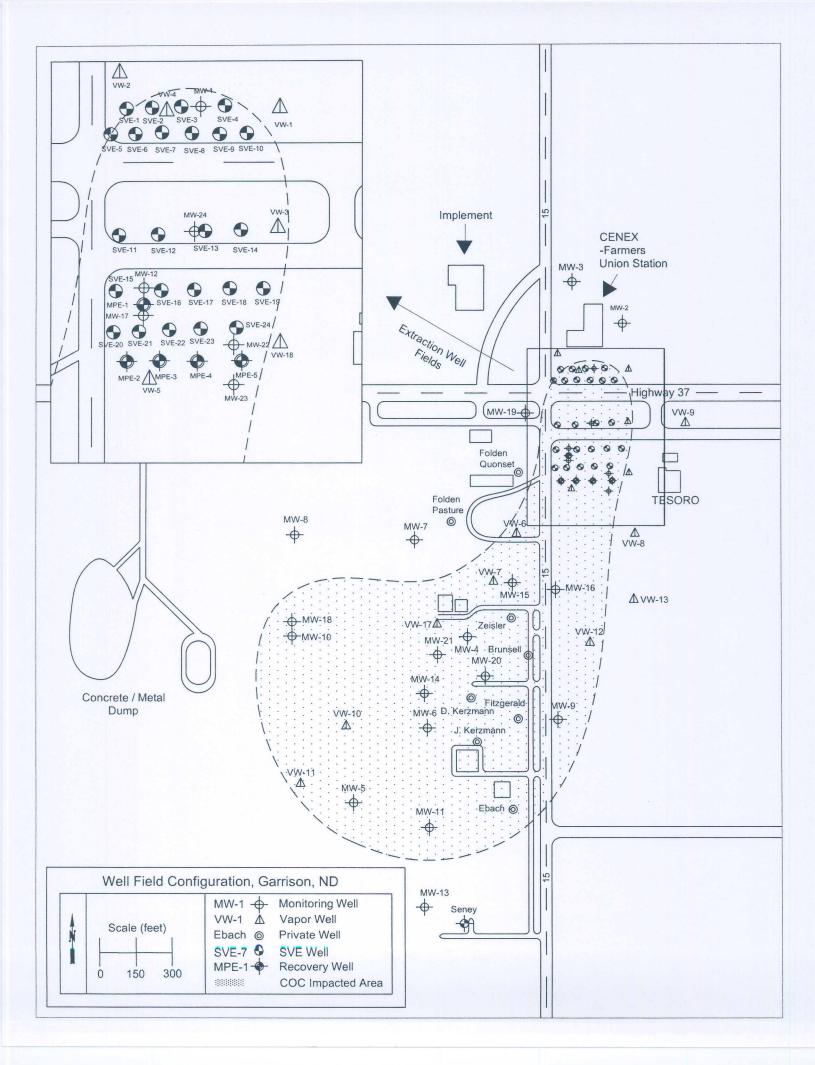


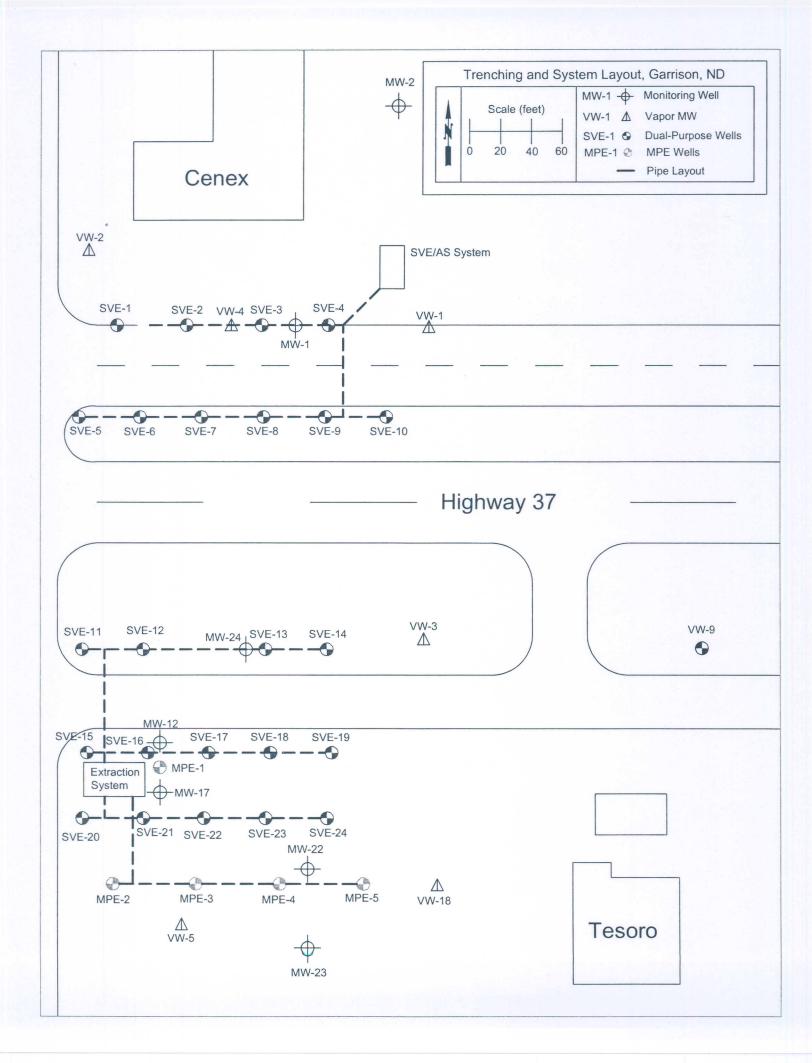
Figure 3. Total hydrocarbon removal.

Groundwater samples were collected using disposable PVC bailers, preserved on-site, and stored on ice prior to and during shipment. Analyses were conducted by MVTL in Bismarck, North Dakota, and New Ulm, Minnesota. Quality assurance/quality control samples included duplicates, equipment blanks, field blanks, and trip blanks for each sampling event. Field-monitored water quality parameters were measured in wells with an YSI-556 multiprobe. In addition to EERC background sampling conducted prior to initiation of remedial system operation, COC trends and previous analysis were evaluated based on documentation provided by NDDH (Appendix E).

4.0 CONCLUSIONS

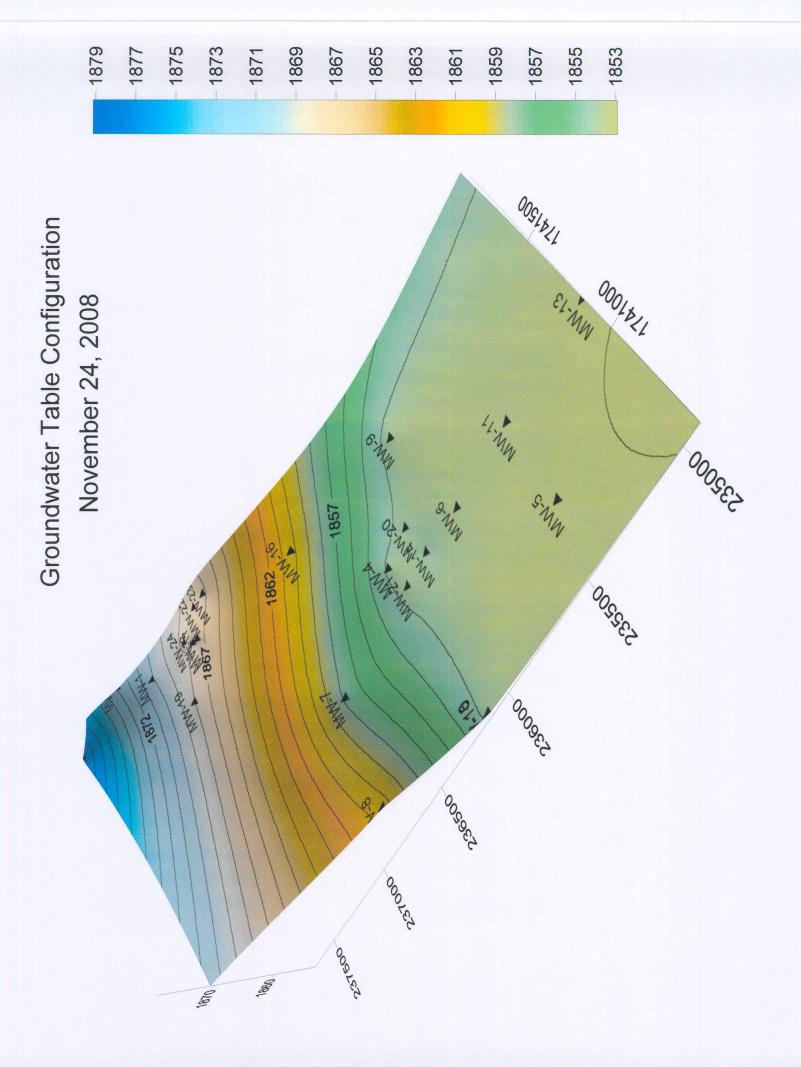
This report for Phase I of the project presents a summary of system design and construction activities, including initial operational data. The SVE and MPE system at the Tesoro site started break-in operation on November 13, 2008, the SVE system at the Cenex site has operated since November 25, 2008.


Initial performance monitoring data suggest high contaminant recovery efficiency and a well-developed radius of influence within the targeted area. A total of 18,137 gallons (68.7 m³) of groundwater and 31.4 million ft³ (891,260 m³) of contaminated soil vapor have been extracted from both well fields within the first month of operation, resulting in removal of over 13,693 lb of hydrocarbons. The mass of recovered contaminant equals approximately 2188 gal of product, assuming specific gravity for gasoline of 0.75 g/cm³.


5.0 REFERENCES

- 1. Solc J., 2007, *Risk Assessment and Feasibility of Remedial Alternatives for Coal Seam at Garrison, North Dakota.* Final Report 2007-EERC-10-10; Energy & Environmental Research Center; Grand Forks, ND, 2007.
- 2. Solc J.; and Botnen, B., 2008, *Technological Synergies for Recovery of Organic Pollutants from a Coal Seam at Garrison, North Dakota.* Technical Progress Report: March–September 2008. Energy & Environmental Research Center; Grand Forks, ND, 2008.

APPENDIX A


SITE PLAN AND EXTRACTION/INJECTION WELL FIELDS

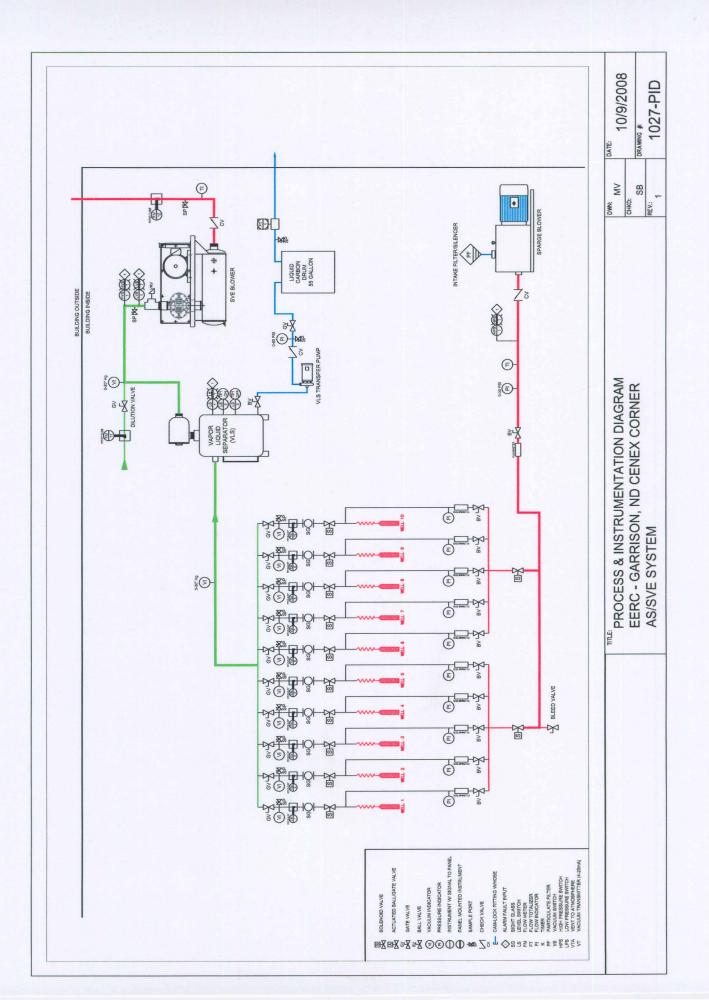
APPENDIX B

GROUNDWATER TABLE MONITORING – SUMMARY OF DATA

Groundwater Levels

Elevations in feet

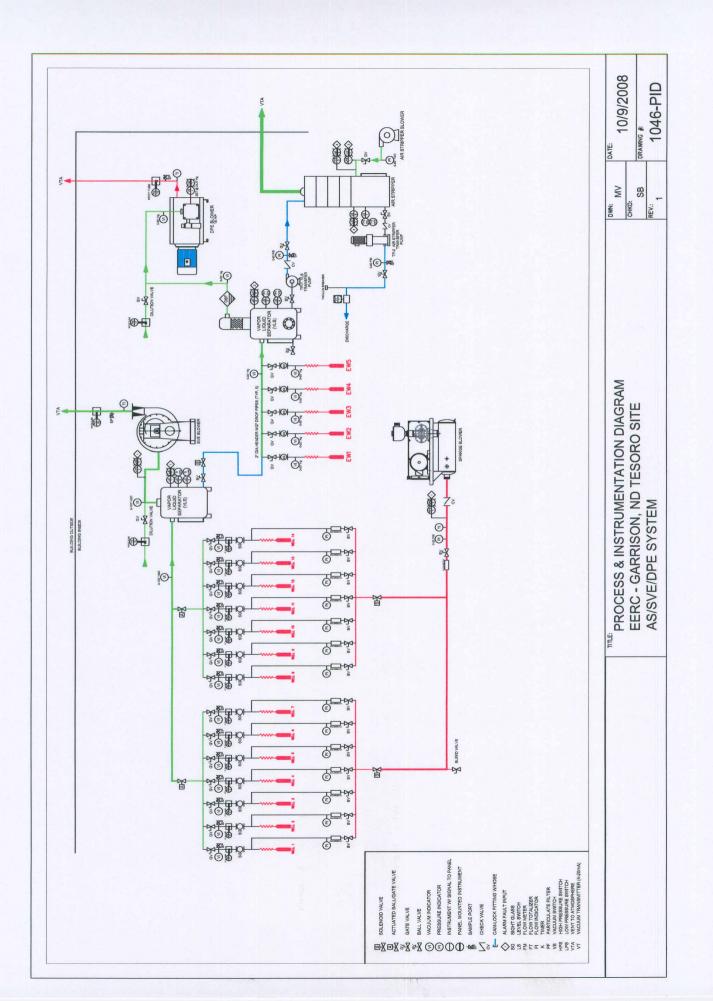
	and the second se				
Well ID	MP (TOC) ¹	Ground	08/25/08	11/24/08	12/18/08
Monitoring					
MW-1	1889.58	1889.74	1869.71	1870.06	1869.96
MW-2	1890.36	1890.65	1872.76	1872.80	nm
MW-3	1893.63	1891.66	1879.13	1879.23	nm
MW-4	1913.73	1911.36	1853.98	1853.76	nm
MW-5	1902.26	1899.13	1853.26	1853.14	nm
MW-6	1907.61	1905.11	1853.61	1853.41	nm
MW-7	1901.30	1898.81	1857.71	1857.73	nm
MW-8	1899.29	1896.28	1860.50	1860.56	nm
MW-9	1907.19	1907.37	1853.67	1853.51	nm
MW-10	1891.06	1888.03	1854.87	1853.70	nm
MW-11	1905.89	1902.74	1853.39	1853.26	nm
MW-12	1888.63	1888.93	1867.90	1868.12	1867.72
MW-13	1900.35	1900.70	1858.18	1853.10	nm
MW-14	1896.90	1897.63	1854.38	1853.95	nm
MW-15	1899.23	1899.41	1856.60	nm	nm
MW-16	1895.83	1895.94	1859.21	1860.37	nm
MW-17	1887.81	1888.12	1867.54	1867.31	1867.32
MW-18	1887.95	1888.41	1853.90	1853.74	nm
MW-19	1885.15	1885.24	1868.23	1868.00	nm
MW-20	1899.45	1899.92	1853.98	1853.78	nm
MW-21	1906.45	1906.76	1854.02	1853.61	nm
MW-22	1890.49	1890.76	1867.57	1867.65	1867.27
MW-23	1886.63	1886.76	1867.28	1867.33	1867.11
MW-24	1889.31	1889.71	1867.72	1867.66	1867.38
MPE-1	1888.25	1888.47	1867.61	1862.90	1863.94

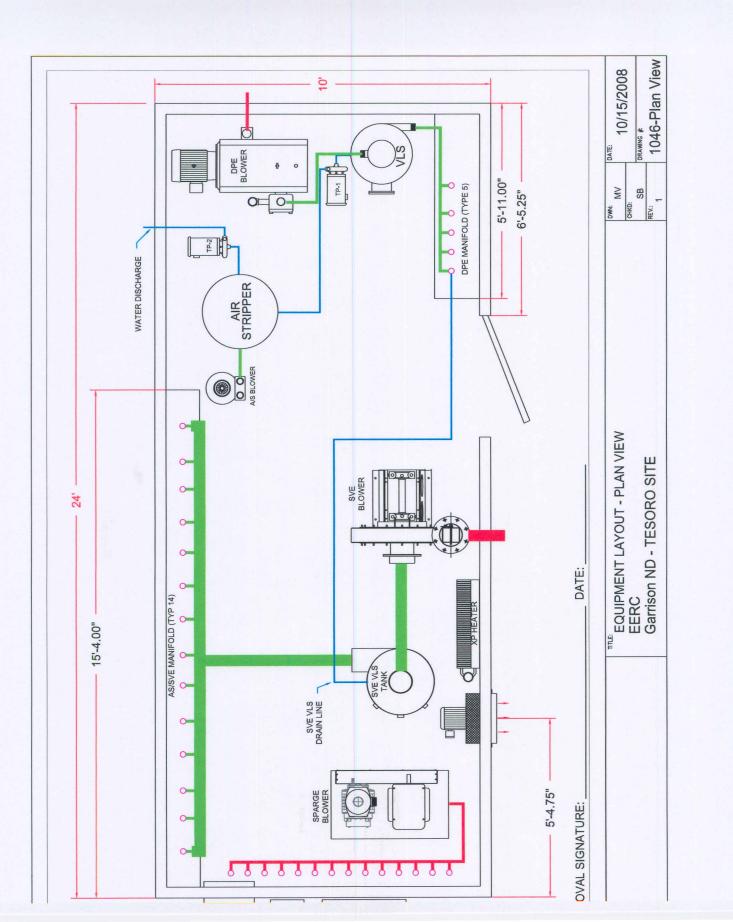

¹MP (TOC) - measuring point after wellhead instrumentation or top of casing nm Not mesasured, inaccessible due to ice and snow cover

APPENDIX C

REMEDIAL SYSTEM DESIGN

APPENDIX C-1


CENEX SVE/AS SYSTEM



APPENDIX C-2

TESORO SVE/AS AND MPE SYSTEM

APPENDIX D

SUMMARY OF DATA – SYSTEM MONITORING

APPENDIX D-1

WATER QUALITY

SYSTEM WATER QUALITY MONITORING

VLS			Tesoro	Cenex		
		11/13/08	11/25/08	12/15/08	11/25/08	12/15/08
MBTE	ppb	<10	<10	<1	<100	<50
Benzene	ppb	1584	377.1	93.3	4800	576
Toluene	ppb	725.8	211.6	44.1	6544	1990
Ethylbenzene	ppb	216.5	46.1	11.4	590.7	351.6
Xylenes (Total)	ppb	1260	421.6	180.8	3535	2685
GRO (TPH)	mg/l	9.49	2.57	0.98	31.50	13.79

Selected Parameters		VLS			Cenex	
VLS		11/13/08	11/25/08	12/15/08	11/25/08	12/15/08
рН		6.8	6.9	7.0	6.3	6.42
EC	µS/cm	1105	1093	1116	2175	2093
Т	°C	11.2	14.8	10.9	15.29	6.32

Effluent			Tesoro	Cenex		
		11/13/08	11/25/08	12/15/08	11/25/08	12/15/08
MBTE	ppb	<1	<1	<1	<1	<1
Benzene	ppb	274.4	102.2	21.5	13	4.2
Toluene	ppb	133.7	59.7	12.8	16.8	11.1
Ethylbenzene	ppb	35.8	10.9	3	1.6	1.6
Xylenes (Total)	ppb	202.0	121.0	54.5	12.4	14.3
Phenols (Total)	ppb	19.8	42.6	36.7	<10	<10
GRO (TPH)	mg/l	1.81	0.78	1.01	0.34	< 0.2

Selected Par	rameters		Tesoro		Ce	nex
Effluent		11/13/08	11/25/08	12/15/08	11/25/08	12/15/08
Fe (total)	mg/l	7.25	6.87	3.52	14.20	32.40
Mn (total)	mg/l	0.76	0.66	0.52	2.67	2.93
TSS	mg/l	56	8	21	117	57
pН		7.2	7.4	7.5	7.2	6.5
EC	µS/cm	1157	1097	1102	2181	2240
Т	°C	12.8	17.9	15.8	9.9	5.7

VLS-Vapor/Liquid Separator Sample Port

APPENDIX D-2

OFFGAS QUALITY

OFFGAS QUALITY MONITORING - TESORO SYSTEM

Organic Vapors by Charcoal Tube Desorption, MiniRae Multiparameter Analyzer, and Photo Ionization Detector

	Collection	Sampling Flow Rate	GRO	ТРН	MTBE	Benzene	Toluene	Ethyl Benzene	Xylenes	DID	CO2	02
Date/Time	Interval	(L/min)	(mg/m ³)	(mqq)	%	(mdd)						
Tesoro corner MPE												
11/13/08 17:55	¹ CT-60 s	0.28	20600	33100	ND	152	101	36	161	1104	4.1	15.4
11/13/08 18:05	¹ CT-60 s	0.28	21000	32600	ND	151	97	34	150			
11/25/08 23:00	¹ CT-60 s	0.28	1340	1930	ND	50	22	n	17	247	4.0	16.6
11/25/08 23:05	¹ CT-60 s	0.28	1180	1700	QN	47	24	3.2	16			
12/15/08 09:50	¹ CT-60 s	0.28	521	821	QN	14	6.4	QN	16	123	2.4	19.1
12/15/08 09:20	¹ CT-60 s	0.28	679	1050	QN	15	8.6	ND	20			
CIVE												
11/13/08 18:30	CT-120 s	0.28	ND	ND	QN	ND	ND	ND	QN	1871	8.3	5
11/13/08 18:40	CT-120 s	0.28	24300	41300	QN	89	130	44	170			
11/25/08 21:30	CT-40 s	0.28	7450	9750	QN	133	113	36	178	983	5.0	10.1
11/25/08 21:30	CT-90 s	0.28	8050	10800	ND	116	98	37	170			
11/25/08 21:30	CT-120 s	0.28	7960	10600	QN	120	106	40	186			
12/15/08 19:30	CT-60 s	0.28	3140	3960	QN	58	58	12	131	418	3.8	16.1
12/15/08 19:35	CT-60 s	0.28	2990	3820	ND	65	60	12	144			
		Lad County Lad	las base									
'Charcoal tube sample collected from 1 edlar	sample collec	ted from 1ed	llar bag									
GRO - Gasoline Range Organics	Rande Ordal	nics		ND - Not Detected)etected							

GRO - Gasoline Range Organics TPH - Total Purgeable Hydrocarbons FID - Flame Ionization Detector PID - Photoionization Detector Summit - Summit HydrocarbonAnalyzer CT - Charcoal Tube TB - Tedlar Bag

ND - Not Detected OL - Over detection limit >10,000 ppm for Summit (ca

>10,000 ppm for Summit (calibrated with hexane)
>10,000 ppm for PID (calibrated with isobuthylene)
>50,000 ppm for FID (calibrated with methane)

OFFGAS QUALITY MONITORING - CENEX SYSTEM

Organic Vapors by Charcoal Tube Desorption, MiniRae Multiparameter Analyzer, and Photo Ionization Detector

		Sampling						Ethyl				
	Collection	Collection Flow Rate	GRO	HdT	MTBE	Benzene	Toluene	Benzene	Xylenes	PID	CO ₂	02
Date/Time	Interval	(L/min)	(mg/m ³)	-	(mg/m ³)	(mqq)	%	%				
11/25/08 19:30	¹ CT-60 s	0.28	4430		QN	212	546	60	233	1420	4.95	10.7
11/25/08 19:35	¹ CT-60 s	0.28	2320	2860	ND	174	239	28	121			
12/16/08 16:45	¹ CT-60 s	0.28	1190	1430	ND	56	159	34	171	282	>5	17.1
12/16/08 16:50	¹ CT-60 s	0.28	1320	1590	ND	61	180	35	171			
¹ Charcoal tube sample collected from Tedlar bag	sample collec	ted from Ted	lar bag									

GRO - Gasoline Range Organics TPH - Total Purgeable Hydrocarbons FID - Flame Ionization Detector PID - Photoionization Detector Summit - Summit HydrocarbonAnalyzer CT - Charcoal Tube TB - Tedlar Bag

ND - Not Detected
OL - Over detection limit
>10,000 ppm for Summit (calibrated with hexane)
>10,000 ppm for PID (calibrated with isobuthylene)
>50,000 ppm for FID (calibrated with methane)

APPENDIX E

GROUNDWATER QUALITY MONITORING – SUMMARY OF DATA

APPENDIX E-1

COC IN GROUNDWATER

Garrison - BTEX Trends

Well ID	Date	MTBE	Benzene	Toluene	Ethylbenz.	Xylenes	GRO (TPH)	BTEX	BTEX
		ppb	ppb	ppb	ppb	(total) ppb	mg/l	ppb	trend
Monitorin									
MW-1	08/14/06	ND	50500	78200	4160	25800	NA	158,660	
MW-1	12/12/06	<1000	49580	40210	3104	16770	250.0	109,664	
MW-1	01/17/07	<500	53880	55280	5888	33300	420.5	148,348	
MW-1	02/21/07	<1000	63150	60710	4308	24070	320.7	152,238	_
MW-1	03/28/07	Dry							
MW-1	04/25/07	<1000	72200	67500	5196	30510	348.4	175,406	
MW-1	05/15/07	<1000	59610	66580	10420	62580	551.4	199,741	
MW-1	06/13/07	<1000	52880	51040	4026	25020	288.2	133,254	
MW-1	09/11/07	<1000	56510	51880	3737	22820	237.3	135,184	
MW-2	08/14/06	ND	ND	ND	ND	ND	NA	0	1.1.1.1.1.1
MW-2	09/18/06	ND	ND	ND	ND	ND	NA	0	
MW-2	12/12/06	<1	<1	<1	<1	<3	<0.2	0	
MW-2	01/17/07	<1	<1	<1	<1	<3	<0.2	0	
MW-2	02/21/07	<1	<1	<1	<1	<3	<0.2	0	
MW-2	03/28/07	Frozen							-
MW-2	04/25/07	<1	<1	<1	<1	<3	<0.2	0	
MW-2	05/15/07	<1	<1	<1	<1	<3	<0.2	0	
MW-2	06/12/07	<1	<1	<1	<1	<3	<0.2	0	
MW-2	09/11/07	<1	<1	<1	<1	<3	<0.2	0	
MW-2	08/26/08	<1	<1	<1	<1	<3	<0.2	0	
MW-3	08/14/06	ND	ND	ND	ND	ND	NA	0	
MW-3	09/18/06	ND	ND	ND	ND	ND	NA	0	
MW-3	12/12/06	<1	<1	<1	<1	<3	<0.2	0	
MW-3	01/17/07	<1	<1	<1	<1	<3	<0.2	0	
MW-3	02/21/07	<1	<1	<1	<1	<3	<0.2	0	
MW-3	03/28/07	<1	<1	<1	<1	<3	<0.2	0	-
MW-3	04/25/07	<1	<1	<1	<1	<3	<0.2	0	
MW-3	05/15/07	<1	<1	<1	<1	<3	<0.2	0	
MW-3	06/12/07	<1	<1	<1	<1	<3	<0.2	0	
MW-3	09/11/07	<1	<1	<1	<1	<3	<0.2	0	
MW-3	08/25/08	<1	<1	<1	<1	<3	<0.2	0	
MW-4	08/14/06	ND	986	ND	ND	ND	NA	986	
MW-4	09/18/06	ND	958	ND	ND	11.4	NA	969	
MW-4	10/20/06	ND	858	ND	ND	ND	NA	858	
MW-4	12/12/06	<1	1784	1.1	21.1	44.1	3.47	1,850	
MW-4	01/17/07	<1	1339	1.1	18.4	18.3	1.50	1,378	
MW-4	02/21/07	<20	2728	<20	85.2	85.1	6.28	2,905	_
MW-4	03/28/07	<20	3349	42.1	121.5	160.4	7.17	3,680	
MW-4	04/25/07	<10	4689	59.2	248.9	462.7	9.65	5,469	
MW-4	05/15/07	<20	6732	497.8	719	1962	18.89	9,930	
MW-4	06/13/07	<10	3598	35.8	363.9	828	10.84	4,826	
MW-4	09/11/07	<10	4120	<10	423	782.7	10.44	5,326	
MW-4	08/25/08	<10	2818	<10	336.4	408.3	8.44	3,571	
MW-5	08/14/06	ND	15.7	ND	ND	ND	NA	16	
MW-5	09/18/06	ND	68.3	ND	3	5.74	NA	77	
MW-5	10/20/06	ND	71.4	ND	ND	ND	NA	71	
MW-5	12/12/06	<1	91.8	<1	1.9	<3	0.21	94	
MW-5	01/17/07	<1	67.8	1.7	2.8	4.1	0.21	76	
MW-5	02/21/07	<1	56.8	12.2	7.4	16.6	0.40	93	
MW-5	03/28/07	<10	123.1	455	248	1305	6.69	2,138	
MW-5	04/25/07	<20	107.7	166.1	217.3	1084	6.00	1,581	
MW-5	05/15/07	<10	127.8	199.4	185.8	920.5	6.81	1,301	
MW-5	06/13/07	<10	226.5	115.2	113.2	554.8	5.10		
								1,015	
MW-5	09/11/07	<10	684.9	15.2	103.9	349.9	6.11	1,160	
MW-5	08/25/08	<10	340.4	<10	48.8	237.6	3.75	631	

Garrison - BTEX Trends (Continued)

Well ID	Date	MTBE	Benzene	Toluene	Ethylbenz.	Xylenes	GRO (TPH)	BTEX	BTEX
		ppb	ppb	ppb	ppb	(total) ppb	mg/l	ppb	trend
/IW-6	08/14/06	ND	138.0	ND	ND	ND	NA	138	
1W-6	09/18/06	ND	259.0	ND	ND	ND	NA	259	
1W-6	10/20/06	ND	5.8	ND	ND	ND	NA	6	
1W-6	12/12/06	<1	665.2	<1	<1	3.1	0.957	668	
/W-6	01/17/07	<1	460.2	<1	<1	<3	0.803	460	
1W-6	02/21/07	<1	442.7	<1	<1	<3	0.760	443	-
/W-6	03/28/07	<1	669.6	2.9	1.1	3.3	0.944	677	•
/W-6	04/25/07	<1	1118.0	38.9	27.1	77.2	2.553	1,264	
/W-6	05/15/07	<10	1833.0	97.6	115.4	329.1	4.389	2,379	
/W-6	06/13/07	<10	1109.0	14.4	89.3	206.3	3.170	1,422	
/W-6	09/12/07	<10	1176.0	<10	51.8	63.2	2.640	1,294	
/W-6	08/25/08	<10	975.6	<10	118.8	136.4	3.510	1,234	
1W-7	08/14/06	ND	4.4	ND	ND	ND	NA	4	
1W-7	09/18/06	ND	5.3	ND	ND	ND	NA	5	
1W-7	12/12/06	<1	8.3	<1	<1	<3	0.786	8	
1W-7	01/17/07	<1	6.5	<1	<1	<3	0.761	7	
1W-7	02/21/07	<1	5.9	<1	<1	<3	0.785	6	
1W-7	03/28/07	<1	8.2	<1	<1	<3	1.156	8	-
1W-7	03/28/07	<1	11.5	<1	<1	<3	1.156	0 12	•
1W-7	04/25/07	<1	12.1	<1	<1	<3	1.090	12	
1W-7 1W-7	06/13/07	<1	12.1	<1	<1	<3	1.259	12	
1W-7 1W-7		<1	9.5	<1	<1				
	09/11/07					<3	0.852	10	
1W-7	08/25/08	<1	7.3	<1	<1	<3	0.924	8	
1W-8	08/14/06	ND	ND	ND	ND	ND	NA	0	
IW-8	09/18/06	ND	ND	ND	ND	ND	NA	0	
1W-8	12/12/06	<1	<1	<1	<1	<3	< 0.2	0	
1W-8	01/17/07	<1	<1	<1	<1	<3	< 0.2	0	
1W-8	02/21/07	<1	<1	<1	<1	<3	<0.2	0	
1W-8	03/28/07	<1	<1	<1	<1	<3	<0.2	0	-
1W-8	04/25/07	<1	<1	<1	<1	<3	<0.2	0	
1W-8	05/15/07	<1	<1	<1	<1	<3	<0.2	0	
1W-8	06/13/07	<1	<1	<1	<1	<3	<0.2	0	
1W-8	09/11/07	<1	<1	<1	<1	<3	<0.2	0	
1W-8	08/25/08	<1	<1	<1	<1	<3	<0.2	0	
1W-9	08/14/06	ND	2600	60.5	80.5	374	NA	3,115	
1W-9	09/18/06	ND	3080	208	308	1190	NA	4,786	
1W-9	10/20/06	ND	3110	92	340	1070	NA	4,612	
1W-9	12/12/06	<10	3547	12.5	282.6	410.7	9.616	4,253	
1W-9	01/17/07	<10	4166	22	298.4	501.2	10.30	4,998	
1W-9	02/21/07	<10	2933	19.1	254.9	522.7	9.23	3,739	-
1W-9	03/28/07	<10	3836	31.7	332.6	747.1	10.01	4,957	•
1W-9	04/25/07	<50	4034	122.5	602.6	1975	15.93	6,750	
1W-9	05/15/07	<50	3760	169.1	1135	5112	30.67	10,207	
1W-9	06/13/07	<50	3819	410.2	703.3	2590	21.67	7,544	
1W-9	09/11/07	<50	3302	<50	836	2524	21.55	6,684	
1W-9	08/26/08	<50	2313	87.5	492.2	901.7	16.49	3,811	
1W-10	08/14/06	ND	14200	55600	6400	36700	NA	112,900	
1W-10	09/18/06	ND	14600	53200	12100	75100	NA	155,000	
1W-10	12/12/06	FP	0.1 ft						
IW-10	01/17/07	FP	0.2 ft						
1W-10	02/21/07	FP	0.19 ft						
1W-10	03/28/07	FP	0.19 ft						
1W-10	04/25/07	FP	0.03 ft						•
/W-10	05/15/07	<500	10610	22310	4199	30660	140.6	67,920	
		<500							
/IW-10	06/13/07		7941	13160	2823	23930	118.5	47,973	
MW-10	09/11/07	<200	7468	3673	3810	23730	90.32	38,771	
/IW-10	08/25/08	<100	5095	320.2	3457	15720	76.3	24,669	Land and the second

Garrison - BTEX Trends (Continued)

Well ID	Date	MTBE	Benzene	Toluene	Ethylbenz.	Xylenes	GRO (TPH)	BTEX	
-		ppb	ppb	ppb	ppb	(total) ppb	mg/l	ppb	
1W-11	08/14/06	ND	150.0	ND	ND	ND	NA	150	
/IW-11	09/18/06	ND	106.0	ND	ND	ND	NA	106	
NW-11	10/20/06	ND	256.0	ND	ND	ND	NA	256	
MW-11	12/12/06	<1	194.6	<1	<1	<3	0.338	195	
MW-11	01/17/07	<1	188	<1	<1	<3	0.383	188	
MW-11	02/21/07	<1	159.5	<1	<1	<3	0.319	160	
MW-11	03/28/07	<1	166.1	<1	<1	<3	0.274	166	-
MW-11	04/25/07	<1	170.3	<1	<1	<3	0.285	170	
MW-11	05/15/07	<1	182.9	<1	<1	<3	0.275	183	
MW-11	06/13/07	<1	419.5	<1	<1	<3	0.653	420	
MW-11	09/12/07	<1	704.2	<1	10	6.6	1.135	722	
MW-11	08/25/08	<1	501.3	<1	11.3	<3	0.972	514	
MW-12	06/13/07	<100	3730	3357	1271	7145	39.35	15,542	
WW-12	09/11/07	<100	2132	293.2	760.8	3755	22.47	6,963	
NW-12	08/25/08	<100	2761	1104	1070	4306	28.16	9,269	
MW-13	06/13/07	<1	<1	<1	<1	<3	<0.2	0	
MW-13	09/12/07	<1	<1	<1	<1	<3	<0.2	0	_
NW-13	08/26/08	<1	<1	1.6	<1	<3	<0.2	2	
WW-14	06/13/07	<1	<1	<1	<1	<3	<0.2	0	
/W-14	09/12/07	<1	<1	<1	<1	<3	<0.2	0	
/W-14	08/25/08	<1	47.6	<1	1.5	<3	<0.2	49	
/W-15	06/13/07	<100	4976	704.6	808.3	3966	27.25	10,482	
NW-15	0/11/06	<50	3384	<50	228.9	468.6	7.966	4,089	
/W-15	08/26/08	<10	2273	11.8	167.3	197.1	6.080	2,655	
/W-16	06/13/07	<100	2615	1756	795.1	5110	27.88	10,304	
NW-16	09/11/07	<100	2737	716.6	756.1	4587	24.48	8,821	
WW-16	08/26/08	<50	2130	671.2	590	2865	18.08	6,274	•
WW-17	06/13/07	<100	4323	5374	1620	8815	48	20,180	
NW-17	09/11/07	<100	2126	470.8	769	4049	22.63	7,437	
NW-17	08/26/08	<50	3404	2037	1146	5430	31.44	12,048	
NW-18	06/13/07	<100	7620	7792	2913	17030	76.84	35,432	
MW-18	09/11/07	<100	5926	572.7	2527	12570	51.55	21,647	
MW-19	06/13/07	<1	<1	<1	<1	<3	<0.2	0	
MW-19	09/11/07	<1	<1	<1	<1	<3	<0.2	0	
MW-19	08/26/08	<1	<1	<1	<1	<3	<0.2	0	
MW-20	06/13/07	<10	2170	71.8	79.9	231.1	4.56	2,557	
MW-20	09/12/07	<10	1377	<10	37.3	42.7	2.716	1,460	
WW-20	08/25/08	<10	1772	<10	130	146.2	4.190	2,052	
WW-20		<100		<10		and the second se			-
	09/26/07		1866		76.5	91.4	3.69	2,038	
MW-21	08/26/08	<5	471.3	<5	18.3	15	1.38	506	
/W-22	09/26/07	<1	364.6	49.6	42.7	259.3	3.089	719	
MW-22	08/26/08	<1	173.2	3.7	1.9	5.6	0.666	185	
/W-23	09/26/07	<10	567.6	<10	234.4	1027	5.78	1,835	
MW-23	08/26/08	<2	110	4.6	16.1	23.9	0.872	155	
VIW-24	09/26/07	<10	2609	1954	330.2	1675	12.81	6,581	
NA - not a	08/26/08	<10	1049	16.2	40.4	58.5	3.67	1,168	¥

ND - not detected

GROUNDWATER QUALITY MONITORING (Continued)

Well ID	Date	MTBE	Benzene	Toluene	Ethy	lbenz.	Xylenes	GRO (TPH)	BTEX
		ppb	ppb	ppb	-	opb	(total) ppb	mg/l	ppb
Domestic W	ells						1 7 FF 4	.	
D K. Well	11/03/05	ND	764	ND		ND	ND	ND	764
D K. Well	12/22/05	ND	2320	ND		ND	ND	ND	2,320
D K. Well	01/24/06	ND	3080	ND		ND	ND	ND	3,080
D K. Well	03/07/06	ND	2930	ND		ND	ND	ND	2,930
D K. Well	05/18/06	ND	4770	20.4		6.8	26.2	ND	4,823
D K. Well	08/14/06	ND	5360	ND		ND	95	ND	5,455
D K. Well	09/18/06	ND	6240	20.6		94	222	ND	6,577
D K. Well	10/20/06	ND	5500	ND		82	230	ND	5,812
D K. Well			ng - no acco						
D K. Well			ng - no acco						
D K. Well	07/23/07	<10	3704	<10		348.6	766.1	10.74	4,819
Folden Q.	09/29/05	ND	ND	ND		ND	ND	ND	
Folden Q.	10/20/06	ND	ND	ND		ND	ND	ND	
Folden Q.	01/29/07	<1	<1	<1		<1	<3	<0.2	
Folden Q.	04/24/07	<1	<1	<1		<1	<3	<0.2	
Folden Q.	07/23/07	<1	<1	<1		<1	<3	<0.2	
Folden Q.	09/11/07	<1	<1	<1		<1	<3	<0.2	
Folden Q.	08/27/08	<1	<1	<1		<1	<3	<0.2	
Folden Pas	01/29/07	<1	<1	<1		<1	<3	<0.2	
Folden Pas	04/24/07	<1	<1	<1		<1	<3	<0.2	
Folden Pas	07/23/07	<1	<1	<1		<1	<3	<0.2	
Folden Pas	09/11/07	<1	<1	<1		<1	<3	<0.2	
Folden Pas	08/27/08	<1	<1	<1		<1	<3	<0.2	
Brunsell	10/20/06	ND	ND	ND		ND	ND	ND	
Brunsell	01/29/07	<1	<1	<1		<1	<3	<0.2	
Brunsell	04/24/07	<1	<1	<1		<1	<3	<0.2	
Brunsell	07/23/07	<1	<1	<1		<1	<3	<0.2	
Brunsell	09/12/07	<1	<1	<1		<1	<3	<0.2	
Brunsell	08/27/08	<1	<1	<1		<1	<3	<0.3	
Zeisler	10/20/06	ND	ND	ND		ND	ND	ND	
Zeisler	01/29/07	<1	<1	<1		<1	<3	<0.2	
Zeisler	04/24/07	<1	<1	<1		<1	<3	<0.2	
Zeisler	07/23/07	<1	<1	<1		<1	<3	<0.2	
Zeisler	09/12/07	<1	<1	<1		<1	<3	<0.2	
Zeiszler	08/27/08	<1	<1	<1		<1	<3	<0.2	
Fitzgerald	10/20/06	ND	ND	ND		ND	ND	ND	
Fitzgerald	01/29/07	Owner abse	ent - no ace						
Fitzgerald	02/21/07	<1	<1	<1		<1	<3	<0.2	
Fitzgerald	04/24/07	<1	<1	<1		<1	<3	<0.2	
Fitzgerald	07/23/07	<1	<1	<1		<1	<3	<0.2	
Fitzgerald	09/12/07	<1	<1	<1		<1	<3	<0.2	
Fitzgerald	08/27/08	<1	<1	<1		<1	<3	<0.2	
Seney	10/20/06	ND	ND	ND		ND	ND	ND	
Seney	01/29/07	<1	<1	<1		<1	<3	<0.2	
Seney	04/24/07	<1	<1	<1		<1	<3	<0.2	
Seney	07/23/07	<1	<1	<1		<1	<3	<0.2	
Seney	09/12/07	<1	<1	<1		<1	<3	<0.2	

GROUNDWATER QUALITY MONITORING (Continued)

Well ID	Date	MTBE	Benzene	Toluene	Ethylbenz.	Xylenes	GRO (TPH)
		ppb	ppb	ppb	ppb	(total) ppb	mg/l
Joe K.	10/20/06	ND	ND	ND	ND	ND	ND
Joe K.	01/29/07	<1	<1	<1	<1	<3	<0.2
Joe K.	04/24/07	<1	<1	<1	<1	<3	<0.2
Joe K.	07/23/07	<1	<1	<1	<1	<3	< 0.2
Joe K.	09/12/07	<1	<1	<1	<1	<3	< 0.2
Joe K.	08/27/08	<1	<1	<1	<1	<3	<0.2
Ebach	07/23/07	<1	<1	<1	<1	<3	<0.2
Ebach	09/12/07	<1	<1	<1	<1	<3	< 0.2

ND - not detected

APPENDIX E-2

BIODEGRADATION INDICATORS

S
Q
Õ
F
V
0
FION INDICA
Z
-
Z
0
BIODEGRADA
Q
V
R
0
Ш
Q
0
m
0
LECTED
F
U
Щ
1
Щ
S
ID SELI
2
A
0
ŏ
ũ

		MW-2	MW-2	MW-2	MW-3	MW-3	MW-3	MW-6	MW-6	MW-6	6-WW	6-WW	MW-9
		06/12/07 09/11/07	09/11/07	08/26/08	06/12/07	09/11/07	08/25/08	06/13/07	09/12/07	08/25/08	06/13/07	09/11/07	08/26/08
MTBE	dqq	V	~	₹ V	< <u>-</u>	~	< <u>-</u>	<10		<10	<50	<50	<50
Benzene	ppb	~	~ V	<	₹ V	₹v	v	1109		975.6	3819	3302	2313
Toluene	dqq	~	v	۲- ۲	v	v	v	14.4		<10	410.2	<50	87.5
Ethyl Benzene	dqq	۲ ۲	~	۲,	v	₹v	1 V	89.3	51.8	118.8	703.3	836	492.2
Xylenes Total)	dqq	<3	°. ℃	₹3	°. ℃	°. ℃	₹3	206.3		136.4	2590	2524	901.7
Sulfate	l/gm	3100	2990		329		174			229		731	310
Nitrate-Nitrite as N	mg/l	18.5	23.4		5.14		<0.1			<0.1		<0.1	<0.1
Ammonia-Nitrogen as N	mg/l	0.3	0.12	0.15	0.27	0.32	0.28	0.23	0.27	0.29	0.11	0.36	0.43
Phosphorus P (total)	mg/l	0.43	0.75		0.19		0.18			0.65		0.94	1.01
BOD	mg/l	\$	\$		\$		2.12			15.2		<20	10.9
Fe (total)	mg/l	1.27	7.8		8.4		7.17			18.3		9.38	12.9
Mn (total)	l/gm	0.79	1.01		0.44		0.76			0.74		0.51	0.49
DO	(I/gm)	0.63	2.63		2.43		2.63			2.11	1.07	1.85	2.18
ORP	(Jm)	48.3	105.3		12.1		-14.2			125.2	-119.8	-45.2	59.2
EC	(mS/cm)	4971	5390	5572	1743	1462	1342		1263	1325	2189	2270	1722
Hd		6.35	5.78		7.63		7.17	7.35		6.9	7.53	6.43	6.7
Temperature	(°C)	9.23	10.6	9.28	8.97	10.5	9.2	8.94	7.58	8.03	9.38	9.32	8.8
BOD - Biological Oxygen Demand	Demand												
DO - Dissolved Oxygen													
ORP - Oxidation/Reduction Potential	on Potentis	le I											

ORP - Oxidation/Reduction Potential EC - Electrical Conductivity NA - Not analyzed, low sample volume Wells were sampled for BTEX on 9/12/07 and for biodegradation indocators on 10/3/2007

5
n'
CATOF
S
-
P
15
9
M
>
IN
>
-
0
2
V
-
-
~
2
1
C
EGR
ODE
0
-
O
~
m
-
D
-
111
1
()
2
ш
3
4
10
5
0
>
<
T
-
12

		MW-11	MW-11	MW-11	MW-12	MW-12	MW-12	MW-13	MW-13	MW-13	MW-18	MW-18
		06/13/07	09/12/07	08/25/08	06/13/07	09/11/07	08/25/08	06/13/07	09/12/07	08/26/08	06/13/07	09/11/07
E	qdd	V V	< <u>-</u>	1 V	<100	<100		~ 1	1 V	1	<100	<100
zene	dqq	419.5	704.2	501.3	3730	2132		v.	1 V		7620	5926
ene	dqq		v.	1 V	3357	293.3	1104	v.	1 V	1.6	7792	572.7
I Benzene	qdd	v	10	11.3	1271	760.8		<1>	~	1 V	2913	2527
nes Total)	qdd	<3	6.6	<3	7145	3755		<3	<3	<3	17030	12570
ate	mg/l	950	777	376	1200	1030	552	782		715	412	260
Ite-Nitrite as N	mg/l	<0.1	<0.1	<0.1	0.83	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1
nonia-Nitrogen as N	mg/l	0.24	0.27	0.73	1.91	0.59	0.44	0.44	0.39	0.53	0.33	0.44
sphorus P (total)	mg/l	0.85	0.42	0.53	0.41	0.39	0.61	0.16		0.24	0.29	0.55
,	mg/l	6.09	<20	9.6	47	41.2	57.1	9>		2.82	40.4	NA
iotal)	mg/l	13.7	9.48	14.1	23.8	25.7	23.6	3.71		6.81	7.84	12.7
total)	l/gm	0.71	0.52	0.63	1.54	1.39	1.03	0.47		0.35	1.06	1.22
	(I/gm)		1.56	2.8	1.29	3.38		1.17	1.5	3.18	2.37	3.19
	(MV)		40.3	54.6	-32.7	-36.9	64.6	-12.2	41.8	121.6	-46.3	-51.2
	(mS/cm)		2156	1999	2569	2447		2112	2381	1187	1855	1980
		6.84	6.19	6.97	6.76	6.29		6.86	6.36	6.72	6.86	6.63
perature	(°C)	9.75	8.35	8.85	11.75	10.41	9.7	9.68	9.45	8.8	8.6	7.76
 Biological Oxygen Demand Dissolved Oxygen 	Deman	J										

- Oxidation/Reduction Potential

Electrical Conductivity Not analyzed, low sample volume s were sampled for BTEX on 9/12/07 and for biodegradation indocators on 10/3/2007

COC AND SELECTED BIODEGRADATION INDICATORS

		MW-20	MW-20	MW-20
		06/13/07	09/12/07	08/25/08
MTBE	qdd	<10	<10	<10
Benzene	ddd	2170	1377	1772
Toluene	ddd	71.8	<10	<10
Ethyl Benzene	ddd	79.9	37.3	130
Xylenes Total)	qdd	231.1	42.7	146.2
Sulfate	mg/l	1620	929	429
Nitrate-Nitrite as N	l/gm	<0.1	<0.1	<0.1
Ammonia-Nitrogen as N	mg/l	4.31	0.4	0.46
Phosphorus P (total)	mg/l	2.71	0.97	0.93
BOD	mg/l	240	56.9	14.8
Fe (total)	mg/l	120	38	41.3
Mn (total)	mg/l	4.86	1.74	1.6
DO	(I/gm)	2.16	1.99	3.64
ORP	(MM)	-64.2	38.8	93.3
EC	(mS/cm)	1704	2634	2009
Hd		7.07	6.34	6.71
Temperature	(°C)	10.06	8.37	9.48
BOD - Biological Oxygen Demand	Demand			
DO - Dissolved Oxygen				
ORP - Oxidation/Reduction Potential	on Potenti	al		

EC - Electrical Conductivity NA - Not analyzed, low sample volume Wells were sampled for BTEX on 9/12/07 and for biodegradation indocators on 10/3/2007