

Boron in sediments from Cecina basin (Tuscany, Italy) and

preliminary results from phyto-removal

Meri Barbafieri and Eliana Tassi

CNR - Institute for Ecosystem Studies – Pisa – Italy

Meri.Barbafieri@ise.cnr.it

Phytoremediation Research and Feasability Test at ISE-CNR in Pisa

 Research: develop strategies to increase phytoremediation efficiency

Feasability: site specific test to verify the feasability of the technology

Feasability Test

Phase 1. Site specific investigation for local characteristics, contaminants and native plants.

Phase 2. Microcosmo-Mesocosmo Test : Plant species selection and soil/plant treatment selection.

Phase 3. Pilot Test "in situ" or in "scale-up" to verify the best strategies identified in Phase 2.

Feasability test Site Specific

The problem: Boron contamination in sediments in the area of Cecina river basin (Tuscany); limiting its diffusion in the environment

Boron contamination in soil, sediment, water:

- natural release from silicate minerals (e.g. colemanite);
- anthropogenic release in waste from borate mining, glass and ceramic production and borate-containing fertilizers, herbicides and detergents.

Geothermal zone of Larderello (Tuscany, Italy):

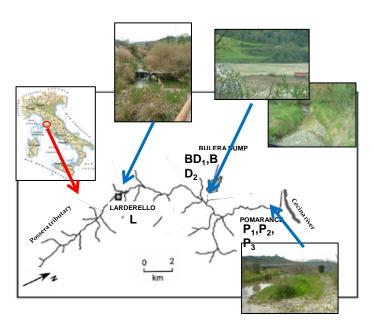
- includes most of the Cecina basin
- > 100 years of mining activity and the geothermic industry spilled boron in tributaries of Cecina River until 1970s

Investigating for a solution

Environmental Ministry program for recovery and remediation of exmining and industrial sites in the Cecina basin

The Ministry includes the Cecina basin and the Tiber basin in the EU "Pilot basin project" for experimental application of Directive 2000/60 to protect internal runoff water, ground water

Investigation of pollution characterization in the area.


Test of different remediation technologies even innovative ones such as phytoremediation.

Phase 1 Preliminary investigation in the site

- collection of native plants colonizing three contaminated areas along the Possera tributary of Cecina river
- collection of the respective sediment samples in Larderello (L), Bulera dump (BD1,BD2) and Pomarance (P1,P2,P3) areas

Sediment characteristics (phase 1)

Sample	pН	C.E.C. (meq 100g ⁻¹)	O.M. (%)	Sand (%)	Silt (%)	Clay (%)	B _{total} (mg kg ⁻¹)	B _{available} (mg kg ⁻¹)
\mathbf{P}_{1}	8.5	13.9	2.2	81.0	13.6	5.5	44	1.3
\mathbf{P}_{2}	8.3	16.3	2.4	81.4	13.7	4.9	47	2.6
\mathbf{P}_3	8.2	15.6	1.9	70.0	20.3	9.7	43	3.7
$\mathtt{BD_1}$	8.2	16.3	1.2	63.4	19.1	17.5	57	17
\mathtt{BD}_2	8.3	16.0	1.3	72.8	11.6	15.5	77	40
L	8.5	8.1	0.6	97.4	1.5	1.0	14	3.1
C	8.2	19.3	5.4	49.1	39.2	11.7	26	1.3

High boron availability especially in sediment samples from the Bulera stream near the landfill

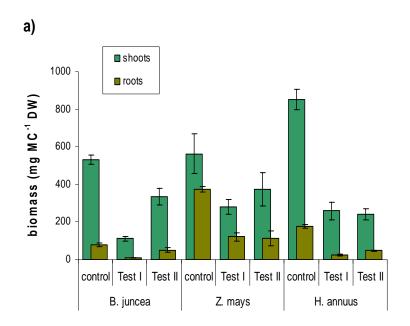
Boron content in collected plant species

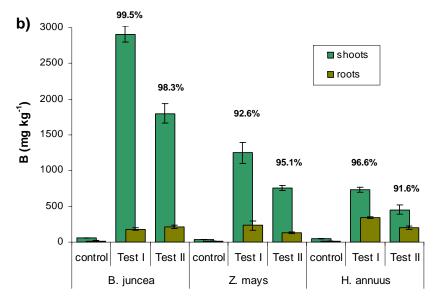
Plant sample	B (mg kg ⁻¹)	Plant sample	B (mg kg ⁻¹)
Taraxacum officinale		Euphorbia sp.	
Leaves	60 (7.8)	Leaves	82 (4.8)
Stem	26 (2.6)	Stem	24 (3.9)
Roots	32 (1.6)	Roots	n/a
Brassica napus		Rumex crispus	
Leaves	86 (2.9)	Leaves	425 (10)
Stem	37 (6.7)	Stem	73 (1.8)
Roots	16 (4.5)	Radice	56 (3.5)
Crepis bulbosa		Poa spp.	
Shoots	64 (3.9)	Shoots	203 (8.4)
Roots	40 (3.7)	Roots	154 (7.1)
Phragmites australis			
Shoots	82 (4.9)		
Roots	n/a		

Test in microcosm (Phase 2)

Zea mais

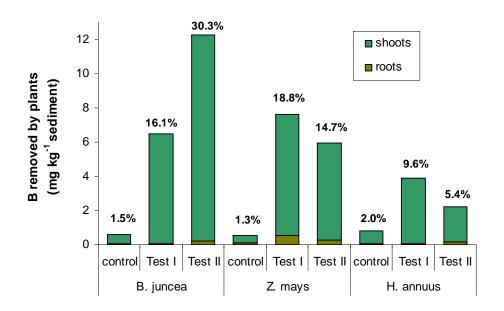
Brassica juncea


Helianthus annus


Test microcosm - Results Biomass (a) - B uptake (b)

Two consecutive growing cycles by the same plant species!

a) Biomass production.Lower than in control microcosm



b) B accumulation and % of traslocation root to shoot

Test microcosm - result Phyto-extracted Boron

The percentage represents the B removed by plants after each growing cycle compared to available fraction of B in the sediment.

Test in scale up - lisimiter (Phase 3)

- ❖Still running, will test the best plants investigated in microcosm test (*Brassica juncea Zea mais*)
- Agronomic input to increase biomass
- Will provide more realistic data on boron phytoextraction efficiency on sediments.

Test in scale up - lisimiter

Leachate collecting

Located on the CNR campus Still running!!

Use of boron-rich biomass

- Compost for soil with low boron content
- Boron bio-fortified feed

Acknowledgements:

- ✓ Province of Pisa
- ✓ Region of Tuscany
- ✓ Environmental Ministry
- ✓ Gianniantonio Petruzzelli (ISE-CNR)
- ✓ Sergio Grassi (IGG-CNR)
- ✓ Giorgio Poggio (ISE-CNR)
- ✓ Virginia Giansoldati (ISE-CNR)

Thank you for your attention!!

