CLU-IN Home

U.S. EPA Contaminated Site Cleanup Information (CLU-IN)


U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Search Result

STABILIZATION OF PFAS-CONTAMINATED SOIL WITH SEWAGE SLUDGE- AND WOOD-BASED BIOCHAR SORBENTS
Sormo, E., C.B.M. Lade, J. Zhang, A.G. Asimakopoulos, G. Wold Asli, M. Hubert, A.I. Goranov, H.P.H. Arp, and G. Cornelissen.
Science of The Total Environment 922:170971(2024)
Filed Under: Research
Filed Under: Research
A study investigated the effects of waste-based biochars on PFAS leaching from sandy soil at a former fire-fighting facility with a low total organic carbon content (TOC, 0.57 ± 0.04%) impacted by PFAS from AFFF. Six different biochars (pyrolyzed at 700-900°C) made from clean wood chips (CWC), waste timber (WT), activated waste timber (aWT), two digested sewage sludges (DSS-1 and DSS-2), and de-watered raw sewage sludge (DWSS) were tested. Up-flow column percolation tests (15 days and 16 pore volume replacements) with 1% biochar indicated that PFOS was retained best by the aWT biochar (99.9% reduction) in the leachate, followed by sludge-based DWSS (98.9%) and DSS-2 (97.8%) and DSS-1 (91.6%). The non-activated wood-based biochars (CWC and WT) reduced leaching by < 42.4 %. Extrapolating this to field conditions, 90% leaching of PFOS would occur after 15 y for unamended soil and after 1200 y and 12,000 y, respectively, for soil amended with 1% DWSS-amended and aWT biochar. The high effectiveness of aWT and the three sludge-based biochars in reducing PFAS leaching from the soil was attributed largely to high porosity in a pore size range (>1.5 nm) that can accommodate the large PFAS molecules (>1.02-2.20 nm) combined with a high affinity to the biochar matrix. Other factors, like anionic exchange capacity, could play a contributing role. Sorbent effectiveness was better for long-chain than short-chain PFAS due to weaker apolar interactions between the biochar and the latter's shorter hydrophobic CF2-tails.



The Technology Innovation News Survey welcomes your comments and suggestions, as well as information about errors for correction. Please contact Michael Adam of the U.S. EPA Office of Superfund Remediation and Technology Innovation at adam.michael@epa.gov or (703) 603-9915 with any comments, suggestions, or corrections.

Mention of non-EPA documents, presentations, or papers does not constitute a U.S. EPA endorsement of their contents, only an acknowledgment that they exist and may be relevant to the Technology Innovation News Survey audience.