This document was prepared by Sean M. Cook, a National Network for Environmental Management Studies (NNEMS) grantee under a fellowship from the U.S. Environmental Protection Agency. The main focus of this paper is discussing the use of zero-valent iron nanoparticles. Due to its unique properties, this manufactured nanoparticle is able to effectively eliminate or neutralize certain recalcitrant pollutants that can be found in aquatic environments (e.g., groundwater aquifers). Nanoscale zero-valent iron (NZVI) particles are typically 5-40 nm sized Fe0/Fe-oxide particles that rapidly transform many environmental contaminants to benign products and are a promising in situ remediation agent. Due to their small size and increased reactivity, these manufactured nanoparticles have the potential to be more effective than the microscale ZVI that is already in use for contaminant remediation in soil and groundwater aquifers. However, little is known about the environmental fate of these nanomaterials once they have undergone biological and non-biological processes within a contaminated aquifer. For this reason, it is important to find out what the possible impacts of these nanomaterials are once they enter the environment and how they could potentially affect human health or the environment. Despite these concerns, NZVI technology and its application are a very promising, efficient and cost-effective method for remediating contaminated soil and groundwater aquifer sites. |