U.S. EPA Contaminated Site Cleanup Information (CLU-IN)

U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Upcoming Live Web Events

More Information

Participant Comments

CLU-IN's ongoing series of Internet Seminars are free, web-based slide presentations with a companion audio portion. We provide two options for accessing the audio portion of the seminar: by phone line or streaming audio simulcast. More information and registration for all Internet Seminars is available by selecting the individual seminar below. Not able to make one of our live offerings? You may also view archived seminars.

November 2015
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

Screening, Testing, and Application of Residuals and Byproducts for Remediation

This webinar will discuss the use of coal combustion products for soil remediation at mining sites, as well as discuss recent research on screening and testing residuals, such as waste lime, gypsum, and paper mill sludge, for application on contaminated lands. Presentations will include case study data and findings that are supported by publications available from the presenter and collaborators' website www.landrehab.org.

A previous, related CLU-IN mining webinar on Using Biosolids and Coal Combustion Products for Soil Remediation at Mining Sites was presented on July 24, 2014 and is archived at https://clu-in.org/live/archive.

Regional Water Availability and Superfund: Generating a Valuable Resource at Phoenix-Goodyear Airport Area

Webinar participants will learn how Superfund site cleanups can play a beneficial role in areas with limited water availability through a case study highlighting the reuse of treated groundwater at the Phoenix-Goodyear Airport Area Superfund site in Goodyear, Arizona. This webinar will discuss the growing need for water conservation, in-depth strategies of how EPA, site PRPs, the City of Goodyear and local businesses worked together to reuse treated groundwater, and share a number of water reuse success stories at the site.

SRP Funding Opportunities Web Seminar

The SRP will be holding a web seminar to provide information about the new "Superfund Hazardous Substance Research and Training Program (P42)" funding opportunity, RFA-ES-15-019.

Focus will be on the multi-project center grant announcement, including an emphasis on changes compared to previous solicitations. Participants will have an opportunity to ask questions.
Interstate Technology Regulatory Council
Seminars Sponsored by the Interstate Technology and Regulatory Council

Issues and Options in Human Health Risk Assessment - A Resource When Alternatives to Default Parameters and Scenarios are Proposed

Interstate Technology Regulatory Council Many state and local regulatory agencies responsible for the cleanup of chemicals released to the environment have adopted regulations, guidance and policies that define default approaches, scenarios, and parameters as a starting point for risk assessment and the development of risk-based screening values. Regulatory project managers and decision makers, however, may not have specific guidance when alternative approaches, scenarios, and parameters are proposed for site-specific risk assessments, and are faced with difficult technical issues when evaluating these site-specific risk assessments. This ITRC web-based document is a resource for project managers and decision makers to help evaluate alternatives to risk assessment default approaches, scenarios and parameters.

ITRC's Decision Making at Contaminated Sites: Issues and Options in Human Health Risk Assessment (RISK-3, 2015) guidance document is different from existing ITRC Risk Assessment guidance and other state and federal resources because it identifies commonly encountered issues and discusses options in risk assessment when applying site-specific alternatives to defaults. In addition, the document includes links to resources and tools that provide even more detailed information on the specific issues and potential options. The ITRC Risk Assessment Team believes that state regulatory agencies and other organizations can use the RISK-3 document as a resource or reference to supplement their existing guidance. Community members and other stakeholders also may find this document helpful in understanding and using risk assessment information.

After participating in this ITRC training course, the learner will be able to apply ITRC's Decision Making at Contaminated Sites: Issues and Options in Human Health Risk (RISK-3, 2015) document when developing or reviewing site-specific risk assessments by:
  • Identifying common issues encountered when alternatives to default parameters and scenarios are proposed during the planning, data evaluation, toxicity, exposure assessment, and risk characterization and providing possible options for addressing these issues
  • Recognizing the value of proper planning and the role of stakeholders in the development and review of risk assessments
  • Providing information (that includes links to additional resources and tools) to support decision making when alternatives to default approaches, scenarios and parameters are proposed
ITRC offers additional documents and training on risk management. ITRC's Use of Risk Assessment in Management of Contaminated Sites (RISK-2, 2008) and associated Internet-based training archive highlight variation of risk-based site management and describes how to improve the use of risk assessment for making better risk management decisions. ITRC's Examination of Risk-Based Screening Values and Approaches of Selected States (RISK-1, 2005) and associated Internet-based training archive focus on the process by which risk-based levels are derived in different states.

Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management

Interstate Technology Regulatory Council Chemical contaminants in soil and groundwater can volatilize into soil gas and migrate through unsaturated soils of the vadose zone. Vapor intrusion (VI) occurs when these vapors migrate upward into overlying buildings through cracks and gaps in the building floors, foundations, and utility conduits, and contaminate indoor air. If present at sufficiently high concentrations, these vapors may present a threat to the health and safety of building occupants. Petroleum vapor intrusion (PVI) is a subset of VI and is the process by which volatile petroleum hydrocarbons (PHCs) released as vapors from light nonaqueous phase liquids (LNAPL), petroleum-contaminated soils, or petroleum-contaminated groundwater migrate through the vadose zone and into overlying buildings. Fortunately, in the case of PHC vapors, this migration is often limited by microorganisms that are normally present in soil. The organisms consume these chemicals, reducing them to nontoxic end products through the process of biodegradation. The extent and rate to which this natural biodegradation process occurs is strongly influenced by the concentration of the vapor source, the distance the vapors must travel through soil from the source to potential receptors, and the presence of oxygen (O2) in the subsurface environment between the source and potential receptors.

The ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and this associated Internet-based training provides regulators and practitioners with consensus information based on empirical data and recent research to support PVI decision making under different regulatory frameworks. The PVI assessment strategy described in this guidance document enables confident decision making that protects human health for various types of petroleum sites and multiple PHC compounds. This guidance provides a comprehensive methodology for screening, investigating, and managing potential PVI sites and is intended to promote the efficient use of resources and increase confidence in decision making when evaluating the potential for vapor intrusion at petroleum-contaminated sites. By using the ITRC guidance document, the vapor intrusion pathway can be eliminated from further investigation at many sites where soil or groundwater is contaminated with petroleum hydrocarbons or where LNAPL is present.

After attending this ITRC Internet-based training, participants should be able to:
  • Determine when and how to use the ITRC PVI document at their sites
  • Describe the important role of biodegradation impacts on the PVI pathway (in contrast to chlorinated solvent contaminated sites)
  • Value a PVI conceptual site model (CSM) and list its key components
  • Apply the ITRC PVI 8 step decision process to screen sites for the PVI pathway and determine actions to take if a site does not initially screen out, (e.g., site investigation, modeling, and vapor control and site management)
  • Access fact sheets to support community engagement activities at each step in the process
For reference during the training class, participants should have a copy of the flowcharts, Figures 1-2, 3-2, and 4-1 from the ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and are available as a 3-page PDF at http://www.cluin.org/conf/itrc/PVI/ITRC-PVI-FlowCharts.pdf

Starting in late 2015, ITRC will offer a 2-day PVI focused classroom training at locations across the US. The classroom training will provide participants the opportunity to learn more in-depth information about the PVI pathway and practice applying the ITRC PVI guidance document with a diverse group of environmental professionals. Email training@itrcweb.org if you would like us to email you when additional information is available.

Biochemical Reactors for Treating Mining Influenced Water

Interstate Technology Regulatory Council Mining influenced water (MIW) includes aqueous wastes generated by ore extraction and processing, as well as mine drainage and tailings runoff. MIW handling, storage, and disposal is a major environmental problem in mining districts throughout the U.S and around the world. Biochemical reactors (BCRs) are engineered treatment systems that use an organic substrate to drive microbial and chemical reactions to reduce concentrations of metals, acidity, and sulfate in MIWs. The ITRC Biochemical Reactors for Mining-Influenced Water technology guidance (BCR-1, 2013) and this associated Internet-based training provide an in-depth examination of BCRs; a decision framework to assess the applicability of BCRs; details on testing, designing, constructing and monitoring BCRs; and real world BCR case studies with diverse site conditions and chemical mixtures. At the end of this training, you should be able to complete the following activities:
  • Describe a BCR and how it works
  • Identify when a BCR is applicable to a site
  • Use the ITRC guidance for decision making by applying the decision framework
  • Improve site decision making through understanding of BCR advantages, limitations, reasonable expectations, regulatory and other challenges
  • Navigate the ITRC Biochemical Reactors for Mining-Influenced Water technology guidance (BCR-1, 2013)

For reference during the training class, participants should have a copy of Figure 2-1, decision flow process for determining the applicability of a biochemical reactor. It is also available as a 1-page PDF at http://www.cluin.org/conf/itrc/BCR/ITRC-BCRforMIW-DecisionFlow.pdf.

Participants should also be familiar with the ITRC technology and regulatory guidance for Mining-Waste Treatment Technology Selection (MW-1, 2010) and associated Internet-based training that helps regulators, consultants, industry, and stakeholders in selecting an applicable technology, or suite of technologies, which can be used to remediate mining sites.

Groundwater Statistics for Environmental Project Managers

Interstate Technology Regulatory Council Statistical techniques may be used throughout the process of cleaning up contaminated groundwater. It is challenging for practitioners, who are not experts in statistics, to interpret, and use statistical techniques. ITRC developed the Technical and Regulatory Web-based Guidance on Groundwater Statistics and Monitoring Compliance (GSMC-1, 2013, http://www.itrcweb.org/gsmc-1/) and this associated training specifically for environmental project managers who review or use statistical calculations for reports, who make recommendations or decisions based on statistics, or who need to demonstrate compliance for groundwater projects. The training class will encourage and support project managers and others who are not statisticians to:

ITRC's Technical and Regulatory Web-based Guidance on Groundwater Statistics and Monitoring Compliance (GSMC-1, 2013) and this associated training bring clarity to the planning, implementation, and communication of groundwater statistical methods and should lead to greater confidence and transparency in the use of groundwater statistics for site management.

Integrated DNAPL Site Characterization

Interstate Technology Regulatory Council Sites contaminated with dense nonaqueous phase liquids (DNAPLs) and DNAPL mixtures present significant environmental challenges. Despite the decades spent on characterizing and attempting to remediate DNAPL sites, substantial risk remains. Inadequate characterization of site geology as well as the distribution, characteristics, and behavior of contaminants -- by relying on traditional monitoring well methods rather than more innovative and integrated approaches -- has limited the success of many remediation efforts.

The Integrated DNAPL Site Characterization Team has synthesized the knowledge about DNAPL site characterization and remediation acquired over the past several decades, and has integrated that information into a new document, Integrated DNAPL Site Characterization and Tools Selection (ISC-1, 2015). This guidance is a resource to inform regulators, responsible parties, other problem holders, consultants, community stakeholders, and other interested parties of the critical concepts related to characterization approaches and tools for collecting subsurface data at DNAPL sites. After this associated training, participants will be able to use the ITRC Integrated DNAPL Site Characterization and Tools Selection (ISC-1, 2015) guidance to develop and support an integrated approach to DNAPL site characterization, including:
  • Identify what site conditions must be considered when developing an informative DNAPL conceptual site model (CSM)
  • Define an objectives-based DNAPL characterization strategy
  • Understand what tools and resources are available to improve the identification, collection, and evaluation of appropriate site characterization data
  • Navigate the DNAPL characterization tools table and select appropriate technologies to fill site-specific data gaps
For reference during the training class, participants should have a copy of Figure 4-1, the integrated site characterization flow diagram from the ITRC Technical and Regulatory Guidance document: Integrated DNAPL Site Characterization and Tools Selection (ISC-1, 2015) and available as a PDF at http://www.cluin.org/conf/itrc/IDSC/ITRC-ISC-Figures.pdf