Cadmium Phytoextraction by Woody Plants

Nicholas M. Dickinson Christopher J. French

U.S. EPA International Applied Phytotechnologies Conference: Chicago March 4, 2003

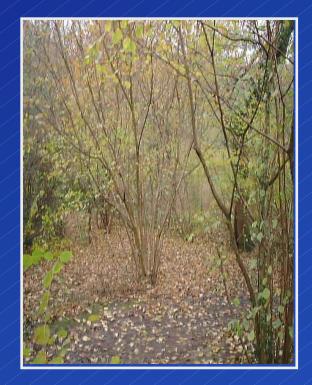
• Clean-up using trees: does it work?

Phytoremediation

phytoextraction phytostabilization

Cadmium in soil

Cadmium


• One of the heavy metals of most concern due to:

high solubility – high mobility – high toxicity
ubiquitous in urban environments

- Soluble low-molecular weight chelates formed in soil solution
- Absorbed and translocated freely. Accumulates in plants with little discernible effect

Woody plants

- May be a useful application for phytotechnology
 - few hyperaccumulator options
 - may be suitable in urban situations

Salix (willows and osiers)

- High potential for phytoremediation
 - S. viminalis and other biomass clones
 - *S. caprea / S. cineria* naturally colonise contaminated soils
 - Many hybrids exist naturally
 - Agronomy and harvesting are well established

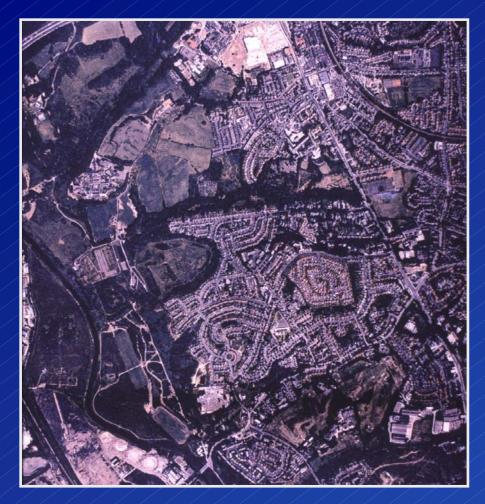
Short-Rotation Coppice

Propagation

Short-Rotation Coppice

Short-Rotation Coppice

Merseyside


North-West England

"... arguably the first region to pollute the environment on a structured, grand, even imperial scale in the desire for economic growth and development"

Lord Thomas of Macclesfield

Brownfield Land

1.4 M sites in W. Europe300,000 sites in UK

60% of UK's brownfield sites are in N.W. England

Urban Renaissance

Former landfill and industrial waste site

Cromdale Grove, St. Helens, Merseyside

Community Forestry

Creating **Community Woodlands** on Closed Landfill Sites

Assessing the Potential for Community Woodland for Sites Disturbed by Landfilling.

Project Undertaken by The Mersey Forest and Red Rose Forest Partnerships Funded by English Partnerships and The Forestry Commission Environmentally- friendly Ecologically-sound Low- cost

• Clean-up using trees: does it work?

Hydroponics screening

Salix

Tolerance Indices

Salix	Cd (1.0 mg l ⁻¹)
caprea	265
x calodendron	140
fragilis	128
pentandra	212
nigricans	137
phylicifolia	401
triandra	102
viminalis	66
purpurea	62
caprea	61

Cd uptake

Hydroponics

- Uptake may vary by a factor of 80 after 20 days (in different *Salix* clones)
- Stem concentrations up to 100 μg g⁻¹ from 1μM solution

Pot experiments

- Stem concentrations of 76 µg g⁻¹
- 30% of bioavailable Cd removed in 90 days

(Sweden, UK, Switzerland)

Extrapolation to field

Theoretically...

- 15 t ha⁻¹ yield
- Tissue concentration of 100 mg Cd kg⁻¹
- Would reduce soil concentration (0-10 cm) from 12 to 3 mg Cd kg⁻¹ in about 24 years

Field evidence

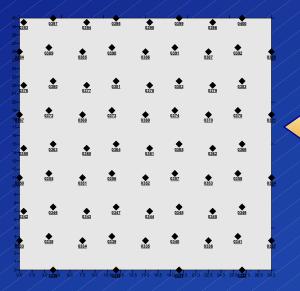
• Hydroponics and field data are not correlated for Cd (Pulford, UK)

4 x higher uptake in *Salix* that *Alnus*, *Fraxinus*, *Sorbus*Bioconcentration of 1.42 (foliage) and 1.12 (stems) of total soil Cd

(Keller, Switzerland)

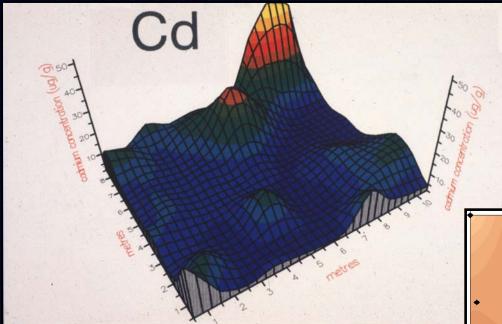
Field evidence

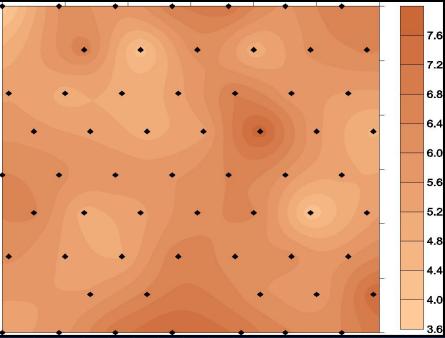
In relation to EDTA-extractable Cd:


- Stem bioconcentration up to X 8 in S. x calodendron
- Foliar bioconcentration = $\mathbf{X} \ 20$
- Stem yields 8 12 t ha⁻¹.
- <u>But</u> tissue concentrations generally $< 15 \ \mu g \ g^{-1}$

(Liverpool)

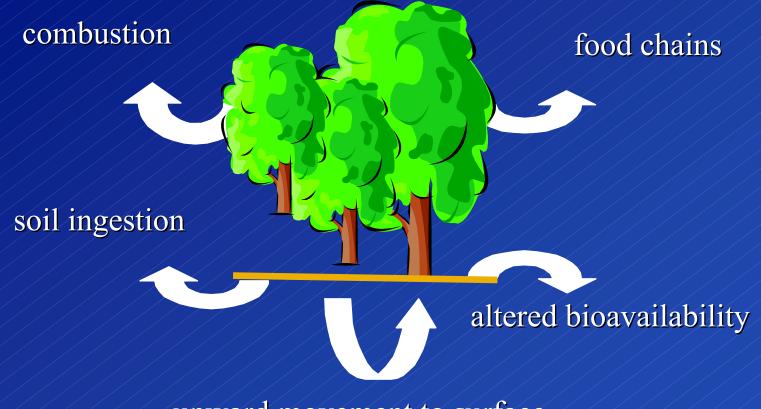
Field Trials


- Tree plots established 1997 and 1999
- Variable sources and ranges of contamination (e.g. landfill, industrial waste, sewage sludge)
- Cd and other contaminants mapped



Hotspots

Hotspots


- Spatial dispersion of metal is seldom well defined at brownfield sites.
- Need for better targeting of hotspots.

• Identification of stable genetic traits is still at early stage

- Cd availability in soil depends on chemical equilibrium that is affected by:
 - Soils adsorption
 - Root exudates chelation, reduction
 - Mycorrhizae / earthworms

upward movement to surface

Conclusions

• Clean-up using trees: does it work?

Conclusions

Woody plants may help to clean-up industrially-contaminated sites, but

• this is not yet a proven technology

• field demonstration is required

Acknowledgements

http://www.livjm.ac.uk/brownfield

