Overview Of Alcoa's

Enhanced Natural Systems (ENS) Project

A ALCOA 㘠
Mt. Holly, South Carolina
International Applied
Phytotechnologies Conference
Chicago, Illinois
March 3-5, 2003
Presented by:
Kevin Kitzman \&
Scott Courtney

ALCOA, Inc. \&
Walt Eifert
BOUX
Roux Associates, Inc.

Alcoa, Mt. Holly Plant

Alcoa, Mt. Holly Plant

Purpose Of Mt. Holly ENS Pilot Project

- Identify and evaluate passive "green" technologies that can: \checkmark Enhance the stormwater quality in on-site retention ponds;
\checkmark Reduce the quantity of water discharged from stormwater retention ponds;
\checkmark Eliminate process water discharges to the local POTW; and
\checkmark Enhance the quality of stormwater runoff fro

Purpose Of Mt. Holly ENS Pilot Project (continued)

$>$ Demonstrate the viability of using passive technologies at the Mt. Holly Site;
$>$ Demonstrate the cost-effectiveness of ENS
technologies; and
\rightarrow Develop full-scale applications for Alcoa sites world-wide.

Zero Water Program Update

Goal: To develop/test/demonstrate zero water natural treatment systems, technologies, and minimization approaches for Alcoa use worldwide.

Focus on zero water discharge and protection of groundwater through chemical sequestration/degradation.

Partnerships between ATC, Primary Metals, Mt Holly, EHS Services, EHS Science \& Technology

Water Management Current Condition

Alcoa's Zero Water Discharge Conceptual Approach (Process and Storm Waters) Future Condition

Components Of Mt. Holly ENS Project

East Pond Area
 - Constructed Treatment Wetlands (CTW

> Former Spray Field Area

- Phyto Pilot Plot
- Grass Pilot Plot
> Pot Line Courtyard Areas
- Vegetative Filter Strip
- Control Plot

Locations Of Pilot ENS Components

East Pond ENS Pilot

CTW for
Fluoride/Metals Removal

© , BOUx

East Pond CTW Design

Key Design Elements:

$>$ No. Test Cells: 2
> Cell Size (each): 75' x 150' (11,250 ft²)
> Cell Types: Sub-Surface Flow
$>$ Constituents Of Interest: F1, As, A1, Mn, Ni, $\mathbf{Z n}$
> Treatment Sequencing and Removal Mechanisms:

- Cell 1: Fluoride removal via adsorption
- Cell 2: Metals removal via sulfate reduction
/co-precipitation
> Design Flow: 10 gpm (14,400 gpd)
> Water Source: East Pond
> Discharge To: East Pond

Basis For Design

Bench Testing To Evaluate:

\checkmark the effectiveness of experimental media to remove fluoride from stormwater;
\checkmark the effectiveness of spent-mushroom comp as a metals treatment media;
\checkmark design hydraulic retention times;
\checkmark pilot cell sizing requirements; and
\checkmark sequencing requirements.

East Pond Bench Testing Program

East Pond CTW Pilot Layout

Potline Courtyard

Grass Filter Strips

For
Fluoride Removal

© 8005

Potline Courtyard ENS Design

Key Design Elements:

> No. Test Plots: 2

- ENS Plot (3 grass filter strips)
- Control Plot (gravel)
$>$ Plot Size: 750' x 60' (45,000 $\mathbf{f t}^{2}$)
> Vegetation: Buffalo and Bahia Grass
$>$ Water Source: Roof Drainage from Potlin Area
> Constituents Of Interest: Fluoride, Aluminum,
TSS
> Treatment Objective:
- Enhance storm water rund and reduce guantit

Courtyard Vegetated Filter Strips

Vegetated Grass Filter Strip Pilot Plot

ALCOA
BOUX

Sprayfield

Phyto Plots For Water Consumption/Metals Retention

©

Alcoa-Mt. Holly Sprayfield Area \& Process Lagoon

Spray Field Phyto Pilot Plot Design

Key Design Elements:

> No. Test Plots: 2
$>$ Plot Size (each): 258' x 225' (58,000 $\mathbf{f t}^{2}$)
$>$ Vegetation:

- Plot 1: Tree/Grass Mix •Plot 2: Grass
$>$ Irrigation Water: Retrofit of Existing Lagoon System
> Preliminary Application Rate
- 16,000 gpd/plot
$>$ Constituents Of Interest (COIs):F1, Cu, Mn, y'
$>$ Treatment Mechanisms:
- Consumptive water use through ET
- COIs are retained in root zone

Spray Field Phyto Plot Layout

PLAN VIW OF EOSTMG EPAYY FEID AREA

DTGAED PLM YTV OF gPAY RTD PIOT PLOT

Sprayfield Phytotechnology Pilot Plots

Basis For Design

Rooting Test Experiments To Determine:

\checkmark the ability of site soils to support and sustain
a viable vegetative community;
\checkmark bapurachpriate tree and grass species to at the site; and
\checkmark the form and amount of soil supplements speqiained to support the sele

©
 ROUX

Spray Field Phytotechnology (Tree) Plot Cross Section

1-year old hybrid cultivar poles Irrigation spray head


```
% % %
```

y 5 - x

$0 \mathrm{c}=$

Projected ENS Benefits

Cost Advantages:

\checkmark Cost savings of 50-80\% can be realized in capital investment stage; and
\checkmark Cost savings exceeding 90% are typical in the operation \mathbb{E} maintenance stage.
$>$ Other Advantages Include:
\checkmark Simplicity of operation and maintenance;
\checkmark Tolerance to wide Eluctuations in hydraulic and constituent loading rates; and
\checkmark Aesthetic attributes.

The Far Side

"Well, actually, Doreen, I rather resent being called a 'swamp thing.'
...I prefer the term 'wetlands-challenged mutant." ${ }^{\prime \prime}$

