U.S. EPA Contaminated Site Cleanup Information (CLU-IN)

U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

For more information on Per- and Polyfluoroalkyl Substance (PFAS) Remediation, please contact:

Michael Adam
Technology Integration and Information Branch

PH: (703) 603-9915 | Email: adam.michael@epa.gov

Per- and Polyfluoroalkyl Substances (PFASs)

Site Characterization and Analytical Methods

The universe of PFASs is large and contains chemicals whose different chemical properties mean that analytical and characterization techniques developed for some of these chemicals may not apply to all chemicals in the PFAS universe. The physical and chemical properties of PFASs can vary. Depending on the analytes of interest, one may need to consider whether chemicals are volatile.

Careful attention to the contamination potential for commonly used products and materials to affect the PFAS in a sample and avoidance of suspect materials may help to protect sample integrity. EPA Method 537 (Shoemaker et al. 2009), for example, points out that "contamination during sampling can occur from a number of common sources, such as food packaging and certain foods and beverages. Proper hand washing and wearing nitrile gloves will aid in minimizing this type of accidental contamination of the samples." Other considerations include selecting appropriate containers and equipment to prevent either PFAS loss through adsorption, or sample contamination through contact with PFAS-containing materials. Investigation of detection and collection equipment and sample handling materials may reveal components with the potential to affect sample integrity, such as Teflon tubing. More detail on these issues is found in the sections below.

Jump to a Subsection
Site Characterization | Analytical Methods

Site Characterization

The characterization of sites to determine the presence and extent of PFAS compounds may involve water, soil, and sediment samples. Surface water and groundwater samples are important to understand the extent and degree of PFAS contamination. Surface soil samples may be important because some PFAS products such as aqueous film-forming foams (AFFF) are applied to soils in open areas or run off onto surrounding soil during use. In addition atmospheric deposition of PFASs near manufacturing and processing facilities can serve as the source of surface water and groundwater contamination (Rumsby et al. 2009; Dickenson and Higgins 2016). Subsurface soil samples could be important for locating regions of high PFAS concentration that may serve as long-term sources for groundwater contamination. Likewise, sediment and sediment pore water samples may be considered where groundwater discharge to surface water is possible.

Because of the low detection limits usually called for in a PFAS site investigation (ng/L or ng/kg) and the presence of PFASs in many products used in environmental work, the potential exists for the presence of certain commonly used materials on site or in equipment employed during the investigation to introduce sample contamination. Preserving sample integrity thus may require a careful evaluation of ordinary supplies and practices, followed by determination of materials and activities to avoid or prohibit on site. DON (2015), Chiang et al. (2016), and GWA (2017) detail potential issues associated with commonly used products and equipment and offer numerous recommendations for exceptions to general practice, as indicated by the examples listed below of accidental sources of sample contamination.

Clothing, food, and personal care products:

  • New clothing, water/stain resistant articles (e.g., raincoats, Tyvek®), treated boots (waterproofed), clothing laundered with fabric softener.
  • Fast food wrappers and containers, pre-wrapped foods and snacks (potato chips, candy, energy bars).
  • Cosmetics, moisturizers, hand cream, lotions, sun screen, insect repellent.

Groundwater drilling and well development practices, supplies, and equipment:

  • Well casing/screen construction material.
  • Detergent used for decontamination.
  • Personal protective equipment (boots, coveralls).
  • Equipment that will be in contact with groundwater (surge blocks/bailers, downhole pumps, tubing, electronic water level gauges, etc.).
  • Aluminum foil, waterproof paper notebooks and labels, self-sticking notes.

Conventional soil drilling and aquatic sampling (surface water and sediment) supplies:

  • Detergent used for decontamination.
  • Personal protective equipment (boots, coveralls).
  • Core sampler lining.
  • Sampling device or container to collect surface water samples.

Conventional sample handling and processing supplies:

  • Sample container and lid construction material.
  • Reusable chemical or gel ice packs.
  • Permanent markers and marker pens for container labeling.
  • Glove construction material.

In addition, PFASs may sorb to materials used in sampling (Obal et al. 2012). The effect on sample concentrations may be mitigated by: careful selection and prescreening of sampling materials; documentation and use of appropriate sampling procedures; and collection of appropriate control samples during field activities.

Site Characterization Introduction References:

Chiang, D., et al. 2016. PFAS Sampling: Technical Training for Waste Site Cleanup Professionals.Adobe PDF Logo Northeast Waste Management Officials' Association (NEWMOA).

Dickenson, E.R.V. and C. Higgins. 2016. Treatment Mitigation Strategies for Poly- and Perfluoroalkyl Substances.Adobe PDF Logo Water Research Foundation, Web Report #4322.

DON (Department of the Navy). 2015. Field sampling protocols to avoid cross-contamination during water sampling for perfluorinated compounds (PFCs). Testing for Perfluorochemicals in Drinking Water, Memorandum Ser M3B7/15UM30462.Adobe PDF Logo PDF pages 17-20.

GWA (Government of Western Australia). 2017. Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS): Contaminated Sites Guidelines.Adobe PDF Logo Department of Environment Regulation, Perth.

Obal, T. et al. 2012. Aqueous sample stability: PFOS, PFOA and other fluorinated compounds. REMTECH 2012: The Remediation Technologies Symposium, Banff, AB, Canada, 17-19 Oct 2012. Environmental Services Association of Alberta, Edmonton, AB, 24 slides.

Rumsby, P.C., C.L. McLaughlin, and T. Hall. 2009. Perfluorooctane sulphonate and perfluorooctanoic acid in drinking and environmental waters. Philosophical Transactions of the Royal Society A 367(1904):4119-4136.

Top of Page

General Sampling Guidance

Evaluating PFAS Cross Contamination Issues
Bartlett, S.A. and K.L. David.
Remediation Journal 28(2):53-57(2018) [Open Access]

The suggested conservative approach to PFAS sampling to avoid cross-contamination issues includes an evaluation of three insect repellent products to determine their suitability for use during PFAS investigation.

Field Equipment Cleaning and Decontamination at the FEC
U.S. EPA Region 4, Science and Ecosystems Support Division, Athens, GA.
SESDPROC-206-R3, 23 pp, 2015

Section 4 (pages 11-12) describes equipment used for sample collection for PFC analyses and addresses appropriate containers for decontamination solutions and equipment decontamination procedure.

Adobe PDF LogoInterim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS): Contaminated Sites Guidelines
Government of Western Australia, Dept. of Environment Regulation, Perth. 29 pp, 2017

Appendix 1, "PFAS-specific Sample Collection Methods, Equipment, and Equipment Decontamination Methods," provides warnings and recommendations for PFAS characterization activities.

Interim Perfluorinated Compounds (PFCs) Guidance/Frequently Asked Questions
Naval Facilities Engineering Command, Ser 14014/EV3-KB, 19 pp, 2015

Basic information is given on site characterization methodology, including NAVFAC recommendations on sampling.

Site Characterization Considerations, Sampling Precautions, and Laboratory Analytical Methods
Interstate Technology and Regulatory Council (ITRC), 9 pp, 2018

The unique chemical characteristics, uses, and transport mechanisms of PFAS to consider when characterizing a contaminated site are discussed in this fact sheet.

Air Sampling

Screening for PFOS and PFOA in European Air Using Passive Samplers
Chaemfa, C., J. Barber, S. Huber, K. Breivikc, and K. Jones.
Journal of Environmental Monitoring 12(5):1100-1109(2010) [Abstract]

Results are reported of using polyurethane foam-based passive air samplers (PUF-PASs) to sample ionic PFASs.

Aqueous Sampling

Adobe PDF LogoDetermination of Perfluoroalkyl Compounds in Water, Sediment, and Biota
Ahrens, L., K. Vorkamp, P. Lepom, et al.
International Council for the Exploration of the Sea, ICES Techniques in Marine Environmental Sciences No. 48, 16 pp, 2010

An overview of environmentally relevant PFCs is followed by information on techniques for their analysis in samples of water, sediment, and biota, including sampling, pretreatment, extraction, cleanup, instrumental analysis, quantification and quality assurance, and quality control.

Passive Sampling of Perfluorinated Chemicals in Water: In-Situ Calibration
Kaserzon, S., D. Hawker, K. Booij, D. O'Brien, K. Kennedy, E. Vermeirssen, and J.F. Mueller.
Environmental Pollution 186:98-103(2014) [Abstract]

A passive modified polar organic chemical integrative sampler (POCIS) was employed to sample PFASs in surface water.

Adobe PDF LogoPFAS Analysis in Water for the Global Monitoring Plan of the Stockholm Convention: Set-Up and Guidelines for Monitoring
Weiss, J., J. de Boer, U. Berger, D. Muir, et al.
United Nations Environment Programme (UNEP), Division of Technology, Industry and Economics, 35 pp, 2015

Chapter 4 addresses sampling considerations and guidelines, and Chapter 5 covers analysis, primarily for PFOS.

Spatial, Phase, and Temporal Distributions of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Tokyo Bay, Japan
Sakurai, T., S. Serizawa, T. Isobe, et al.
Environmental Science & Technology 44(11):4110-4115. 2010. [Abstract]

An investigation was conducted of the behavior of PFOS and PFOA in seawater, especially with regard to stratification and how this affects sampling strategies.

Isomer Profiling

Adobe PDF LogoIsomer Profiling of Perfluorinated Substances as a Tool for Source Tracking: A Review of Early Findings and Future Applications
Benskin, J.P., A.O. De Silva, and J.W. Martin.
Reviews of Environmental Contamination and Toxicology 208, P. de Voogt (ed.).
Springer Science, ISBN: 978-1-4419-6880-7_2:111-160(2010)

A particular focus in this chapter is the measurement and interpretation of isomer signatures in the environment to gain new knowledge on emission sources, differentiate between historical versus current exposure sources, or identify direct versus indirect pathways of exposure for humans and wildlife.

Sample Containers

Adobe PDF LogoAqueous Sample Stability: PFOS, PFOA and Other Fluorinated Compounds
Obal, T., A. Robinson, and S.C. Chia.
REMTECH 2012: The Remediation Technologies Symposium, Banff, AB, Canada, 17-19 Oct 2012.
Environmental Services Association of Alberta, Edmonton, AB, 24 slides, 2012

A study to assess preferential adsorption of PFOS, PFOA, and other PFCs in aqueous samples by sample container type reports observed differences in the degree of adsorption and the rate at which adsorption occurs under different sample conditions and in diverse container materials (polypropylene, glass, HDPE, stainless steel). New approaches are recommended to minimize adsorptive effects in aqueous environmental PFC samples.

Bottle Selection and Other Sampling Considerations When Sampling for Per- And Poly-Fluoroalkyl Substances (PFAS) - Revision 1.2
DoD Environmental Data Quality Workgroup, 2 pp, 2017

During sample collection, the use of products that contain PFASs could contaminate the samples. To prevent accidental contamination, this fact sheet identifies materials to use and materials to avoid.

Site Characterization Studies

Adobe PDF LogoRemedial Investigation Report: Phase 2 Fluorochemical (FC) Data Assessment Report for the Cottage Grove, MN Site
3M Company, 166 pp, June 2007

An overview is presented by media and area of the findings of the Cottage Grove Site Phase 1 and 2 FC assessments to provide focus on areas of interest for further evaluation as part of the FS process.

Adobe PDF LogoStatement of Basis: DuPont Washington Works, Washington, West Virginia
West Virginia Department of Environmental Protection (WVDEP), 28 pp, 2015

This Statement of Basis highlights key [characterization] information relied upon by the WVDEP in making its proposed cleanup decision for PFAS contamination at the DuPont Washington Works.

Top of Page

Analytical Methods

EPA Method 537 is a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for determining selected perfluorinated alkyl acids (PFAAs) in drinking water (Shoemaker et al. 2009). Additional work has been completed to adapt methods for sewage sludge and biosolids (USEPA 2011) and soil and sediments (Washington et al. 2014). However, Method 537 does not cover all the potential PFAS chemicals that could be present at contaminated sites.

Many PFAS chemicals cannot be analyzed readily due to the lack of appropriate reference materials (Martin et al. 2004; Pancras et al. 2016; Buechler 2016). Additionally, the mixture of linear and branched isomers presents challenges in providing an accurate quantification of many PFASs in environmental matrices (Martin et al. 2004; Buck et al. 2011). EPA Method 537 only calls for the use of branched and linear isomers if standards are available.

There are efforts to develop a total organic fluorine analysis method to detect all the PFAS compounds beyond those in EPA Method 537 (Trojanowicz and Koc 2013). One such method, the total oxidizable precursor (TOP) assay, involves converting all oxidizable PFAS compounds to PFAAs, which can then be detected by a method measuring PFAAs (Houtz and Sedlak 2012). However, it should be noted that this is still limited to what can be oxidized by the method and the limited number of PFAA chemicals in the analytical method. Another method uses particle-induced gamma ray emission (PIGE) to quantify the total amount of fluorine present in a sample (Lang et al. 2016).

An in situ analytical device is under development that utilizes an ion-selective electrode with fluorous anion-exchanger membrane to detect PFOA and PFOS (Chen et al. 2013). Although the detection limits reported were greater than the current drinking water advisory of 70 ppt, this device may serve a role in screening water samples for higher PFOA and PFOS concentrations. As of December 2016 it has not been commercialized.

The presence of certain materials can have an adverse effect on PFAS analytical results. Ahrens et al. (2010) cautions that every material that comes into contact with the sample must be free of fluorinated compounds. Understanding the analytical implications of factors such as PFAS adsorption to surfaces (e.g., containers, filters, tubing), effects of differing matrices, varying PFAS isomer response factors, potential bias effects of sampling, and sample preparation is critical to measuring highly fluorinated compounds at trace levels. These issues and the potential interferences can affect analytical results significantly (Berger et al. 2011).

Research is ongoing for some of these issues, such as the influence of the sample matrix and container type on PFAS loss from the sample. Berger et al. (2011) and Obal et al. (2012) examined the potential effect of sample container material on the recovery of individual PFASs. The Obal et al. (2012) study also found a relationship between PFAS recovery and whether the sample container was partially or completely full.

For discussions of different analytical approaches see Trojanowicz and Koc (2013) and Pancras et al. (2016), including methods under development, such as adsorbable organic fluorinated compounds and total organic fluorine.

Analytical Methods Introduction References:

Ahrens, L., K. Vorkamp, P. Lepom, et al. 2010. Determination of Perfluoroalkyl Compounds in Water, Sediment, and Biota.Adobe PDF Logo International Council for the Exploration of the Sea, ICES Techniques in Marine Environmental Sciences No. 48, 16 pp.

Berger, U., M.A. Kaiser, A. Kaerrman, et al. 2011. Recent developments in trace analysis of poly- and perfluoroalkyl substances. Analytical and Bioanalytical Chemistry 400(6):1625-1635. [Abstract]

Buck, R.C., et al. 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integrated Environmental Assessment & Management 7(4):513-541.

Buechler, K. 2016. The analysis of polyfluorinated alkyl substances (PFAS) including PFOS and PFOA. DoD Environmental Monitoring & Data Quality Workshop, April 2016, 25 slides.

Chen, L.D., et al. 2013. Fluorous membrane ion-selective electrodes for perfluorinated surfactants: Trace-level detection and in situ monitoring of adsorption. Analytical Chemistry 85(15):7471-7477.

Houtz, E.F. and D.L. Sedlak. 2012. Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. Environmental Science & Technology 46(17):9342-9349. [Abstract]

Lang, J.R., et al. 2016. Release of per- and polyfluoroalkyl substances (PFASs) from carpet and clothing in model anaerobic landfill reactors. Environmental Science & Technology 50(10):5024-5032. [Abstract]

Martin, J.W., et al. 2004. Peer reviewed: Analytical challenges hamper perfluoroalkyl research. Environmental Science & Technology 38(13):248A-255A.

Obal, T., A. Robinson, and S.C. Chia. 2012. Aqueous sample stability: PFOS, PFOA and other fluorinated compounds.Adobe PDF Logo REMTECH 2012: The Remediation Technologies Symposium, Banff, AB, Canada, 17-19 Oct 2012. Environmental Services Association of Alberta, Edmonton, AB, 24 slides.

Pancras, T., G. Schrauwen, T. Held, K. Baker, I. Ross, and H. Slenders. 2016. Environmental Fate and Effects of Poly and Perfluoroalkyl Substances (PFAS).Adobe PDF Logo Concawe, Report No. 8/16, 121 pp.

Shoemaker, J.A., et al. 2009. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS).Adobe PDF Logo USEPA Method 537, Rev 1.1, EPA 600-R-08-092, 50 pp.

Trojanowicz, M. and M. Koc. 2013. Recent developments in methods for analysis of perfluorinated persistent pollutants. Mikrochimica Acta 180(11-12):957-971.

USEPA. 2011. Draft Procedure for Analysis of Perfluorinated Carboxylic Acids and Sulfonic Acids in Sewage Sludge and Biosolids by HPLC/MS/MS.Adobe PDF Logo Office of Water. EPA 821-R-11-007.

Washington, J.W., et al. 2014. Characterizing fluorotelomer and polyfluoroalkyl substances in new and aged fluorotelomer-based polymers for degradation studies with GC/MS and LC/MS/MS. Environmental Science & Technology 48(10):5762-5769. [Abstract]

Top of Page

Method Overviews and Reviews

Adobe PDF LogoAnalytical Methods for Priority and Emerging Contaminants: A Literature Review
Johnston, L.A., M.Y. Croft, and E.J. Murby.
CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia. CRC CARE Technical Report No. 24, 118 pp, 2013

Analytical methods and measurement issues for PFOS and PFOA are covered in Section 2.2 and for other PFASs in Section 2.3. The review is limited to lab-based methodology, and does not include field-based testing.

Analytical Methods for the New Proposed Priority Substances of the European Water Framework Directive (WFD)
Loos, R.
European Commission, Joint Research Centre, Institute for Environment and Sustainability, 71 pp, 2012

Pages 37-40 point to standard method ISO 25101, analytical methods applied by EU member states, and analytical methods for PFOS found in the literature.

Challenges in Perfluorocarboxylic Acid Measurements
Larsen, B.S. and M.A. Kaiser.
Analytical Chemistry 79(11):3966-3973(2007)

This article provides background information on C(5) to C(13) PFCAs and discusses the problems that might be encountered when trying to analyze them.

Comparison of Three Types of Mass Spectrometers for HPLC/MS Analysis of Perfluoroalkylated Substances and Fluorotelomer Alcohols
Berger, U., I. Langlois, M. Oehme, and R. Kallenborn
European Journal of Mass Spectrometry 10(5):579-588(2004) [Abstract]

Ion trap MS in the full scan and product ion MS2 mode, time-of-flight high-resolution MS and quadrupole MS in the selected ion mode, and triple quadrupole tandem MS were tested and compared.

Recent Developments in Methods for Analysis of Perfluorinated Persistent Pollutants
Trojanowicz, M. and M. Koc.
Mikrochimica Acta 180(11-12):957-971(2013)

Recent achievements in PFAS determination in various matrices with different methods are described and compared to measurement of total organic fluorine.

Recent Developments in Trace Analysis of Poly- and Perfluoroalkyl Substances
Berger, U., M.A. Kaiser, A. Kaerrman, et al.
Analytical and Bioanalytical Chemistry 400(6):1625-1635(2011) [Abstract]

The potential confounding issues—such as adsorption of PFASs to surfaces, effects of differing matrices, varying PFAS isomer response factors, and potential bias effects of sampling when measuring highly fluorinated compounds at trace levels—are discussed and documented with examples.

Methods for Aqueous Film-Forming Foam

Identification of Novel Fluorochemicals in Aqueous Film-Forming Foams (AFFF) Used by the US Military
Place, B. and J.A. Field.
Environmental Science & Technology 46(13):7120-7127(2012) [Abstract]

Fast atom bombardment mass spectrometry (FAB-MS) and high-resolution quadrupole-time-of-flight mass spectrometry (QTOF-MS) were employed to elucidate chemical formulas for the fluorochemicals in AFFF mixtures.

Zwitterionic, Cationic, and Anionic Fluorinated Chemicals in Aqueous Film Forming Foam Formulations and Groundwater from U.S. Military Bases by Nonaqueous Large-Volume Injection HPLC-MS/MS
Backe, W.J., T.C. Day, and J.A. Field.
Environmental Science & Technology 47(10):5226-5234(2013) [Abstract]

Prior to analysis, AFFF formulations were diluted into methanol, and PFAS in groundwater were micro liquid-liquid extracted. Methanolic dilutions of AFFF formulations and groundwater extracts were analyzed by large-volume injection HPLC-MS/MS. Orthogonal chromatography was performed using cation exchange (silica) and anion exchange (propylamine) guard columns connected in series to a reverse-phase (C18) analytical column.

Methods for Aqueous Matrices

Analysis of 18 Perfluorinated Compounds in River Waters: Comparison of High Performance Liquid Chromatography-Tandem Mass Spectrometry, Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Capillary Liquid Chromatography-Mass Spectrometry
Onghena, M., Y. Moliner-Martinez, Y. Pico, P. Campins-Falco, and D. Barcelo.
Journal of Chromatography A 1244:88-97(2012) [Abstract]

The performance of UHPLC-MS/MS and CLC-MS for the analysis of 18 perfluorinated compounds in water samples were compared with conventional LC-MS/MS in terms of speed, sensitivity, selectivity and resolution.

Adobe PDF LogoDetermination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)
Shoemaker, J.A., P.E. Grimmett, and B.K. Boutin.
EPA600-R-08-092, EPA Method 537, Rev 1.1, 50 pp, 2009

Discovery of C5-C17 Poly- and Perfluoroalkyl Substances in Water by In-Line SPE-HPLC-Orbitrap with In-Source Fragmentation Flagging
Liu, Y., A. Dos Santos Pereira, and J.W. Martin.
Analytical Chemistry 87(8):4260-4268(2015) [Abstract]

The studied method for analyzing PFASs in water was validated by applying it to an industrial wastewater; 36 new PFASs were discovered during the process.

Fluorous Membrane Ion-Selective Electrodes for Perfluorinated Surfactants: Trace-Level Detection and in Situ Monitoring of Adsorption
Chen, L.D., C.-Z. Lai, L.P. Granda, M.A. Fierke, D. Mandal, A. Stein, J.A. Gladysz, and P. Buehlmann.
Analytical Chemistry 85(15):7471-7477(2013) [Abstract]

Ion-selective electrodes (ISEs) with fluorous anion-exchanger membranes were developed for the potentiometric detection of PFOA and PFOS. To demonstrate a real-life application of these electrodes, in situ measurements were performed of PFOS adsorption onto Ottawa sand (a standard sample often used in environmental sciences) and in a background of water from Carnegie Lake. Additional information: NSF Grant 1256626

Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff
Houtz, E.F., and D.L. Sedlak.
Environmental Science & Technology 46(17):9342-9349(2012) [Abstract]

This article discusses a method to quantify concentrations of unidentified precursors of perfluoroalkyl carboxylic (PFCA) and sulfonic (PFSA) acids in urban runoff. The method transforms perfluoroalkyl acid (PFAA) precursors to PFCAs of related perfluorinated chain length.

Perfluorooctanoic Acid (PFOA) in Drinking Water
Federal-Provincial-Territorial Committee on Drinking Water.
Health Canada, 103 pp, 2016

Chapter 6 discusses available methods for drinking water, analytical challenges, and analytical performance.

Adobe PDF LogoA Validated Analytical Method for the Determination of Perfluorinated Compounds in Surface-, Sea- and Sewage Water Using Liquid Chromatography Coupled to Time-of-Flight Mass Spectrometry
Wille, K., J. Vanden Bussche, H. Noppe, E. De Wulf, P. Van Caeter, C.R. Janssen, et al.
Journal of Chromatography A 1217(43):6616-6622(2010)

The target analytes were extracted using solid-phase extraction followed by LC-ToF-MS. The use of very narrow mass tolerance windows (<10 ppm) resulted in a highly selective MS technique for the detection of PFCs in complex aqueous matrices.

Water Quality: Determination of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA), Method for Unfiltered Samples Using Solid Phase Extraction and Liquid Chromatography/Mass Spectrometry
International Organization for Standardization (ISO), ISO 25101, 2009 [Abstract]

Methods for Human Serum

A Fast Method for Analysing Six Perfluoroalkyl Substances in Human Serum by Solid-Phase Extraction On-Line Coupled to Liquid Chromatography Tandem Mass Spectrometry
Bartolome, M., A. Gallego-Pico, O. Huetos, M.A. Lucena, and A. Castano.
Analytical and Bioanalytical Chemistry 408(8):2159-2170(2016) [Abstract]

An online TurboFlow solid-phase extraction procedure was coupled to HPLC-MS/MS for analysis of PFOS, PFOA, perfluorohexane sulfonate, perfluorononanoic acid, perfluorodecanoic acid, and N-methylperfluorooctane sulfonamide in human serum samples.

Adobe PDF LogoOnline Solid Phase Extraction-High Performance Liquid Chromatography-Turbo Ion Spray-Tandem Mass Spectrometry (online SPE-HPLC-TIS-MS/MS)
Centers for Disease Control and Prevention, CDC Method 6304.04, 42 pp, 2013

Laboratory procedures are provided for 12 polyfluoroalkyl chemicals in a serum matrix: perfluorooctane sulfonamide, 2-(N-methyl-perfluorooctanesulfonamido) acetate, 2-(N-ethyl-perfluorooctanesulfonamido) acetate, perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctane sulfonate, perfluoroheptanoate, perfluorooctanoate, perfluorononanoate, perfluorodecanoate, perfluoroundecanoate, and perfluorododecanoate.

Methods for Multiple Matrices

Decades-Scale Degradation of Commercial, Side-Chain, Fluorotelomer-Based Polymers in Soils and Water
Washington, J.W., T.M. Jenkins, K. Rankin, and J.E. Naile.
Environmental Science & Technology 49(2):915-923(2015) [Abstract]

This report describes a 376-day study of the degradability of two commercial acrylate-linked FTPs in four saturated soils and in water. The study employed an exhaustive serial extraction procedure with GC/MS and LC/MS/MS results for 50 species, including fluorotelomer alcohols and acids and perfluorocarboxylates.

Determination of Extractable Perfluorooctanesulphonate (PFOS) in Coated and Impregnated Solid Articles, Liquids and Fire Fighting Foams: Method for Sampling, Extraction and Analysis by LC-qMS or LC-tandem/MS
European Committee for Standardization (CEN), CEN/TS 15968, 2010 [Abstract]

Determination of Perfluoroalkyl Carboxylic, Sulfonic, and Phosphonic Acids in Food
Ullah, S., T. Alsberg, R. Vestergren, and U. Berger.
Analytical and Bioanalytical Chemistry 404(8):2193-2201(2012) [Abstract]

A method is described for simultaneous analysis of perfluoroalkyl carboxylic acids, sulfonic acids, and phosphonic acids at low picograms per gram concentrations in a variety of food matrices. [Additional information]

Adobe PDF LogoDetermination of Perfluoroalkyl Compounds in Water, Sediment, and Biota
Ahrens, L., K. Vorkamp, P. Lepom, et al.
International Council for the Exploration of the Sea, ICES Techniques in Marine Environmental Sciences No. 48, 16 pp, 2010

An overview is provided of environmentally relevant PFCs and techniques for their analysis in samples of water, sediment, and biota, including sampling, pretreatment, extraction, cleanup, instrumental analysis, quantification and quality assurance, and quality control.

Focused Ultrasound Solid-Liquid Extraction for the Determination of Perfluorinated Compounds in Fish, Vegetables and Amended Soil
Zabaleta, I., E. Bizkarguenaga, A. Iparragirre, P. Navarro, A. Prieto, et al.
Journal of Chromatography A 1331:27-37(2014) [Abstract]

A method is described for the determination of different perfluorinated compounds, including three perfluorinated sulfonic acids, seven perfluorocarboxylic acids, three perfluorophosphonic acids, and PFOSA in fish, vegetables and amended soil samples, using focused ultrasound solid-liquid extraction followed by SPE cleanup and LC-MS/MS.

Standard Test Method for Determination of Perfluorinated Compounds in Water, Sludge, Influent, Effluent and Wastewater by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS): ASTM D7979-16
ASTM International, West Conshohocken, PA, 2016 [Abstract]

This method has been investigated for use with reagent, surface, sludge and wastewaters for selected perfluorinated compounds. However, this method has not undergone multilaboratory validation.

Methods for Solid Matrices

Analysis of Perfluorinated Carboxylic Acids in Soils II: Optimization of Chromatography and Extraction
Washington, J.W., W.M. Henderson, J.J. Ellington, T. Jenkins, and J.J. Evans.
Journal of Chromatography A 1181(1-2):21-32(2008) [Abstract]

This study compared the analytical suitability of liquid chromatography columns containing three different stationary phases, two different liquid chromatography tandem mass spectrometry (LC/MS/MS) systems, and eight combinations of sample-extract pretreatments, extractions and cleanups on three test soils.

Characterizing Fluorotelomer and Polyfluoroalkyl Substances in New and Aged Fluorotelomer-BasedPolymers for Degradation Studies with GC/MS and LC/MS/MS
Washington, J.W., J.E. Naile, T.M. Jenkins, and D.G. Lynch.
Environmental Science & Technology 48(10):5762-5769(2014) [Abstract]

The authors report a method for quantitating fluorotelomer-based polymers (FTPs) to yield internally consistent accounting of monomers and associated compounds for FTPs, either alone or in a soil matrix, for both new and simulated-aged FTPs to allow degradation testing, and for fluorinated compounds at least as long as C12.

Determination of Ten Perfluorinated Compounds in Sludge Amended Soil by Ultrasonic Extraction and Liquid Chromatography-Tandem Mass Spectrometry
Garcia-Valcarcel, A., E. Miguel, and J.L. Tadeo.
Analytical Methods 4(8):2462-2468(2012) [Abstract]

A method for the analysis of five perfluoroalkyl carboxylates, three perfluoroalkyl sulfonates, and two perfluoroalkyl sulfonamides uses ultrasound-assisted extraction followed by a dispersive solid-phase extraction cleanup and analysis by LC-MS/MS.

Method Development for Analysis of Short- and Long-Chain Perfluorinated Acids in Solid Matrices
Li, F., C. Zhang, Y. Qu, J. Chen, X. Hu, and Q. Zhou.
International Journal of Environmental Analytical Chemistry 91(12):1117-1134(2011) [Abstract]

The presented method consists of solvent extraction of PFAs from solid matrices using sonication, solid-phase extraction using weak anion exchange cartridges, cleanup of SPE eluent with dispersive carbon sorbent, and quantitation by HPLC-negative ESI-MS/MS.

Optimization and Comparison of Several Extraction Methods for Determining Perfluoroalkyl Substances in Abiotic Environmental Solid Matrices Using Liquid Chromatography-Mass Spectrometry
Lorenzo, M., J. Campo, and Y. Pico.
Analytical and Bioanalytical Chemistry 407(19):5767-5781(2015) [Abstract]

Four methods for extracting PFASs from soils and sediments were compared to determine the one that provides the best recoveries and the highest sensitivity.

Re-investigation of Aerobic Biodegradation of 6:2 and 8:2 Polyfluroalkyl Phosphate Diesters (6:2 and 8:2 diPAPs) in Soil
Liu, C. and J. Liu.
11th Annual Workshop on LC/MS/MS Applications in Environmental Analysis and Food Safety, September 21-22, 2015, Burlington, ON. [Abstract, page 36 Adobe PDF Logo]

During an investigation of the environmental fate of 6:2 diPAP and 8:2 diPAP in soils, soil extraction methods were found to have a great impact on study outcome. Some commonly used extraction methods either did not recover the PAPs efficiently or caused substantial solvent-enhanced hydrolysis that biased study results.

Standard Test Method for Determination of Polyfluorinated Compounds in Soil by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS): ASTM D7968-17
ASTM International, West Conshohocken, PA, 2017 [Abstract]

This method has been used to determine selected polyfluorinated compounds in sand and four ASTM reference soils. However, this method has not undergone multilaboratory validation.

Top of Page