U.S. EPA Contaminated Site Cleanup Information (CLU-IN)


U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Upcoming Live Web Events

More Information
Upcoming Internet Seminars RSS Feed
Participant Comments

CLU-IN's ongoing series of Internet Seminars are free, web-based slide presentations with a companion audio portion. We provide two options for accessing the audio portion of the seminar: by phone line or streaming audio simulcast. More information and registration for all Internet Seminars is available by selecting the individual seminar below. Not able to make one of our live offerings? You may also view archived seminars.

 
 
August 2017
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29
Download seminar information in iCalendar formatITRC Petroleum Vapor Intrusion: Fun...

Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management
30
Download seminar information in iCalendar formatPre-CERCLA Screening Webinar

31
 
 
 
 
 

Soil Sampling and Analysis for Volatile Organic Compounds (VOCs)

Careful there! Precise characterization of volatile organic compounds (VOCs) in soil is often critical since decisions for remediation are based on analytical measurement. Unfortunately, the acts of collecting and storing soil can subject soils to numerous variables that can alter VOC concentrations. These variables may enhance volatilization, biodegradation, and loss of VOCs in the sample.

This webinar will show why proper sample handling and preparation methods are key to collecting high-quality soil samples for VOCs. In this webinar we will explore the properties of VOCs, soil sampling methodologies, collection devices, VOC laboratory analyses, and other considerations.

During the webinar, we will further discuss:

  • The collection of high-quality soil samples for VOCs;
  • Best practices for sampling techniques to minimize the loss of VOCs;
  • The advantages and disadvantages of soil sampling devices such as Encore and TerraCore samplers.

The intended audience for the Soil Sampling and Analysis for VOCs webinar are state and federal regulators, project managers, and consultant personnel responsible for and/or directly involved in developing, identifying, or applying soil sampling approaches at their sites.

High Performing Teams: Participating, Leading, Coaching

In this webinar we will explore the definition, development, dynamics, and characteristics of "High Performing Teams". There are multiple developmental stages that teams progress through to become high performing; many team members are unaware of these stages. We will examine the behavior and characteristics of the team in these stages as well as the leadership required to maximize team performance in each stage.

During the webinar, we will discuss:

  • The traits and qualities the team needs to become high performing and the responsibility of the team members;
  • The attributes and behaviors that team members need to bring to the team to allow the team to perform successfully;
  • The skills required to lead the team and the concept of shared leadership.

High Performing Teams: Participating, Leading, Coaching is intended for those looking to discover styles, skills, and techniques to help their teams become the most productive and efficient they can be. This webinar could be of benefit to those working under the Incident Command System (ICS) to ensure effective coordination throughout the Incident Management. Team (IMT) during a response to an incident.

In Situ Chemical Oxidation (ISCO) for Tetrachloroethene and Chromium VI

This webinar will outline the rationale and field processes for two different in situ chemical oxidation injections, one of which is oxidative the other of which is reductive, at two Superfund sites. In addition, one injection is in bedrock and the other injection is in a conductive public drinking water aquifer. The webinar will explore the two large, but distinct, drilling operations for the installation of injection wells, as well as the injection of sodium persulfate and sodium lactate. The contaminants of concern are tetrachloroethene (PCE) and Chromium VI (CrVI), respectively.

Presenters will discuss:

  • Planning activities
  • Drilling operations
  • Injection processes
  • In-field groundwater profiling
  • Pre- and post- injection sampling
  • Monitoring activities

Participants of the webinar will also hear about various lessons learned as well as methods for cost savings. ISCO for PCE and CrVI is designed for those who would like to understand, evaluate, and make informed decisions on ISCO projects. The target audience includes EPA, federal, state, tribal and private industry technical project managers and stakeholders involved in remediation design and cleanup.

Pre-CERCLA Screening Webinar

The Office of Superfund Remediation and Technology Innovation (OSRTI) is offering a training webinar on the recent "Pre-CERCLA Screening Guidance" issued by the U.S. Environmental Protection Agency (EPA) in December 2016. This guidance is used by EPA, State, and Tribal Superfund site assessment staff and support contractors when deciding if a new site should be added to the Superfund "active site inventory" for more thorough pre-remedial site evaluation. The training webinar will cover all elements of the guidance, from planning the screening to approving the recommended course of action based on the screening. It includes an in-depth discussion of the Pre-CERCLA Screening Checklist/Decision Form that must be completed for each Pre-CERCLA screening. The webinar provides opportunities for participation by the audience, including a section for questions and answers.

Recommended Audience: EPA, State, and Tribal staff and managers and contractor support staff who are involved with planning, conducting, reviewing, and approving Pre-CERCLA screening activities.

Military Munitions Support Services - MMRP Explosive Safety

This session will discuss updated safety developments when dealing with scrappers, underwater issues and the 3 R's.
Interstate Technology Regulatory Council
Seminars Sponsored by the Interstate Technology and Regulatory Council


Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management

Interstate Technology Regulatory Council Chemical contaminants in soil and groundwater can volatilize into soil gas and migrate through unsaturated soils of the vadose zone. Vapor intrusion (VI) occurs when these vapors migrate upward into overlying buildings through cracks and gaps in the building floors, foundations, and utility conduits, and contaminate indoor air. If present at sufficiently high concentrations, these vapors may present a threat to the health and safety of building occupants. Petroleum vapor intrusion (PVI) is a subset of VI and is the process by which volatile petroleum hydrocarbons (PHCs) released as vapors from light nonaqueous phase liquids (LNAPL), petroleum-contaminated soils, or petroleum-contaminated groundwater migrate through the vadose zone and into overlying buildings. Fortunately, in the case of PHC vapors, this migration is often limited by microorganisms that are normally present in soil. The organisms consume these chemicals, reducing them to nontoxic end products through the process of biodegradation. The extent and rate to which this natural biodegradation process occurs is strongly influenced by the concentration of the vapor source, the distance the vapors must travel through soil from the source to potential receptors, and the presence of oxygen (O2) in the subsurface environment between the source and potential receptors.

The ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and this associated Internet-based training provides regulators and practitioners with consensus information based on empirical data and recent research to support PVI decision making under different regulatory frameworks. The PVI assessment strategy described in this guidance document enables confident decision making that protects human health for various types of petroleum sites and multiple PHC compounds. This guidance provides a comprehensive methodology for screening, investigating, and managing potential PVI sites and is intended to promote the efficient use of resources and increase confidence in decision making when evaluating the potential for vapor intrusion at petroleum-contaminated sites. By using the ITRC guidance document, the vapor intrusion pathway can be eliminated from further investigation at many sites where soil or groundwater is contaminated with petroleum hydrocarbons or where LNAPL is present.

After attending this ITRC Internet-based training, participants should be able to:
  • Determine when and how to use the ITRC PVI document at their sites
  • Describe the important role of biodegradation impacts on the PVI pathway (in contrast to chlorinated solvent contaminated sites)
  • Value a PVI conceptual site model (CSM) and list its key components
  • Apply the ITRC PVI 8 step decision process to screen sites for the PVI pathway and determine actions to take if a site does not initially screen out, (e.g., site investigation, modeling, and vapor control and site management)
  • Access fact sheets to support community engagement activities at each step in the process
For reference during the training class, participants should have a copy of the flowcharts, Figures 1-2, 3-2, and 4-1 from the ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and are available as a 3-page PDF at http://www.cluin.org/conf/itrc/PVI/ITRC-PVI-FlowCharts.pdf


ITRC also offers a 2-day PVI focused classroom training at locations across the US. The classroom training provides participants the opportunity to learn more in-depth information about the PVI pathway and practice applying the ITRC PVI guidance document with a diverse group of environmental professionals. Learn more at the ITRC PVI classroom training page.

Remedy Selection for Contaminated Sediments

Interstate Technology Regulatory Council The sediments underlying many of our nationís major waterways are contaminated with toxic pollutants from past industrial activities. Cleaning up contaminated sediments is expensive and technically-challenging. Sediment sites are unique, complex, and require a multidisciplinary approach and often project managers lack sediments experience. ITRC developed the technical and regulatory guidance, Remedy Selection for Contaminated Sediments (CS-2, 2014), to assist decision-makers in identifying which contaminated sediment management technology is most favorable based on an evaluation of site specific physical, sediment, contaminant, and land and waterway use characteristics. The document provides a remedial selection framework to help identify favorable technologies, and identifies additional factors (feasibility, cost, stakeholder concerns, and others) that need to be considered as part of the remedy selection process. This ITRC training course supports participants with applying the technical and regulatory guidance as a tool to overcome the remedial challenges posed by contaminated sediment sites. Participants learn how to:
  • Identify site-specific characteristics and data needed for site decision making
  • Evaluate potential technologies based on site information
  • Select the most favorable contaminant management technology for their site
For reference during the training class, participants should have a copy of Figure 2-1, Framework for Sediment Remedy Evaluation. It is available as a 1-page PDF at http://www.cluin.org/conf/itrc/ContSedRem/ITRC-SedimentRemedyEvaluation.pdf.

Participants should also be familiar with the ITRC technology and regulatory guidance for Incorporating Bioavailability Considerations into the Evaluation of Contaminated Sediment Sites Website (CS-1, 2011) and associated Internet-based training that assists state regulators and practitioners with understanding and incorporating fundamental concepts of bioavailability in contaminated sediment management practices.

Integrated DNAPL Site Strategy

Interstate Technology Regulatory Council Sites contaminated by chlorinated solvents present a daunting environmental challenge, especially at sites with dense nonaqueous phase liquid (DNAPL) still present. Restoring sites contaminated by chlorinated solvents to typical regulatory criteria (low parts-per-billion concentrations) within a generation (~20 years) has proven exceptionally difficult, although there have been successes. Site managers must recognize that complete restoration of many of these sites will require prolonged treatment and involve several remediation technologies. To make as much progress as possible requires a thorough understanding of the site, clear descriptions of achievable objectives, and use of more than one remedial technology. Making efficient progress will require an adaptive management approach, and may also require transitioning from one remedy to another as the optimum range of a technique is surpassed. Targeted monitoring should be used and re-evaluation should be done periodically.

This ITRC Integrated Dense Nonaqueous Phase Liquid Site Strategy (IDSS-1, 2011) technical and regulatory guidance document will assist site managers in development of an integrated site remedial strategy. This course highlights five important features of an IDSS including:

  1. A conceptual site model (CSM) that is based on reliable characterization and an understanding of the subsurface conditions that control contaminant transport, reactivity, and distribution
  2. Remedial objectives and performance metrics that are clear, concise, and measureable
  3. Treatment technologies applied to optimize performance and take advantage of potential synergistic effects
  4. Monitoring based on interim and final cleanup objectives, the selected treatment technology and approach, and remedial performance goals
  5. Reevaluating the strategy repeatedly and even modifying the approach when objectives are not being met or when alternative methods offer similar or better outcomes at lower cost

This IDSS guidance and training is intended for regulators, remedial project managers, and remediation engineers responsible for sites contaminated by chlorinated solvents. Because the subject matter is complex, this guidance assumes a functional understanding of the field and is targeted towards experienced users; however, novices will benefit through descriptions and references of the latest evolution of site characterization challenges; realistic planning of site restoration; evolving treatment techniques; and evaluating, monitoring and interpreting mass transport in the subsurface aqueous and vapor phases. While the primary focus of the document is on DNAPL sites, other types of contaminated sites (e.g. petroleum, mixed contaminants, etc.) can use the same fundamental process described in this guidance.

For reference during the training class, participants should have a copy of the flow diagram, Figure 1-2 on page 6 of the ITRC Technical and Regulatory Guidance document, ITRC Integrated Dense Nonaqueous Phase Liquid Site Strategy (IDSS-1, 2011) and available as a 1-page PDF at http://www.cluin.org/conf/itrc/IDSS/ITRC-IDSS-1-Figure1-2.pdf.

Integrated DNAPL Site Characterization

Interstate Technology Regulatory Council Sites contaminated with dense nonaqueous phase liquids (DNAPLs) and DNAPL mixtures present significant environmental challenges. Despite the decades spent on characterizing and attempting to remediate DNAPL sites, substantial risk remains. Inadequate characterization of site geology as well as the distribution, characteristics, and behavior of contaminants -- by relying on traditional monitoring well methods rather than more innovative and integrated approaches -- has limited the success of many remediation efforts.

The Integrated DNAPL Site Characterization Team has synthesized the knowledge about DNAPL site characterization and remediation acquired over the past several decades, and has integrated that information into a new document, Integrated DNAPL Site Characterization and Tools Selection (ISC-1, 2015). This guidance is a resource to inform regulators, responsible parties, other problem holders, consultants, community stakeholders, and other interested parties of the critical concepts related to characterization approaches and tools for collecting subsurface data at DNAPL sites. After this associated training, participants will be able to use the ITRC Integrated DNAPL Site Characterization and Tools Selection (ISC-1, 2015) guidance to develop and support an integrated approach to DNAPL site characterization, including:
  • Identify what site conditions must be considered when developing an informative DNAPL conceptual site model (CSM)
  • Define an objectives-based DNAPL characterization strategy
  • Understand what tools and resources are available to improve the identification, collection, and evaluation of appropriate site characterization data
  • Navigate the DNAPL characterization tools table and select appropriate technologies to fill site-specific data gaps
For reference during the training class, participants should have a copy of Figure 4-1, the integrated site characterization flow diagram from the ITRC Technical and Regulatory Guidance document: Integrated DNAPL Site Characterization and Tools Selection (ISC-1, 2015) and available as a PDF at http://www.cluin.org/conf/itrc/IDSC/ITRC-ISC-Figures.pdf
.

Use and Measurement of Mass Flux and Mass Discharge

Interstate Technology Regulatory Council Most decisions at groundwater contamination sites are driven by measurements of contaminant concentration -- snapshots of contaminant concentrations that may appear to be relatively stable or show notable changes over time. Decisions can be improved by considering mass flux and mass discharge. Mass flux and mass discharge quantify the source or plume strength at a given time and location resulting in better-informed management decisions regarding site prioritization or remedial design as well as lead to significant improvements in remediation efficiency and faster cleanup times. The use of mass flux and mass discharge is increasing and will accelerate as field methods improve and practitioners and regulators become familiar with its application, advantages, and limitations. The decision to collect and evaluate mass flux data is site-specific. It should consider the reliability of other available data, the uncertainty associated with mass flux measurements, the specific applications of the mass flux data, and the cost-benefit of collecting mass measurements.

The ITRC technology overview, Use and Measurement of Mass Flux and Mass Discharge (MASSFLUX-1, 2010), and associated Internet-based training provide a description of the underlying concepts, potential applications, description of methods for measuring and calculating, and case studies of the uses of mass flux and mass discharge. This Technology Overview, and associated internet based training are intended to foster the appropriate understanding and application of mass flux and mass discharge estimates, and provide examples of use and analysis. The document and training assumes the participant has a general understanding of hydrogeology, the movement of chemicals in porous media, remediation technologies, and the overall remedial process. Practitioners, regulators, and others working on groundwater sites should attend this training course to learn more about various methods and potential use of mass flux and mass discharge information.