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Assumption:   Dredging may be 
necessary but it is not desirable.

• Efficacy Questions

• Ecological Impacts

• Sustainability Questions

Can we treat in situ effectively?



Sediments: System Management 
Factors

• Dynamic System
Δ

 

Solution Transport Rate
Δ

 

Particulate Transport Rate
Contaminant Transport Rate is a Function of Both

Prediction of Contaminant Distribution Difficult
Control of Treatment/Residence Time Difficult

• Mixture of Contaminants
Sink for Multiple Sources
Point and Non-Point → linear source

• Concentration vs Mass Loading (mass flux)
Descrete Receptor-More likely than most media
Do we manage for the media or the receptor?



Redox gradients, flood plain, reversing hydraulic gradient, 
velocity profiles, baseflow, storm flow



Is in situ Biotreatment an Option?

Bioaugmentation: Addition of microbes
• Sediments contain significant native populations
• Challenges: GW-transport, Sediment-dispersal

Biostimulation: Addition of nutrients, electron donor/acceptors
• Relatively organic rich
• Often oxygen limited
• Dispersal issue



Biodegradation Triangle

Ac t iv e M
icroo rganism

s
Re

do
x  

Co
up

le
 

Activity



Reductive Bio-transformations

• Oxygen Limited Conditions
• Fermentation 

– substrate is both oxidized and reduced, (Ethanol, CO2 )
• Anaerobic Oxidation

– Discrete electron donor and acceptor (not O2 )
• Hydrogen is the Energy Currency in Anaerobic Consortial 

Systems
• Applicable to a Wide Variety of Chlorinated Organics 

(PCBs, PCE, PCP, HCB, CT) , inorganics (Nitrate) and 
metals (CrVI).
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How do We Stimulate Reductive 
Biotransformations?

• Hydrogen limiting bio-reactant
• Metabolic Formation

– Complex substrate addition (bio-stimulation)
– HRC

• Direct  Injection
– Low solubility
– Hazardous
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Figure 2.  Bottom: Microbial consortia operating at the surface of corroding iron, 
transferring electrons from removed hydrogen, and reducing sulfate. Top: Microbial 
consortia operating at the surface of metal that is electrolytically generating hydrogen and 
transferring electrons to chlorinated hydrocarbons.
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FIGURE 1. Environmentally benign products production from PCE degradation
and concurrent methane formation with cathodic hydrogen as electron donor
(Ο control;  enrichment only; s  iron B (5 g/L) only;  Δ enrichment + iron B (5
g/L))
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Hydrogen Generation vs. Applied Potential
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Figure 7. Hydrogen production versus applied potential. 

2H+ (aq) + 2e- (induced potential) -> 2H. (surface) <-> H2 (aq)
(Not electrolysis, proton reduction)



Hydrogen Evolution
Experimental conditions: 150 mL water, Na 2SO 4 3500mg/L, headspace
150mL, mild steel electrode, 0.18 g each, diameter 0.83mm, 40mm
long, distance between cathode and anode 40mm, voltage 0.03 V
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Figure 6.  Quantification of evolved hydrogen at a constant applied 
potential of 0.03V



CH 4 Profiles for the Electrode Reversal Test
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Figure 14.  Methane concentration profiles for the systems tested at 0 V, 0.4 V continuous, 
and 0.4 V with reversal.
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Figure 16.  Lane E map showing the anode, cathode, installed monitoring wells 
and physical dimensions.
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Figure 17.  Fallon, NV, pilot test Lane E hydrogen profile on October 29, 1998.
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Figure 19.  Fallon, NV, pilot test Lane E hydrogen profile 
on December 3, 1998.
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Great Eastern 1860’s

Cable laying is a proven technology

Line-Electrode Characteristics:

• Ferrous based
• Maximize surface area
• Nutrient-biomass delivery
• Sample collection

Power Characteristics:

• Low power requirements
• Solar panel
• Battery

• Low Hazard



BioLance Application to Sediments

BioLance Advantages
• In situ application
• Ease of installation
• Low cost installation and 

operation 
• Can be easily applied 

where needed to intercept 
the plume or source

BioLance Disadvantages
• Requires electricity source
• Hydrogen is potentially 

hazardous
• Electrodes may need 

replacement
• There is a lack of 

performance data due: 
ROI, rates

• Attenuation rates may be 
very slow



Summary
• BioLance may be applicable to sediments
• Low cost in situ technology
• Appropriate for ex situ applications also
• Ecologically Benign
• Enhances Native Processes
• Applicable to a variety of bio-reducible 

contaminants

Next Step: Field Trials
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