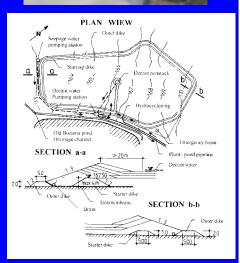
June 2003



The case study dedicated to Aurul tailings pond illustrates the use of risk analysis for developing a proper risk management program after a severe technical accident.

INITIAL LAYOUT

Flat land pond
Area: 89ha.
Volume: 15 mil. m³
Maximum height of the contour dike: 17-18m

June 2003

June 2003

The technical accident

On January 30, 2000, at 10pm

- * a breach of approx. 20m, with a depth expansion until the top of the starter dike on the southern side of the pond
- * 100.000 m³ of cyanide-contaminated water were released, beyond control

Dike breach after the technical accident

June 2003

. Brerach closure to stop spillage

June 2003

June 2003

TECHNICAL ACCIDENT CAUSES

- The faulty design integral recirculation of water
- The excessive input of rainwater. massive thawing + rain of 35.7 l/m²

MONTREAL

- Lack of adequate monitoring

A preliminary risk evaluation based on numerical indices

(a) allows for a rational rating of constructive measures

A complete quantitative risk assessment

@renders evident the efficiency and the benefits of the structural and non-structural measures in terms of risk management.

FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS Criticality index:

 $IG = CM \cdot PC \cdot DC$

where:

CM - expresses the component share in the failure mechanism;

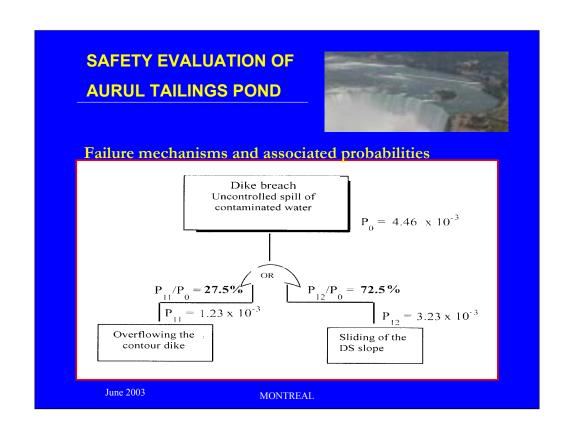
PC - expresses the component failure probability;

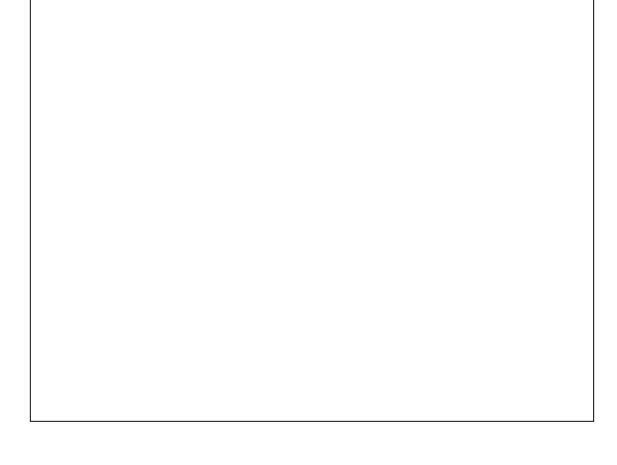
DC - expresses the extent to which the component failure may be detected in advance.

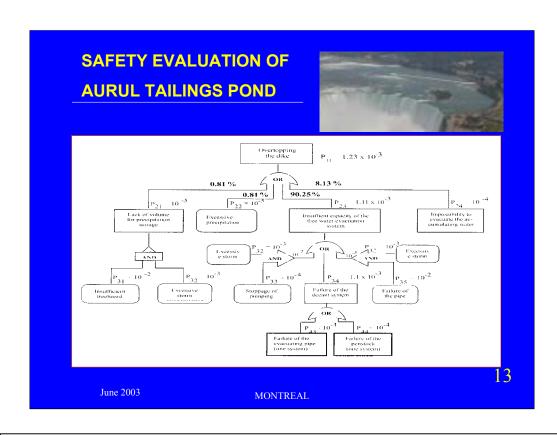
Criticality index IG for Aurul pond

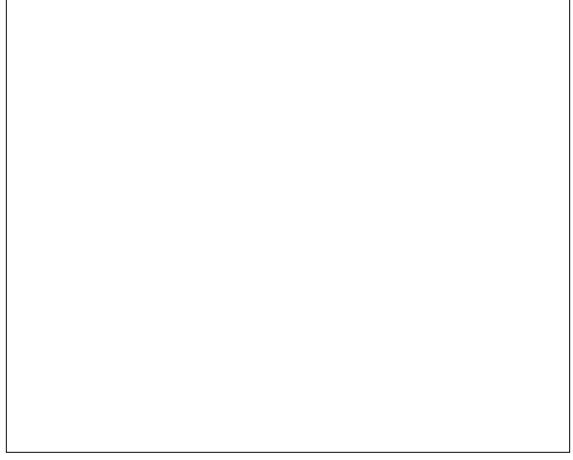
Parameter	CM	PC	DC	<i>IG</i> =
/component			C	$M \cdot PC \cdot DC$
Freeboard	5	4	1	20
Beach width	4	4	1	16
Downstream slope	5	4	1	20
Grain size of dikes	3	4	3	36*
Water collecting system	5	3	4	60 ***
Drainage system	5	2	4	40**
Pond-plant pipes	3	4	2	24

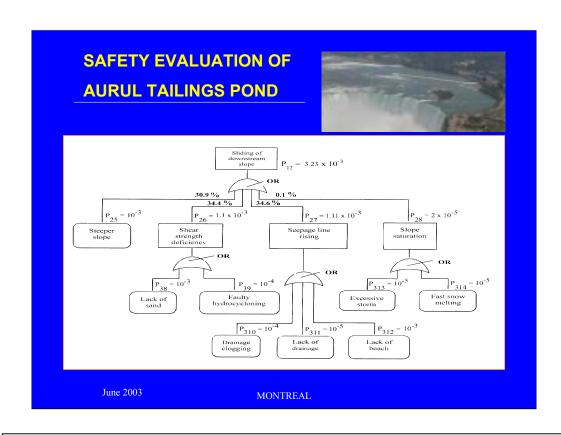
June 2003 MONTREAL

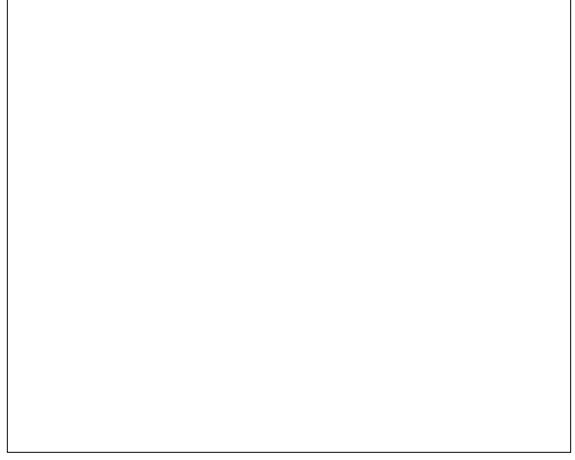

1


June 2003




Prioritization of safety measures established on the basis of criticality index IG:


- performance of a second decant tower was given priority
- effective drainage of the perimeter dike
- close monitoring through an adequate system



Increasing safety measures: ② second penstock; ③ supplementary pump unit with a Diesel engine; ② treatment plant for the decant water, 150 m³/h capacity; ③ direct discharge of 100 m³/h with pipe treatment.

Failure probabilities

Probability of primary events:

cyclical actions - annual probability based on statistic study of annual maximum values

engineering judgment - annual probabilities on the basis of some numerical equivalence

Dam breaching failure probability:

initial

 $P_b = 4.46 \times 10^{-3}$

with safety measures $P_b = 1.412 \times 10^{-3}$

Consequences global quantification

$$C = \beta \Sigma_i CG_i P_{ei} \alpha_i$$

where:

CG; - the gravity index of consequence i;

P_i - the probability of effective emergence of category of consequence i;

α_i - efficiency of the mitigation measures

β - owner's capacity to intervene rapidly for the breach closure.

June 2003

CG Index – gravity consequences

i=1 casualties (C) $CG_1 = 10^6$

i=2 effects on the environment (EE) $CG_2 = 10^6$

i=3 economic loss for the third parties (DTP)

 $CG_3 = 10^3$

i=4 damage to the owner (DD) $CG_4 = 5x10^2$

i=5 effects on the company image (EI) CG₅=10²

June 2003

Risk management considerations

- Risk control is ensured by the imposed safety measures, by monitoring the tailings pond behavior and by complying strictly with the operation regulations.
- The failure probability of 1.4×10^{-4} is in the range of the tolerable limits for earth dams.
- Reduction of more than 3 times of the probable consequences by successive defensive lines is a rare case in the tailings pond field.