U.S. EPA Contaminated Site Cleanup Information (CLU-IN)


U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Upcoming Live Web Events

More Information
Upcoming Internet Seminars RSS Feed
Participant Comments

CLU-IN's ongoing series of Internet Seminars are free, web-based slide presentations with a companion audio portion. We provide two options for accessing the audio portion of the seminar: by phone line or streaming audio simulcast. More information and registration for all Internet Seminars is available by selecting the individual seminar below. Not able to make one of our live offerings? You may also view archived seminars.

 
 
July 2016
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
 
 
 
 
 
 
 

Leveraging Resources for Brownfields Revitalization: Meet the Funders

This webinar will highlight the resources for brownfields revitalization available from one or two federal agencies outside of EPA. It is the second in OBLR's webinar series on what communities need to know to successfully leverage resources for brownfields revitalization.

Leveraging Resources for Brownfields Revitalization: Meet the Funders

This "Meet the Funders" webinar will highlight resources available from one or two more federal agencies outside of EPA. It is the part of OBLR's webinar series focusing on what communities need to do to successfully leverage resources for brownfields revitalization.

Greener Cleanups: Accelerating Change

Since its release in late 2013, use of the ASTM Standard Guide for Greener Cleanups (E2893) has expanded across cleanup programs and across the country. Recent developments suggest its use at projects will accelerate, helping all involved parties to achieve protective cleanups with lower environmental footprints. Join us on this webinar to learn of recent developments related to the Guide and how to access it at no cost for a two-month trial period.

Military Munitions Support Services - Remedial Investigation / Feasibility Study

This will be a Military Munitions Support Services seminar with subject matter experts discussing Remedial Investigation / Feasibility Study development.

Military Munitions Support Services - Remedial / Removal Actions

This will be a Military Munitions Support Services seminar with subject matter experts discussing Remedial / Removal Actions.

Protecting Pollinators through Sustainable Superfund Reuse

In recent years, declines in pollinator populations and honey bees in particular, have raised concerns about the impacts to agricultural supply and ecosystem sustainability. EPA has engaged in a federal partnership with the United States Department of Agriculture to minimize impacts of pesticides on pollinator populations. But EPA has also engaged with organizations such as the Pollinator Partnership to support the development and maintenance of pollinator habitat. This webinar will highlight the opportunities presented to support pollinators through sustainable and conscientious reuse of Superfund sites and other blighted properties. Speakers will share case study examples of pollinator habitat on contaminated sites, as well as some available resources to aid in supporting pollinators at a site near you.

Introduction to the New Recommended Template for Five Year Reviews (FYRs)

This webinar is designed to introduce writers and reviewers of EPA FYR reports to the new recommended FYR report template. It will cover how to use the new template, what some of the main differences are from the previous version of the report template, and some tips for using this new recommended template. This template is to be used only for FYRs at non-federal facility sites at this time. [This is meant for individuals with some previous experience either writing or reading FYRs and is not an introductory class on FYR policy, guidance or the process of conducting FYRs.]
Interstate Technology Regulatory Council
Seminars Sponsored by the Interstate Technology and Regulatory Council


Geophysical Classification for Munitions Response

Interstate Technology Regulatory Council For decades, the U.S. Department of Defense (DOD) has produced and used military munitions for live-fire testing and training to prepare the U.S. military for combat operations. As a result, unexploded ordnance (UXO) and discarded military munitions may be present at over 5,200 former ranges and former munitions operating facilities throughout the United States. With the traditional technique to identify munitions for removal at these sites, DOD and its contractors have used various types of detection instruments to simply detect buried metal objects then excavation and examination of most of the detected items, to determine whether or not they are military munitions. Even highly trained UXO-qualified personnel typically excavate hundreds of metal items for each one munition recovered. Nearly half of these sites require a munitions response, at an estimated cost to complete of $14 billion and with a completion date of 2100. To improve the efficiency of munitions response, DOD’s Environmental Security Technology Certification Program and its research partners in academia and industry have developed a new approach: geophysical classification. Geophysical classification is the process of using advanced data to make principled decisions as to whether buried metal objects are potentially hazardous munitions (that is targets of interest) that should be excavated, or items such as metal clutter and debris (non-targets of interest) that can be left in the ground.

ITRC’s Geophysical Classification for Munitions Response (GCMR-2, 2015) and training class explain the process of geophysical classification, describe its benefits and limitations, and discuss the information and data needed by regulators to monitor and evaluate the use of the technology. This document and training also emphasize using a systematic planning process to develop data acquisition and decision strategies at the outset of a munitions response effort, as well as quality considerations throughout the project. Stakeholder issues that are unique to munitions response are also discussed. After this training class, participants will:
  • Understand the technology and terminology
  • Be ready to engage in the planning process to address quality considerations throughout a project
  • Find tools to transfer knowledge within organizations and to stakeholders
  • Start to transition mindset to decisions that leave non-hazardous items in the ground
An audience who understand current munitions response tools and procedures (for example, geophysical surveys, sensors, data analysis) will benefit most from this document and training. For federal and state environmental regulators, scientists, and engineers, as well as contractors, munitions response managers, technical staff, geophysicists, and stakeholders, this document explains how geophysical classification can be used in munitions response. Stakeholders with an interest in a particular munitions response site (MRS) at which classification has been or may be proposed will also benefit from this document and training.

For use during this training class, we created a reference with the Terminology and Acronyms used in ITRC “Geophysical Classification for Munitions Response” Training.

Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management

Interstate Technology Regulatory Council Chemical contaminants in soil and groundwater can volatilize into soil gas and migrate through unsaturated soils of the vadose zone. Vapor intrusion (VI) occurs when these vapors migrate upward into overlying buildings through cracks and gaps in the building floors, foundations, and utility conduits, and contaminate indoor air. If present at sufficiently high concentrations, these vapors may present a threat to the health and safety of building occupants. Petroleum vapor intrusion (PVI) is a subset of VI and is the process by which volatile petroleum hydrocarbons (PHCs) released as vapors from light nonaqueous phase liquids (LNAPL), petroleum-contaminated soils, or petroleum-contaminated groundwater migrate through the vadose zone and into overlying buildings. Fortunately, in the case of PHC vapors, this migration is often limited by microorganisms that are normally present in soil. The organisms consume these chemicals, reducing them to nontoxic end products through the process of biodegradation. The extent and rate to which this natural biodegradation process occurs is strongly influenced by the concentration of the vapor source, the distance the vapors must travel through soil from the source to potential receptors, and the presence of oxygen (O2) in the subsurface environment between the source and potential receptors.

The ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and this associated Internet-based training provides regulators and practitioners with consensus information based on empirical data and recent research to support PVI decision making under different regulatory frameworks. The PVI assessment strategy described in this guidance document enables confident decision making that protects human health for various types of petroleum sites and multiple PHC compounds. This guidance provides a comprehensive methodology for screening, investigating, and managing potential PVI sites and is intended to promote the efficient use of resources and increase confidence in decision making when evaluating the potential for vapor intrusion at petroleum-contaminated sites. By using the ITRC guidance document, the vapor intrusion pathway can be eliminated from further investigation at many sites where soil or groundwater is contaminated with petroleum hydrocarbons or where LNAPL is present.

After attending this ITRC Internet-based training, participants should be able to:
  • Determine when and how to use the ITRC PVI document at their sites
  • Describe the important role of biodegradation impacts on the PVI pathway (in contrast to chlorinated solvent contaminated sites)
  • Value a PVI conceptual site model (CSM) and list its key components
  • Apply the ITRC PVI 8 step decision process to screen sites for the PVI pathway and determine actions to take if a site does not initially screen out, (e.g., site investigation, modeling, and vapor control and site management)
  • Access fact sheets to support community engagement activities at each step in the process
For reference during the training class, participants should have a copy of the flowcharts, Figures 1-2, 3-2, and 4-1 from the ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and are available as a 3-page PDF at http://www.cluin.org/conf/itrc/PVI/ITRC-PVI-FlowCharts.pdf


ITRC also offers a 2-day PVI focused classroom training at locations across the US. The classroom training provides participants the opportunity to learn more in-depth information about the PVI pathway and practice applying the ITRC PVI guidance document with a diverse group of environmental professionals. Learn more at the ITRC PVI classroom training page.