U.S. EPA Contaminated Site Cleanup Information (CLU-IN)

U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Upcoming Live Web Events

More Information
Upcoming Internet Seminars RSS Feed
Participant Comments

CLU-IN's ongoing series of Internet Seminars are free, web-based slide presentations with a companion audio portion. We provide two options for accessing the audio portion of the seminar: by phone line or streaming audio simulcast. More information and registration for all Internet Seminars is available by selecting the individual seminar below. Not able to make one of our live offerings? You may also view archived seminars.

December 2017
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
Interstate Technology Regulatory Council
Seminars Sponsored by the Interstate Technology and Regulatory Council

Remedy Selection for Contaminated Sediments

Interstate Technology Regulatory Council The sediments underlying many of our nationís major waterways are contaminated with toxic pollutants from past industrial activities. Cleaning up contaminated sediments is expensive and technically-challenging. Sediment sites are unique, complex, and require a multidisciplinary approach and often project managers lack sediments experience. ITRC developed the technical and regulatory guidance, Remedy Selection for Contaminated Sediments (CS-2, 2014), to assist decision-makers in identifying which contaminated sediment management technology is most favorable based on an evaluation of site specific physical, sediment, contaminant, and land and waterway use characteristics. The document provides a remedial selection framework to help identify favorable technologies, and identifies additional factors (feasibility, cost, stakeholder concerns, and others) that need to be considered as part of the remedy selection process. This ITRC training course supports participants with applying the technical and regulatory guidance as a tool to overcome the remedial challenges posed by contaminated sediment sites. Participants learn how to:
  • Identify site-specific characteristics and data needed for site decision making
  • Evaluate potential technologies based on site information
  • Select the most favorable contaminant management technology for their site
For reference during the training class, participants should have a copy of Figure 2-1, Framework for Sediment Remedy Evaluation. It is available as a 1-page PDF at http://www.cluin.org/conf/itrc/ContSedRem/ITRC-SedimentRemedyEvaluation.pdf.

Participants should also be familiar with the ITRC technology and regulatory guidance for Incorporating Bioavailability Considerations into the Evaluation of Contaminated Sediment Sites Website (CS-1, 2011) and associated Internet-based training that assists state regulators and practitioners with understanding and incorporating fundamental concepts of bioavailability in contaminated sediment management practices.

Long-term Contaminant Management Using Institutional Controls

Interstate Technology Regulatory Council Institutional controls (ICs) are administrative or legal restrictions that provide protection from exposure to contaminants on a site. When ICs are jeopardized or fail, direct exposure to human health and the environment can occur. While a variety of guidance and research to date has focused on the implementation of ICs, ITRCís Long-term Contaminant Management Using Institutional Controls (IC-1, 2016) guidance and this associated training class focuses on post-implementation IC management, including monitoring, evaluation, stakeholder communications, enforcement, and termination. The ITRC guidance and training will assist those who are responsible for the management and stewardship of Ics. ITRC has developed a downloadable tool that steps users through the process of planning and designing IC management needs. This tool can help to create a long lasting record of the site that includes the regulatory authority, details of the IC, the responsibilities of all parties, a schedule for monitoring the performance of the IC, and more. The tool generates an editable Long Term Stewardship (LTS) plan in Microsoft Word.

After attending the training, participants will be able to:
  • Describe best practices and evolving trends for IC management at individual sites and across state agency programs
  • Use this guidance to
    • Improve IC reliability and prevent IC failures
    • Improve existing, or develop new, IC Management programs
    • Identify the pros and cons about differing IC management approaches
  • Use the tools to establish an LTS plan for specific sites
  • Use the elements in the tools to understand the information that should populate an IC registry or data management system.

The target audience for this guidance includes environmental regulators at all levels of government, private and public responsible or obligated parties (Ops), current site owners and operators, environmental consultants, and prospective purchasers of property and their agents. Other stakeholders who have an interest in a property can also use this guidance to help understand how to manage Ics.

Groundwater Statistics for Environmental Project Managers

Interstate Technology Regulatory Council Statistical techniques may be used throughout the process of cleaning up contaminated groundwater. It is challenging for practitioners, who are not experts in statistics, to interpret, and use statistical techniques. ITRC developed the Technical and Regulatory Web-based Guidance on Groundwater Statistics and Monitoring Compliance (GSMC-1, 2013, http://www.itrcweb.org/gsmc-1/) and this associated training specifically for environmental project managers who review or use statistical calculations for reports, who make recommendations or decisions based on statistics, or who need to demonstrate compliance for groundwater projects. The training class will encourage and support project managers and others who are not statisticians to:

ITRC's Technical and Regulatory Web-based Guidance on Groundwater Statistics and Monitoring Compliance (GSMC-1, 2013) and this associated training bring clarity to the planning, implementation, and communication of groundwater statistical methods and should lead to greater confidence and transparency in the use of groundwater statistics for site management.

Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management

Interstate Technology Regulatory Council Chemical contaminants in soil and groundwater can volatilize into soil gas and migrate through unsaturated soils of the vadose zone. Vapor intrusion (VI) occurs when these vapors migrate upward into overlying buildings through cracks and gaps in the building floors, foundations, and utility conduits, and contaminate indoor air. If present at sufficiently high concentrations, these vapors may present a threat to the health and safety of building occupants. Petroleum vapor intrusion (PVI) is a subset of VI and is the process by which volatile petroleum hydrocarbons (PHCs) released as vapors from light nonaqueous phase liquids (LNAPL), petroleum-contaminated soils, or petroleum-contaminated groundwater migrate through the vadose zone and into overlying buildings. Fortunately, in the case of PHC vapors, this migration is often limited by microorganisms that are normally present in soil. The organisms consume these chemicals, reducing them to nontoxic end products through the process of biodegradation. The extent and rate to which this natural biodegradation process occurs is strongly influenced by the concentration of the vapor source, the distance the vapors must travel through soil from the source to potential receptors, and the presence of oxygen (O2) in the subsurface environment between the source and potential receptors.

The ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and this associated Internet-based training provides regulators and practitioners with consensus information based on empirical data and recent research to support PVI decision making under different regulatory frameworks. The PVI assessment strategy described in this guidance document enables confident decision making that protects human health for various types of petroleum sites and multiple PHC compounds. This guidance provides a comprehensive methodology for screening, investigating, and managing potential PVI sites and is intended to promote the efficient use of resources and increase confidence in decision making when evaluating the potential for vapor intrusion at petroleum-contaminated sites. By using the ITRC guidance document, the vapor intrusion pathway can be eliminated from further investigation at many sites where soil or groundwater is contaminated with petroleum hydrocarbons or where LNAPL is present.

After attending this ITRC Internet-based training, participants should be able to:
  • Determine when and how to use the ITRC PVI document at their sites
  • Describe the important role of biodegradation impacts on the PVI pathway (in contrast to chlorinated solvent contaminated sites)
  • Value a PVI conceptual site model (CSM) and list its key components
  • Apply the ITRC PVI 8 step decision process to screen sites for the PVI pathway and determine actions to take if a site does not initially screen out, (e.g., site investigation, modeling, and vapor control and site management)
  • Access fact sheets to support community engagement activities at each step in the process
For reference during the training class, participants should have a copy of the flowcharts, Figures 1-2, 3-2, and 4-1 from the ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and are available as a 3-page PDF at http://www.cluin.org/conf/itrc/PVI/ITRC-PVI-FlowCharts.pdf

ITRC also offers a 2-day PVI focused classroom training at locations across the US. The classroom training provides participants the opportunity to learn more in-depth information about the PVI pathway and practice applying the ITRC PVI guidance document with a diverse group of environmental professionals. Learn more at the ITRC PVI classroom training page.

Geospatial Analysis for Optimization at Environmental Sites

Interstate Technology Regulatory Council Optimization activities can improve performance, increase monitoring efficiency, and support contaminated site decisions. Project managers can use geospatial analysis for evaluation of optimization opportunities. Unlike traditional statistical analysis, geospatial methods incorporate the spatial and temporal dependence between nearby data points, which is an important feature of almost all data collected as part of an environmental investigation. The results of geospatial analyses add additional lines of evidence to decision making in optimization opportunities in environmental sites across all project life cycle stages (release detection, site characterization, remediation, monitoring and closure) in soil, groundwater or sediment remediation projects for different sizes and types of sites.

The purpose of ITRC's Geospatial Analysis for Optimization at Environmental Sites (GRO-1) guidance document and this associated training is to explain, educate, and train state regulators and other practitioners in understanding and using geospatial analyses to evaluate optimization opportunities at environmental sites. With the ITRC GRO-1 web-based guidance document and this associated training class, project managers will be able to:
  • Evaluate available data and site needs to determine if geospatial analyses are appropriate for a given site
  • For a project and specific lifecycle stage, identify optimization questions where geospatial methods can contribution to better decision making
  • For a project and optimization question(s), select appropriate geospatial method(s) and software using the geospatial analysis work flow, tables and flow charts in the guidance document
  • With geospatial analyses results (note: some geospatial analyses may be performed by the project manager, but many geospatial analyses will be performed by technical experts), explain what the results mean and appropriately apply in decision making
  • Use the project managerís tool box, interactive flow charts for choosing geospatial methods and review checklist to use geospatial analyses confidently in decision making