U.S. EPA Contaminated Site Cleanup Information (CLU-IN)


U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Search Result

A COMBINED CHEMICAL AND PHYTOREMEDIATION METHOD FOR RECLAMATION OF ACID MINE DRAINAGE-IMPACTED SOILS
RoyChowdhury, A., D. Sarkar, and R. Datta.
Environmental Science and Pollution Research [Publication online 13 March 2019 prior to print]

This study utilized the metal-binding and acid-neutralizing capacity of an industrial by-product, drinking water treatment residuals (WTRs), and the extensive root system of a metal hyper-accumulating, fast-growing, non-invasive, high-biomass perennial grass, vetiver (Chrysopogon zizanioides L.) to prevent soil erosion. Aluminum-based and calcium-based WTRs were used to treat acid mine drainage (AMD)-impacted soil collected from the Tab-Simco coal mine in Carbondale, IL. A 4-month greenhouse column study performed using 5% and 10% w/w WTR application rates showed that soil erosion decreased in the soil-WTR-vetiver treatments. A scaled-up simulated field study was performed using 5% WTR application rate and vetiver. Soil pH increased from 2.69 to 7.2, and soil erosion indicators such as turbidity (99%) and total suspended solids (95%) in leachates were significantly reduced. See more on this study in A. RoyChowdhury's dissertation at https://digitalcommons.montclair.edu/etd/86/.



The Technology Innovation News Survey welcomes your comments and suggestions, as well as information about errors for correction. Please contact Michael Adam of the U.S. EPA Office of Superfund Remediation and Technology Innovation at adam.michael@epa.gov or (703) 603-9915 with any comments, suggestions, or corrections.

Mention of non-EPA documents, presentations, or papers does not constitute a U.S. EPA endorsement of their contents, only an acknowledgment that they exist and may be relevant to the Technology Innovation News Survey audience.