U.S. EPA Contaminated Site Cleanup Information (CLU-IN)


U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Training & Events

Upcoming Internet Seminars
More Information

Participant Comments

CLU-IN's ongoing series of Internet Seminars are free, web-based slide presentations with a companion audio portion. We provide two options for accessing the audio portion of the seminar: by phone line or streaming audio simulcast. More information and registration for all Internet Seminars is available by selecting the individual seminar below. Not able to make one of our live offerings? You may also view archived seminars.

 
 
September 2015
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22
Download seminar information in iCalendar formatITRC An Improved Understanding of L...

An Improved Understanding of LNAPL Behavior in the Subsurface - State of Science vs. State of Practice - Part 1
23 24
Download seminar information in iCalendar formatITRC LNAPL Characterization and Rec...

LNAPL Characterization and Recoverability - Improved Analysis - Part 2
25 26
27 28 29
Download seminar information in iCalendar formatITRC Evaluating LNAPL Remedial Tech...

Evaluating LNAPL Remedial Technologies for Achieving Project Goals - Part 3
30
 
 
 
 
 

Screening, Testing, and Application of Residuals and Byproducts for Remediation

This webinar in the CLU-IN mining webinar series is a follow-on to the seminar presented on July 24, 2014 on Using Biosolids and Coal Combustion Products for Soil Remediation at Mining Sites. The presenter will continue the discussion on using coal combustion products for soil remediation at mining sites, as well as discuss his recent research on screening and testing residuals, such as waste lime, gypsum, and paper mill sludge, for application on contaminated lands. Presentations will include case study data and findings that are supported by publications available from the presenter and collaborators' website www.landrehab.org.

Nanotechnology for Site Remediation

This webinar is a follow-up to the Inaugural Conference on the Applications of Nanotechnology for Safe and Sustainable Environmental Remediations [Nano-4-Rem-aNssERs] which was held in Hammond, Louisiana in the Summer of 2013.

In this 2 hour webinar, the expert panel will give an update about the current state of engineered nanoparticles (ENPs) workers' exposure scenarios in environmental remediation; an update of the U.S. EPA Superfund sites experience with the use of ENPs; an update on nano-zero-valent iron-based remediation experience in Europe; and an overview of ways to harness "informatics 4 impact" to meet your mission goals. Members of the panel are:
  • Dr. Ephraim Massawe, emassawe@selu.edu Associate Professor, Southeastern Louisiana University, Hammond, LA — An Overview of the Nano-4-Rem Initiative (5 minutes)
  • Gregory Gervais, Gervais.Gregory@epa.gov, Chief, Technology Assessment Branch, U.S. Environmental Protection Agency, D.C. An update on the # of sites that use of ENPs in the U.S. EPA Superfund Sites: implications for the future of ENPs in other federal and other contaminated sites (10 minutes)
  • Ing. Jan Slunský, slunsky@nanoiron.cz Director, NanoIron, s.r.o Czech Republic, EU. Properties, Application and Further Aspects of Zero-Valent Iron Nanoparticles used in Groundwater Remediation. (30-40 minutes)
  • Dr. Chunming Su, su.chunming@epa.gov, Soil Scientist, U.S. Environmental Protection Agency, Ada, Oklahoma, USA. A Six-Year Field Test of Emulsified Zero-Valent Iron to Treat Source Zone Chlorinated Solvents at a Superfund Site (30 -40 minutes)
  • Dr. Mark Hoover, mark.hoover@cdc.hhs.gov Senior Research Scientist, National Institute for Occupational Safety and Health, NIOSH, Morgantown, WV, USA Opportunities to Harness Nanoinformatics for Impact in Environmental Remediation (10 minutes)
  • Dr. Lorraine Day, day@lsu.edu, CAMD/LSU Safety Administrator, Baton Rouge, LA Use of graphene to remove plutonium and uranium from liquid streams (5 minutes)
  • Dr. Ephraim Massawe, emassawe@selu.edu Associate Professor, Southeastern Louisiana University, Hammond, LA — Wrap-up and Q & A (10 minutes)

Who can attend: The webinar is open to interested individuals, and should be of special interest to U.S. EPA Superfund site operators, contractors, workers, EPA scientists, researchers and academicians at various universities and government agencies. Environmental scientists, health practitioners as well industrial hygienists and occupational health professionals will also particularly benefit from this webinar.

Interstate Technology Regulatory Council
Seminars Sponsored by the Interstate Technology and Regulatory Council


An Improved Understanding of LNAPL Behavior in the Subsurface - State of Science vs. State of Practice - Part 1

Interstate Technology Regulatory Council Light non-aqueous phase liquids (LNAPLs) are organic liquids such as gasoline, diesel, and other petroleum hydrocarbon products that are immiscible with water and less dense than water. Understanding LNAPLs is important because they are present in the subsurface at thousands of remediation sites across the country, and are often the sole reason why a site remains "open." The spectrum of sites where LNAPL assessment and remediation efforts may take place include petroleum manufacturing and handling facilities such as refineries, bulk product terminals, gas stations, airports and military bases. LNAPLs in the subsurface can be a complex problem to address, and frequently prevent or delay regulatory closure (no further action) of remediation projects.

This training course is relevant for all levels of state and federal regulators, environmental consultants, and technically-inclined site owners and public stakeholders. The training course is divided into three parts:
  • An Improved Understanding of LNAPL Behavior in the Subsurface - State of Science vs. State of Practice
  • LNAPL Characterization and Recoverability -- Improved Analysis
  • Evaluating LNAPL Remedial Technologies for Achieving Project Goals
Part 1 explains how LNAPLs behave in the subsurface and examines what controls their behavior. Part 1 also explains what LNAPL data can tell you about the LNAPL and site conditions. Relevant and practical examples are used to illustrate key concepts. A sound LNAPL understanding is necessary to effectively characterize and assess LNAPL conditions and potential risks, as well as to evaluate potential remedial technologies or alternatives. Unfortunately, many environmental professionals have a faulty understanding of LNAPL conditions based on outdated paradigms. The ITRC LNAPLs Team is providing Internet-based training to improve the general understanding of LNAPLs. Better understanding leads to better decision making. Additionally, this training provides a necessary technical foundation to foster effective use of the ITRC LNAPLs Team Technical and Regulatory Guidance document, Evaluating LNAPL Remedial Technologies for Achieving Project Goals (LNAPL-2, 2009).

LNAPL Characterization and Recoverability - Improved Analysis - Part 2

Interstate Technology Regulatory Council Light non-aqueous phase liquids (LNAPLs) are organic liquids such as gasoline, diesel, and other petroleum hydrocarbon products that are immiscible with water and less dense than water. Understanding LNAPLs is important because they are present in the subsurface at thousands of remediation sites across the country, and are often the sole reason why a site remains "open." The spectrum of sites where LNAPL assessment and remediation efforts may take place include petroleum manufacturing and handling facilities such as refineries, bulk product terminals, gas stations, airports and military bases. LNAPLs in the subsurface can be a complex problem to address, and frequently prevent or delay regulatory closure (no further action) of remediation projects.

This training course is relevant for all levels of state and federal regulators, environmental consultants, and technically-inclined site owners and public stakeholders. The training course is divided into three parts:
  • An Improved Understanding of LNAPL Behavior in the Subsurface - State of Science vs. State of Practice
  • LNAPL Characterization and Recoverability-- Improved Analysis
  • Evaluating LNAPL Remedial Technologies for Achieving Project Goals
Part 2 addresses LNAPL characterization and site conceptual model development as well as LNAPL recovery evaluation and remedial considerations. Specifically, Part 2 discusses key LNAPL and site data, when and why those data may be important, and how to get those data. Part 2 also discusses how to evaluate LNAPL recoverability. A sound LNAPL understanding is necessary to effectively characterize and assess LNAPL conditions and potential risks, as well as to evaluate potential remedial technologies or alternatives. Unfortunately, many environmental professionals have a faulty understanding of LNAPL conditions based on outdated paradigms. The ITRC LNAPLs Team is providing Internet-based training to improve the general understanding of LNAPLs. Better understanding leads to better decision making. Additionally, this training provides a necessary technical foundation to foster effective use of the ITRC LNAPLs Team Technical and Regulatory Guidance document, Evaluating LNAPL Remedial Technologies for Achieving Project Goals (LNAPL-2, 2009).

Evaluating LNAPL Remedial Technologies for Achieving Project Goals - Part 3

Interstate Technology Regulatory Council Light non-aqueous phase liquids (LNAPLs) are organic liquids such as gasoline, diesel, and other petroleum hydrocarbon products that are immiscible with water and less dense than water. Understanding LNAPLs is important because they are present in the subsurface at thousands of remediation sites across the country and are often the sole reason why a site remains open. The spectrum of sites where LNAPL assessment and remediation efforts may take place include petroleum manufacturing and handling facilities such as refineries, bulk product terminals, gas stations, airports and military bases. LNAPLs in the subsurface can be a complex problem to address, and frequently prevent or delay regulatory closure (no further action) of remediation projects.

Over the past few decades, LNAPL remedial technologies have evolved from conventional pumping or hydraulic recovery systems to a variety of innovative, aggressive, and experimental technologies that address the mobile and residual LNAPL fractions, as well as volatile and dissolved-phase plumes. Thus, many different LNAPL remedial technologies with differing site and LNAPL applicabilities and capabilities are available to remediate LNAPL releases. This can make selection of a remedial technology daunting and inefficient. To foster informed remedial technology selection and appropriate technology application, the LNAPLs Team developed the ITRC Technical and Regulatory Guidance document, Evaluating LNAPL Remedial Technologies for Achieving Project Goals (LNAPL-2, 2009). This document addresses seventeen LNAPL remedial technologies and provides a framework to streamline remedial technology evaluation and selection.

This training course is relevant for new and veteran regulators, environmental consultants, and technically-inclined site owners and public stakeholders. The training course is divided into three parts:
  • Part 1: An Improved Understanding of LNAPL Behavior in the Subsurface - State of Science vs. State of Practice
  • Part 2: LNAPL Characterization and Recoverability - Improved Analysis
  • Part 3: Evaluating LNAPL Remedial Technologies for Achieving Project Goals
Part 3 uses the LNAPL conceptual site model (LCSM) approach to identify the LNAPL concerns or risks and set proper LNAPL remedial objectives and technology-specific remediation goals and performance metrics. The training course also provides an overview of the LNAPL remedial technology selection framework. The framework uses a series of tools to screen the seventeen remedial technologies based on site and LNAPL conditions and other important factors. LNAPL Training Part 1 and LNAPL Training 2 are recommended pre-requisites for this Part 3 training course. Archives are available at http://cluin.org/live/archive.cfm?sort=title#itrc (note: courses are listed alphabetically, you will have to scroll down to find the course of interest).

Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management

Interstate Technology Regulatory Council Chemical contaminants in soil and groundwater can volatilize into soil gas and migrate through unsaturated soils of the vadose zone. Vapor intrusion (VI) occurs when these vapors migrate upward into overlying buildings through cracks and gaps in the building floors, foundations, and utility conduits, and contaminate indoor air. If present at sufficiently high concentrations, these vapors may present a threat to the health and safety of building occupants. Petroleum vapor intrusion (PVI) is a subset of VI and is the process by which volatile petroleum hydrocarbons (PHCs) released as vapors from light nonaqueous phase liquids (LNAPL), petroleum-contaminated soils, or petroleum-contaminated groundwater migrate through the vadose zone and into overlying buildings. Fortunately, in the case of PHC vapors, this migration is often limited by microorganisms that are normally present in soil. The organisms consume these chemicals, reducing them to nontoxic end products through the process of biodegradation. The extent and rate to which this natural biodegradation process occurs is strongly influenced by the concentration of the vapor source, the distance the vapors must travel through soil from the source to potential receptors, and the presence of oxygen (O2) in the subsurface environment between the source and potential receptors.

The ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and this associated Internet-based training provides regulators and practitioners with consensus information based on empirical data and recent research to support PVI decision making under different regulatory frameworks. The PVI assessment strategy described in this guidance document enables confident decision making that protects human health for various types of petroleum sites and multiple PHC compounds. This guidance provides a comprehensive methodology for screening, investigating, and managing potential PVI sites and is intended to promote the efficient use of resources and increase confidence in decision making when evaluating the potential for vapor intrusion at petroleum-contaminated sites. By using the ITRC guidance document, the vapor intrusion pathway can be eliminated from further investigation at many sites where soil or groundwater is contaminated with petroleum hydrocarbons or where LNAPL is present.

After attending this ITRC Internet-based training, participants should be able to:
  • Determine when and how to use the ITRC PVI document at their sites
  • Describe the important role of biodegradation impacts on the PVI pathway (in contrast to chlorinated solvent contaminated sites)
  • Value a PVI conceptual site model (CSM) and list its key components
  • Apply the ITRC PVI 8 step decision process to screen sites for the PVI pathway and determine actions to take if a site does not initially screen out, (e.g., site investigation, modeling, and vapor control and site management)
  • Access fact sheets to support community engagement activities at each step in the process
For reference during the training class, participants should have a copy of the flowcharts, Figures 1-2, 3-2, and 4-1 from the ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and are available as a 3-page PDF at http://www.cluin.org/conf/itrc/PVI/ITRC-PVI-FlowCharts.pdf

Starting in late 2015, ITRC will offer a 2-day PVI focused classroom training at locations across the US. The classroom training will provide participants the opportunity to learn more in-depth information about the PVI pathway and practice applying the ITRC PVI guidance document with a diverse group of environmental professionals. Email training@itrcweb.org if you would like us to email you when additional information is available.

Use and Measurement of Mass Flux and Mass Discharge

Interstate Technology Regulatory Council Most decisions at groundwater contamination sites are driven by measurements of contaminant concentration -- snapshots of contaminant concentrations that may appear to be relatively stable or show notable changes over time. Decisions can be improved by considering mass flux and mass discharge. Mass flux and mass discharge quantify the source or plume strength at a given time and location resulting in better-informed management decisions regarding site prioritization or remedial design as well as lead to significant improvements in remediation efficiency and faster cleanup times. The use of mass flux and mass discharge is increasing and will accelerate as field methods improve and practitioners and regulators become familiar with its application, advantages, and limitations. The decision to collect and evaluate mass flux data is site-specific. It should consider the reliability of other available data, the uncertainty associated with mass flux measurements, the specific applications of the mass flux data, and the cost-benefit of collecting mass measurements.

The ITRC technology overview, Use and Measurement of Mass Flux and Mass Discharge (MASSFLUX-1, 2010), and associated Internet-based training provide a description of the underlying concepts, potential applications, description of methods for measuring and calculating, and case studies of the uses of mass flux and mass discharge. This Technology Overview, and associated internet based training are intended to foster the appropriate understanding and application of mass flux and mass discharge estimates, and provide examples of use and analysis. The document and training assumes the participant has a general understanding of hydrogeology, the movement of chemicals in porous media, remediation technologies, and the overall remedial process. Practitioners, regulators, and others working on groundwater sites should attend this training course to learn more about various methods and potential use of mass flux and mass discharge information.

Remedy Selection for Contaminated Sediments

Interstate Technology Regulatory Council The sediments underlying many of our nationís major waterways are contaminated with toxic pollutants from past industrial activities. Cleaning up contaminated sediments is expensive and technically-challenging. Sediment sites are unique, complex, and require a multidisciplinary approach and often project managers lack sediments experience. ITRC developed the technical and regulatory guidance, Remedy Selection for Contaminated Sediments (CS-2, 2014), to assist decision-makers in identifying which contaminated sediment management technology is most favorable based on an evaluation of site specific physical, sediment, contaminant, and land and waterway use characteristics. The document provides a remedial selection framework to help identify favorable technologies, and identifies additional factors (feasibility, cost, stakeholder concerns, and others) that need to be considered as part of the remedy selection process. This ITRC training course supports participants with applying the technical and regulatory guidance as a tool to overcome the remedial challenges posed by contaminated sediment sites. Participants learn how to:
  • Identify site-specific characteristics and data needed for site decision making
  • Evaluate potential technologies based on site information
  • Select the most favorable contaminant management technology for their site
For reference during the training class, participants should have a copy of Figure 2-1, Framework for Sediment Remedy Evaluation. It is available as a 1-page PDF at http://www.cluin.org/conf/itrc/ContSedRem/ITRC-SedimentRemedyEvaluation.pdf.

Participants should also be familiar with the ITRC technology and regulatory guidance for Incorporating Bioavailability Considerations into the Evaluation of Contaminated Sediment Sites Website (CS-1, 2011) and associated Internet-based training that assists state regulators and practitioners with understanding and incorporating fundamental concepts of bioavailability in contaminated sediment management practices.

Integrated DNAPL Site Characterization

Interstate Technology Regulatory Council Sites contaminated with dense nonaqueous phase liquids (DNAPLs) and DNAPL mixtures present significant environmental challenges. Despite the decades spent on characterizing and attempting to remediate DNAPL sites, substantial risk remains. Inadequate characterization of site geology as well as the distribution, characteristics, and behavior of contaminants -- by relying on traditional monitoring well methods rather than more innovative and integrated approaches -- has limited the success of many remediation efforts.

The Integrated DNAPL Site Characterization Team has synthesized the knowledge about DNAPL site characterization and remediation acquired over the past several decades, and has integrated that information into a new document, Integrated DNAPL Site Characterization and Tools Selection (ISC-1, 2015). This guidance is a resource to inform regulators, responsible parties, other problem holders, consultants, community stakeholders, and other interested parties of the critical concepts related to characterization approaches and tools for collecting subsurface data at DNAPL sites. After this associated training, participants will be able to use the ITRC Integrated DNAPL Site Characterization and Tools Selection (ISC-1, 2015) guidance to develop and support an integrated approach to DNAPL site characterization, including:
  • Identify what site conditions must be considered when developing an informative DNAPL conceptual site model (CSM)
  • Define an objectives-based DNAPL characterization strategy
  • Understand what tools and resources are available to improve the identification, collection, and evaluation of appropriate site characterization data
  • Navigate the DNAPL characterization tools table and select appropriate technologies to fill site-specific data gaps
For reference during the training class, participants should have a copy of Figure 4-1, the integrated site characterization flow diagram from the ITRC Technical and Regulatory Guidance document: Integrated DNAPL Site Characterization and Tools Selection (ISC-1, 2015) and available as a PDF at http://www.cluin.org/conf/itrc/IDSC/ITRC-ISC-Figures.pdf.

Environmental Molecular Diagnostics: New Tools for Better Decisions

Interstate Technology Regulatory Council Environmental molecular diagnostics (EMDs) are a group of advanced and emerging analytical techniques used to analyze biological and chemical characteristics of environmental samples. Conventional data (e.g., hydrogeological data, chemical, and geochemical analyses) often provide only indirect data regarding the mechanisms and rates of key attenuation or treatment processes. EMDs can complement these data by providing direct measurements of the organisms, genes or enzymes involved in contaminant biodegradation, of the relative contributions of abiotic and biotic processes, and of the relative rates of various degradation processes. The information provided by EMDs can improve estimates of attenuation rates and capacities and improve remedy performance assessments and optimization efforts. Improved understanding of the biological and non-biological degradation processes also can lead to greater confidence in MNA or closure decisions. EMDs have application in each phase of environmental site management (including site characterization, remediation, monitoring, and closure activities), address a wide variety of contaminants (including PCE, PCBs, radionuclides, perchlorate, fuels), and work with various media (including groundwater, soil, sediments, soil vapor).

Although EMDs have been used over the past 25 years in various scientific fields, particularly medical research and diagnostic fields, their application to environmental remediation management is relatively new and rapidly developing. The ITRC Environmental Molecular Diagnostics Fact Sheets (EMD-1, 2011), ITRC Environmental Molecular Diagnostics Technical and Regulatory Guidance (EMD-2, 2013) and this companion Internet-based training will foster the appropriate uses of EMDs and help regulators, consultants, site owners, and other stakeholders to better understand a site and to make decisions based on the results of EMD analyses. At the conclusion of the training, learners will be able to determine when and how to use the ITRC Environmental Molecular Diagnostics Technical and Regulatory Guidance (EMD-2, 2013); define when EMDs can cost-effectively augment traditional remediation data sets; and describe the utility of various types of EMDs during remediation activities.

Training participants are encouraged to review the ITRC EMD Fact Sheets, in particular the Introduction to EMDs fact sheet, before the Internet-based training.
The Training Exchange (Trainex)

The Training Exchange website (Trainex) is designed to provide a wide range of training information to EPA, other federal agency, state, tribal, and local staff involved in hazardous waste management and remediation. Trainex focuses on free training directed to federal and state staff. This site includes training schedules for deliveries of many courses, both classroom and Internet-based.

EPA works in partnership with organizations, such as the Interstate Technology Regulatory Council (ITRC), and other agencies, such as the Agency for Toxic Substances and Disease Registry (ATSDR), to offer training relevant to hazardous waste remediation, site characterization, risk assessment, emergency response, site/incident management, counter-terrorism, and the community's role in site management and cleanup.

Top of Page