Field Water Balance of Evapotranspiration Covers in Northwest Ohio

Kristopher D. Barnswell and Daryl F. Dwyer Ph.D Department of Environmental Sciences University of Toledo, Toledo, OH

Issues of Concern

Final closure of landfills and waste sites

Toledo, OH

= Landfill or waste site

Issues of Concern

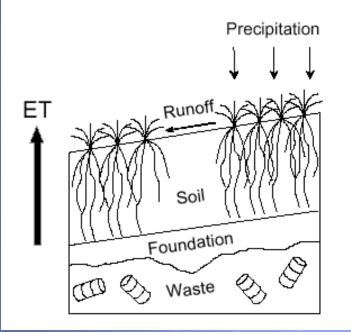
Final closure of landfills and waste sites

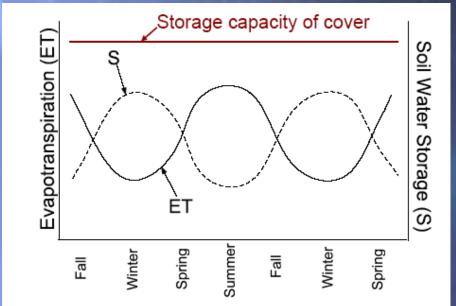
Management of dredged sediment

Dredged sediment

Contaminant	Dredged sediment (ppm)	U.S. Drinking Water Standards (mg/L)	Ohio - Land Application Standards (ppm)
Arsenic	11.3	0.01	75
Cadmium	7.5	0.005	85
Copper	96.4	1.3	4,300
Nickel	65.5		420
Selenium	11.4	0.05	100
Zinc	294.6		7,500

The goal of this research is to design a final cover for landfills and other waste sites that:


Produces allowable rates of percolation

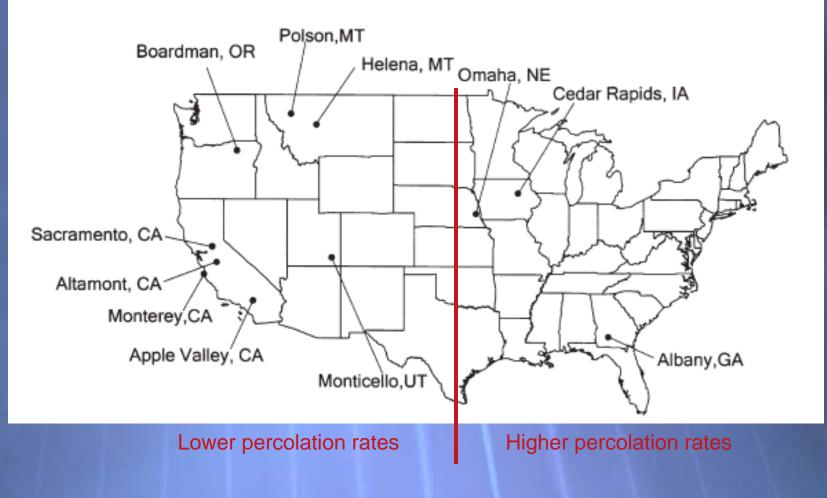

 Uses dredged sediment to increase the storage capacity in a disposal facilities

Uses native plants to promote habitat restoration

Cost less than conventional covers

Evapotranspiration Covers

Benson et al. 2006


Hauser and Gimon, 2001

Helena, MT	Polson, MT	Board O		Altamont, CA	Apple Valley, CA	Monticell UT	o, Marina, CA	Albany, GA	Cedar Rapids, IA		aha, E		amento, CA	
SC CH					SW	CL CL	SP			CL CL SP	CL	SC	SC SC	- 0 mm - 300 - 600 - 900 - 1200 - 1500 - 1800
			Comp	ost-Soil Mixtur	e	器	Soil-Gravel Ad	mixture						- 2100 -
			Topso	a			Gravel							- 2400
				je Layer			Clean Sand							- 2700 -
			Comp	acted Vegetati	ive Cover		Silty Sand							- 3000
				n Cover tation (Grass)			Vegetation (H) grass understo Vegetation (G	ory)						
CL = low-plasticity clay; CH = high-plasticity clay; GC = clayey gravel;														
GP =	poorly g	gradeo	d grav	el; ML =	low-plastic	city silt;	SC = claye	ey sand;						
SM =	silty sa	nd; SF	^D = po	orly grad	ed sand; a	and SW	= well-gra	aded sar	nd		Albrig	ght et	al. 20	04

Characteristics of plant species appropriate for an ET cover

- + Native to the region
- + Perennial
- Rapid growth rate
- Adapted to various soil conditions
- + Have extensive root system
- + Function over entire growing season

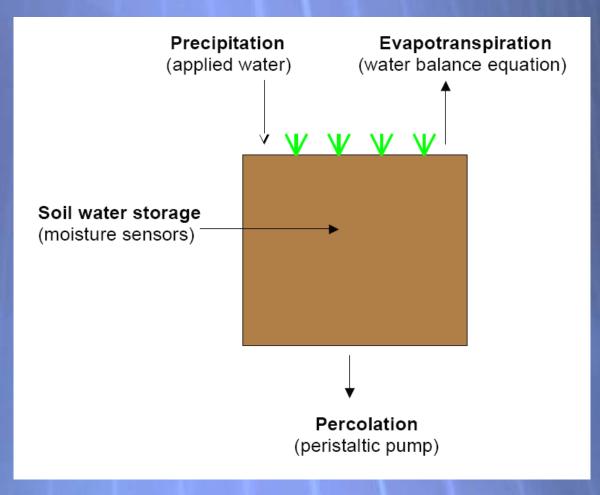
PROBLEM!!!

Albright et al. 2004

Factors leading to high percolation rates

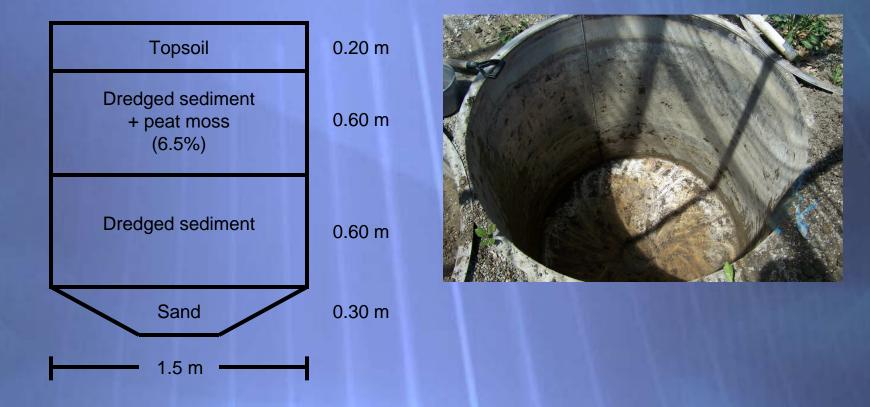
Water storage capacity

+ Plant species


Duration of monitoring period

Objectives

- 1. Monitor the performance of ET covers using mature vegetation and immature vegetation
- 2. Determine the suitability of ET covers for northwest Ohio


 Rate of percolation less than 32 cm per year is considered successful.

P = ET + SWS + PER

Soil profile

In-ground lysimeter

Soil	Sand %	Silt %	Clay %	FC (cm ³ cm ⁻³)	K _s (cm sec ⁻¹)
TS	72.33	14.67	13.0	0.20	8.9 X 10 ⁻⁴
DS + PM	45.33	40.0	14.67	0.35	1.6 X 10 ⁻³
DS	45.33	40.0	14.67	0.31	2.9 X 10 ⁻⁴
Sand	100	0	0	0.10	4.8 X 10 ⁻³

Under construction in late May

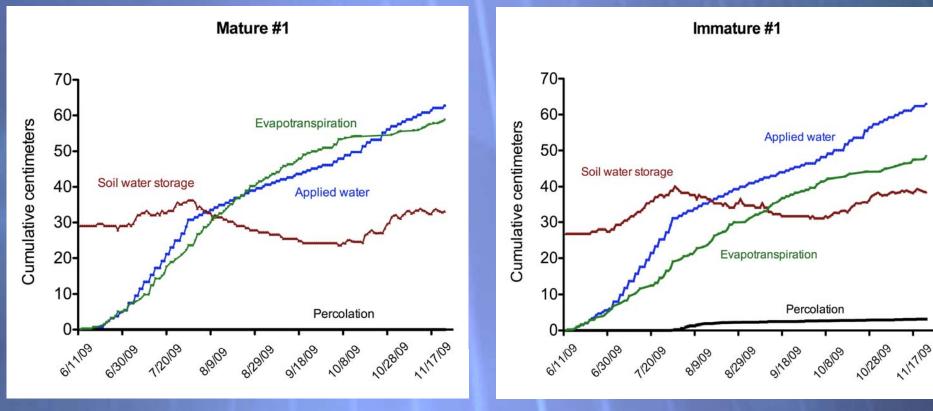
- Treatments:
 - Mature vegetation (5-10 yrs old)
 - Immature vegetation (seeds)
- Watering regimes:
 - Simulate 2006 (116 cm)
 - 100-yr rainfall event (11.7 m over 24 hrs)

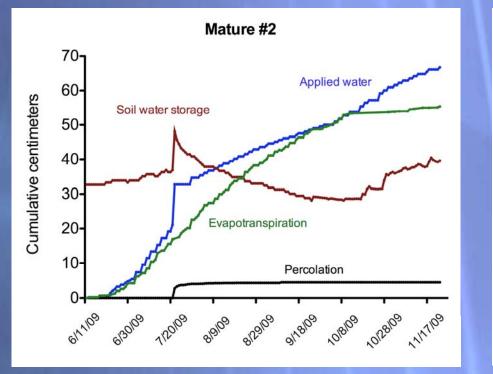
Mature vegetation: big bluestem, Canada goldenrod

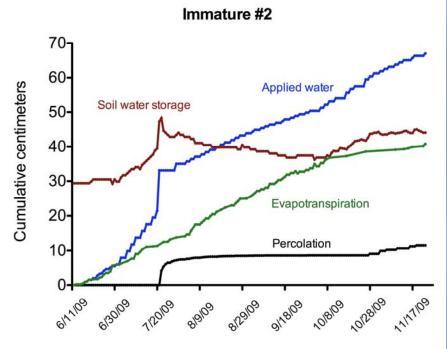
Immature vegetation: big bluestem, black-eyed susan, indian grass, little bluestem, poverty grass, stiff goldenrod, switchgrass, tall boneset, virginia wildrye, yarrow

June 5, 2009

November 2, 2009




July 16, 2009



November 2, 2009

Summary

Totals	Mature #1	Immature #1	Mature #2	Immature #2
Applied water (cm)	62.72	63.05	66.69	67.02
ET (cm)	58.70	48.39	55.37	40.80
P:ET	1.07	1.30	1.20	1.64
Percolation (cm)	0.00	3.08	4.46	11.53
Percolation rate (cm yr ⁻¹)	0.00	6.77	9.81	25.35

Future work

Monitor ET covers through the 2010 Spring

 Simulate ET cover performance using 'Soil and Water Assessment Tool' (SWAT)

Monitor ET covers on-site

Acknowledgments

- USDA Cooperative State Research, Education, and Extension Service (Grant #2006-38894-03732)
- National Science Foundation: GK-12 Program
- University of Toledo Stranahan Arboretum
- + S & L Fertilizer
- Deanna Bobak, Matt and Ryan Gorr, Rajiv McCoy, Jordan Rofkar, Adam Waltz
- + Hull & Associates, Inc.