U.S. EPA Contaminated Site Cleanup Information (CLU-IN)

U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

In situ chemical reduction

Additional Resources

Adobe PDF LogoBest Practices for Injection and Distribution of Amendments
Rosansky, S., W. Condit, and R. Sirabian.
TR-NAVFAC-EXWC-EV-1303, 81 pp, 2013

Although there are many reasons for the sub-optimal performance of an in situ technology (e.g., chemical oxidation, chemical reduction, and enhanced bioremediation), a common underlying factor appears to be the inability to achieve adequate distribution and contact between the reagents, substrates, and target contaminants. This document presents current best practices for introducing liquid- and solid-phase amendments into aquifers to improve the likelihood of adequate amendment distribution. Lessons learned from three Navy case studies are provided.

Adobe PDF LogoBiogeochemical Transformation Handbook
Darlington , R. and H. Rectanus.
TR-NAVFAC EXWC-EV-1601, 41 pp, 2015

In situ biogeochemical transformation (ISBGT) processes result in the degradation of contaminants through combined biological, mineral, and chemical pathways. This handbook can serve as a key resource in evaluating, selecting, and implementing the ISBGT technology. The handbook presents the fundamentals of ISBGT in a question and answer format; explores the mechanisms that contribute to ISBGT processes; discusses contaminants that can be degraded by ISBGT; identifies key considerations for enhancing, monitoring, and evaluating ISGBT processes; and emphasizes the importance of site characterization in recognizing and accounting for the contributions of ISBGT to natural attenuation.

Adobe PDF LogoFundamental Study of the Delivery of Nanoiron to DNAPL Source Zones in Naturally Heterogeneous Field Systems
Lowry, G., T. Phenrat, F. Fagerlund, T. Illangasekare, P. Tratnyek, and R.L. Johnson.
SERDP Project ER-1485, 144 pp, 2012

Although results indicate that emplaced NZVI can decrease the flux of contaminants emanating from entrapped DNAPL, they also suggest that NZVI available commercially today must be optimized to work as an effective reactive barrier. This optimization will require mobility of a greater fraction of the injected iron than was found in the combinations of nanoiron types and polymeric surface modifiers used in the study.

Adobe PDF LogoIn Situ Chemical Reduction using Zero Valent Iron Injection: A Technique for the Remediation of Source Zones
CityChlor, 104 pp, 2013

This document contains a technical summary of the state of the art in the use of injections of ZVI at nano- or micro-scale for treating soil and groundwater contaminated with chlorinated solvents. Given that practical experience within the European market with respect to this technique was rather limited at the time the document was written, the text is based upon an extensive literature review, a survey of soil remediation companies and suppliers, and experiences from the CityChlor pilot test in Herk-de-Stad. This document will enable the reader to evaluate the practicality of this technique and also provide a guideline for its usage. [Note: CityChlor is an INTERREG IVB-NWE project between partners from Flanders, Germany, France, and the Netherlands who work on innovative solutions for cleanup of contaminated sites.]

Reductive Dechlorination for Remediation of Polychlorinated Biphenyls
Wu, B.Z., H.Y. Chen, S.J. Wang, C.M. Wai, W. Liao, and K. Chiu.
Chemosphere 88(7):757-768(2012)

This review references 108 papers on reductive treatment for PCBs published within the last decade. The treatments reviewed fall into one of three categories: (1) catalytic hydrodechlorination with H2, (2) Fe-based reductive dechlorination, and (3) other reductive dechlorination methods (e.g., hydrogen-transfer dechlorination, base-catalyzed dechlorination, and sodium dispersion). The advantages of each remediation technology are discussed. Longer abstract

A Risk/Benefit Appraisal for the Application of Nano-Scale Zero Valent Iron (NZVI) for the Remediation of Contaminated Sites
Bardos, P., B. Bone, P. Daly, D. Elliott, S. Jones, G. Lowry, and C. Merly.
NanoRem Issues Paper, 89 pp, 2014

This report discusses the relative risks and benefits of NZVI usage for in situ remediation (i.e., the potential for the NZVI treatment agent itself to present human health or environmental risks) and its sustainability as a technique; identifies the areas where further investigation might be required; and provides an overview of NZVI use in full-scale, pilot, and lab studies to date. This paper is intended to help stakeholders by identifying key issues and providing a basis for evidence-based decisions.

Superfund Remedy Report, Fifteenth Edition
EPA 542-R-17-001, 2017

The Superfund Remedy Report (SRR), Fifteenth Edition, was published by the EPA Office of Superfund Remediation and Technology Innovation (OSRTI) in August 2017. The report focuses on Superfund remedial actions selected in fiscal years 2012, 2013 and 2014, and on remedy trends since 1982. The report includes remedies selected in 308 decision documents (Records of Decision [RODs], ROD amendments, and Explanations of Significant Differences with changes to remedy components) signed in this three-year period. The SRR compiles data on overall remedy selection and remedies for source materials (such as soil and sediments), groundwater, surface water and air related to vapor intrusion. The report also analyzes media and contaminants for sites with remedies. The appendices summarize all of the remedy components selected for sources and groundwater in each decision document signed in 2012, 2013, and 2014.

Technology Innovation News Survey

The Technology Innovation News Survey contains market/commercialization information; reports on demonstrations, feasibility studies and research; and other news relevant to the hazardous waste community interested in technology development. This report is updated every two weeks.