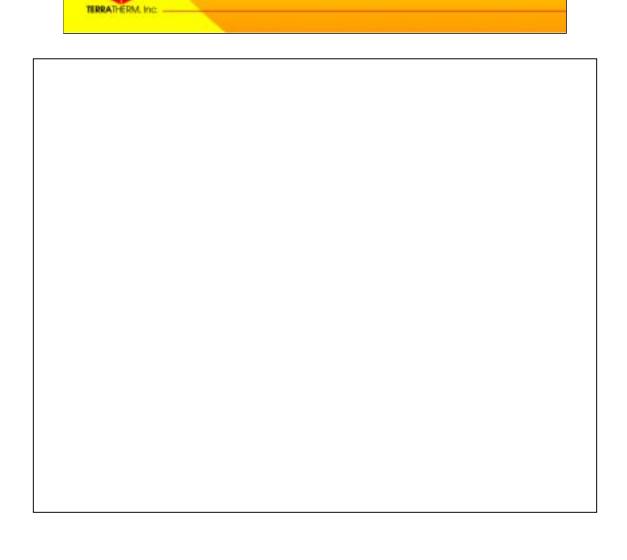
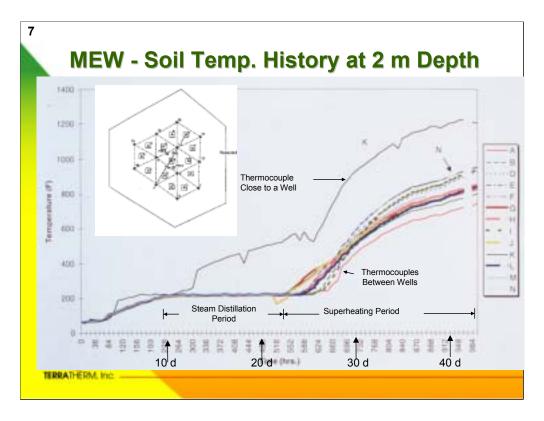


Missouri Electric Works (MEW) 12-Well ISTD Demo

Superfund site in Cape Girardeau, MO

PCBs (Aroclor 1260)


Boiling Point: 730 - 780 °F


Depth of contamination: 10 ft.

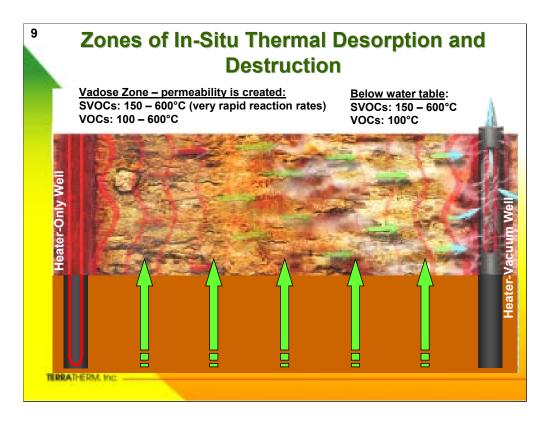
Soil Type: Clay

Maximum Concentration: 20,000 mg/kg (⇒NAPL)

Results - MEW, Cape Girardeau, MO

PCBs reduced from mean of 782 mg/kg (n = 92), to mean of <0.033 mg/kg (n = 83)

Treatment temperatures and results demonstrate 100% sweep efficiency


Stack testing showed 99.999998% DRE

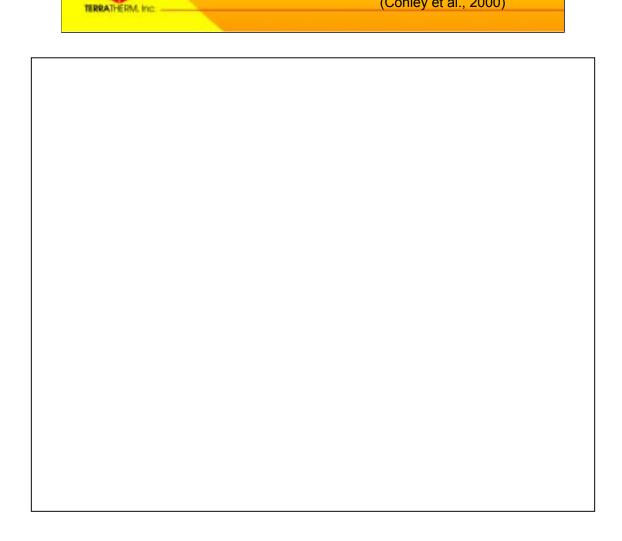
No evidence of contaminant migration

Dioxins in treated soil below background level (< 6 ppt)

TERRATHERM. Inc.

ISTD at Eugene, OR (cont.)

Diesel Range Organics (DRO), gasoline and benzene:


- in soil and groundwater to depths up to 12 feet bgs;
- maximum soil concentrations of 9,300 mg/kg (DRO), 3,500 mg/kg (gasoline); and in groundwater, 1,300 μg/l (benzene);
- ◆ as much as 7.9 ft of free product in monitoring wells.

Gravel layer 1-4', over silt to ~11-16' bgs.

Perched groundwater encountered in the unconfined top gravel and silt layers.

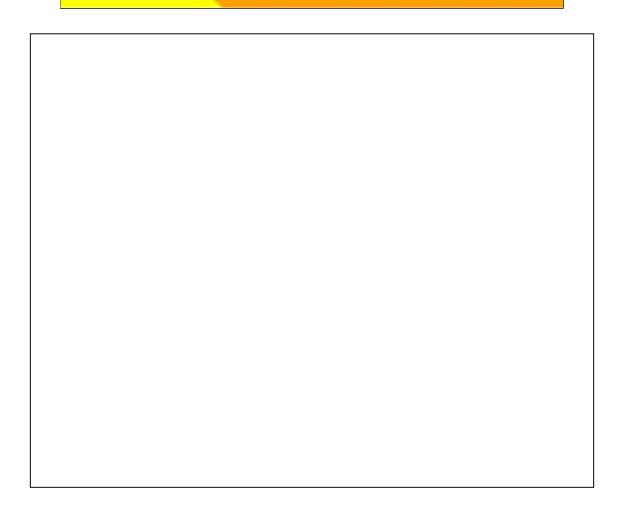
Project goal was removal of free product and benzene, and closure of the site under RBCA UST program with Oregon DEQ.

(Conley et al., 2000)

TERRATHERM. Inc.

Eugene, OR ISTD Project Results

Free phase LNAPL removed from the entire 1-acre site.


Estimated 200,000 lbs of hydrocarbons removed and treated during the 120-day heating cycle.

All confirmation (post-remediation) soil and groundwater samples were below the ODEQ's Tier 1 Risk-Based Concentrations:

- ♦ Benzene concentrations in groundwater within the treatment area were reduced from 1,300 µg/L to ≤2.50 µg/L.
- All post-treatment off-site groundwater samples (4 quarterly rounds) were below the analytical detection limit (i.e., <0.5 μg/L).

Oregon DEQ issued a "No Further Action" letter for the site on March 14, 2000

◆ Closure 2 ½ yr after startup (incl. 1-yr post-treatment monitoring).

13

ISTD at Former Molded Plastics Manufacturing Facility, Portland, IN

7500 sq.ft. x 18 ft = 5000 CY Treatment Zone

PCE as high as 3,500 mg/kg

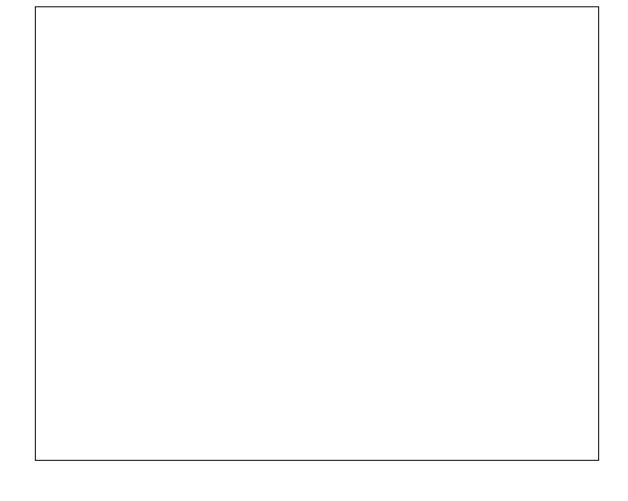
◆ IDEM Voluntary Tier II industrial cleanup goal (< 8.01 mg/kg for depths > 2 ft)

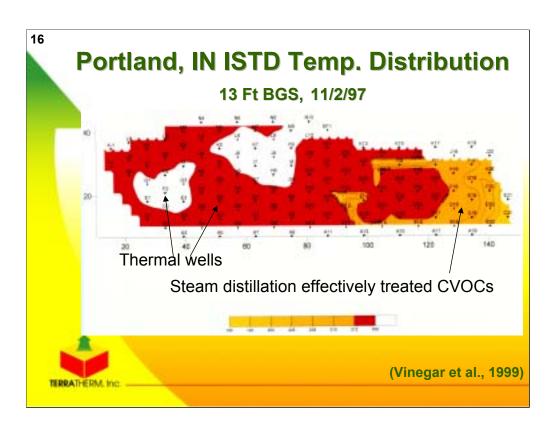
TCE as high as 79 mg/kg

♦ IDEM cleanup goal < 25 mg/kg

Silty-Clay Soil (Till), < 2.5 x 10-8 cm/s

Water Table at 22 ft BGS


15							
	Portland,	IN S	Site	Closure	bv	IDEM.	2000
				Action Su		-	
	• •	01110	vai z	totion ou	• • • • • •	iai y .	


Location	Depth	Pre-Heating	Post-Heating
	(feet)	(mg/kg)	(mg/kg)
SA4	4 to 5	PCE = 23	PCE = 0.530
		TCE = 0.25	TCE = ND
SB20	4 to 5	PCE = 2.9	PCE = 0.046
		TCE = 0.67	TCE = ND
SA13	9 to 10	PCE = 3500	PCE = 0.011
		TCE = 79	TCE = 0.020
SB19	12 to 14	PCE = 76	PCE = 0.048
CS12*		TCE = 1.6	TCE = ND
GP31	15 to 16	PCE = 570	PCE = 0.18
		TCE = NA	TCE = 0.008

ND – non-detect; NA – not available; *8 ft away from SB19

TERRATHERM. Inc.

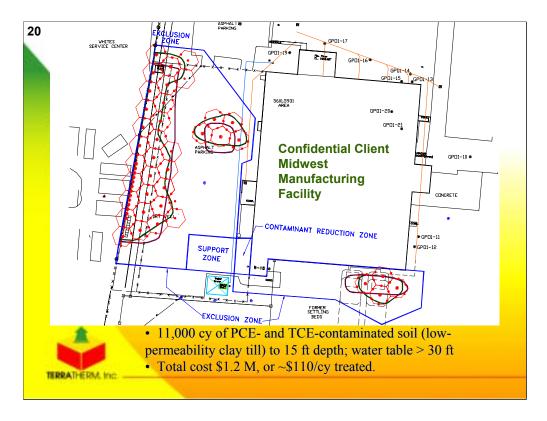
(Vinegar et al., 1999)

Summary of Completed Thermal Conduction/ISTD Field Projects			
Location	Contaminant	Initial Max. Concentration (ppm)	Final Concentration (ppm)
S. Glens Falls, NY	PCB 1248/1254	5,000	< 0.8
Cape Girardeau, MO	PCB 1260	20,000	< 0.033
Vallejo, CA	PCB 1254/1260	2,200	< 0.033
Portland, IN	PCE	3,500	< 0.5
	TCE	79	< 0.02
Saipan, NMI	PCB 1254/1260	10,000	< 1
Eugene, OR	Benzene Gasoline/Diesel	3.3 3,500/9,300 + free product	< 0.044 250,000 lbs. free product removed
Ferndale, CA	PCB 1254	800	< 0.17

(Stegemeier and Vinegar, 2001)


TERRATHERM. Inc. -


Current ISTD Projects

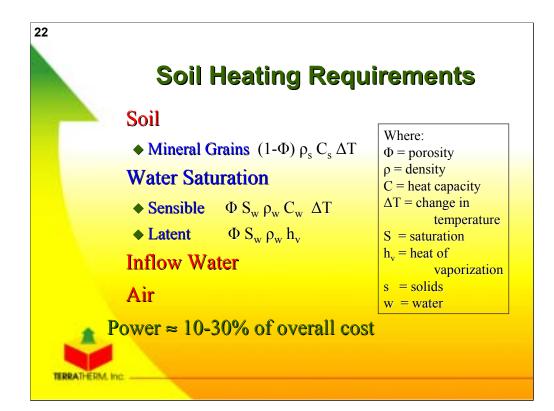

Southern California Edison, Alhambra, CA – Former Pole Yard (*PAHs*, *PCP*, *dioxins*); 15,000 CY silty sand to 100 ft depth; clean-up goals: < 0.033 mg/kg B(a)P TEQ and < 1 µg/kg TCDD TEQ; May 2002 – Dec. 2003

Confidential Site, OH – Active Manufacturing Facility (CVOCs); 11,000 CY clay till to 15 ft depth; clean-up goal: 1 mg/kg TCE; July 2002 – June 2003

Confidential Client, CA – Former Manufacturing Facility (CVOCs); Thermally-enhanced dual-phase extraction; 8,000 CY silty-clay soil, above and below water table, to 37 ft depth; clean-up goal: 1 mg/kg DCE; Sept. 2002 – Aug. 2003

TerraTherm's Approach for Chlorinated Solvents Sites

Employ Wider (e.g., 30 to 40-ft diameter) Well Patterns


Attain Steam Distillation Target Temperatures between Thermal Wells

Create Vapor Plenums to Enhance Vapor Collection, and Hot Floors (U.S. Patent No. 5,997,214) to Prevent Downward Migration of DNAPL

Simplify Off-Gas Treatment System:

- ◆ Condenser (if needed);
- ◆ No Oxidizer needed;
- ◆ Dry Scrubber and Carbon Adsorbers.

ISTD Heating Requirements: Past and Present

Traditional Approach for SVOCs – boil off all water (latent heat of vaporization)

Traditional Approach for CVOCs – assume boil 1 pore volume (to offer guaranteed results)

Recent Work Suggests Less Power may be Sufficient

Thermal Conduction Heating is As Efficient as Other In-Situ Thermal Heating Methods

ISTD Price Range

PCBs, PAHs, Dioxins

- ◆ ~\$600/cy for small sites (1000 cy)
- ◆ ~\$100/cy for large sites (100,000 cy)

BTEX, VOCs

- ◆ ~\$170/cy for small sites (3000 cy)
- ◆ ~\$60/cy for large sites (100,000 cy)

Price considerations incl.: site access, air discharge limits, need to control recharge, electricity costs, depth of heating zone/length of heaters, regulatory oversight

TERRATHERM. Inc.

Attributes of ISTD

Widest heating range of any in situ thermal technology
— effective at sites with DNAPL, LNAPL, mixtures

Can clean to very low/non-detect residual levels in situ

Typically achieves >95% in-situ destruction of contaminants ⇒ less loading to aboveground treatment

Past ISTD projects have all had emissions of <0.005 ng TEQ/dscm; no evidence of dioxin formation.

Minimal risk of mobilization due to application of vacuum and predictable heating

TERRATHERM, Inc.

Attributes of ISTD, cont.

Process is not hindered by subsurface heterogeneity

- ♦ Gas permeabilities range over many orders of magnitude
- ♦ Electrical conductivities range over 1-2 orders of magnitude
- Thermal conductivities range only by factor of ± 2

100% Sweep - Highly Predictable and Reliable

Can be rapid (e.g., 2-3 months operation)

Safe, quiet, odorless (perfect safety record)

Cost-Effective

About TerraTherm, Inc.

Exclusive licensee of ISTD technology:

- ◆ Within the U.S., from the Univ. of Texas at Austin: Protected by 20 U.S. patents, + patents pending
- ◆ Outside the U.S., from Shell Oil Co.: Protected by 5 patents pending

Offices in Fitchburg, MA and Houston, TX

◆ Currently 20 Employees

For more information, please visit www.terratherm.com

References Cited

Conley, D.M., and C.M. Lonie. 2000. "Field Scale Implementation of In Situ Thermal Desorption Thermal Well Technology." pp. 175-182. In: G.D. Wickramanayake and A.R. Gavaskar (eds.) *Physical and Thermal Technologies: Remediation of Chlorinated and Recalcitrant Compounds*. Battelle Press, Columbus, OH.

France–Isetts, P. 1998. "In Situ Thermal Blankets and Wells for PCB Removal in Tight Clay Soils," *Tech Trends*, EPA Region 7. (February, 1998). Available at: http://cluin.org/products/newsltrs/TTREND/tt0298.htm

Stegemeier, G.L., and Vinegar, H.J. 2001. "Thermal Conduction Heating for In-Situ Thermal Desorption of Soils." Ch. 4.6-1 in: Chang H. Oh (ed.), *Hazardous and Radioactive Waste Treatment Technologies Handbook*, CRC Press, Boca Raton, FL.

TERRATHERM, Inc. -

References Cited (continued)

Vinegar, H.J., E.P. deRouffignac, R.L. Rosen, G.L Stegemeier, M.M. Bonn, D.M. Conley, S.H. Phillips, J.M Hirsch, F.G. Carl, J.R. Steed, D.H. Arrington, P.T. Brunette, W.M. Mueller, and T.E. Siedhoff. 1997. "In Situ Thermal Desorption (ISTD) of PCBs", *Proceedings of the HazWaste/World Superfund XVIII Conference*, Washington, DC, December 2, 1997

Vinegar, H.J., G.L. Stegemeier, F.G. Carl, J.D. Stevenson, and R.J. Dudley. 1999. "In Situ Thermal Desorption of Soils Impacted with Chlorinated Solvents." *Proceedings of the Annual Meetings of the Air and Waste Management Association*, Paper No. 99-450.

